УДК 546.73:541.49+548.737

В.А.Потаскалов, Н.И.Потаскалова, А.О.Зульфигаров, А.А.Андрийко ГЕТЕРОМЕТАЛЛЬНЫЕ КОМПЛЕКСЫ КОБАЛЬТА С ТРИЭТАНОЛАМИНОМ

Исходя из внутрикомплексного соединения Co(III) с триэтаноламином [CoHtetmH2tetm] получен ряд гетерометалльных комплексов {Me[CoHtetmH2tetm] $_n$ }Cl2 (Me = Co^{2+} , Cu^{2+} , Zn^{2+} , Ni^{2+} , n=1,2). На основе проведенного элементного анализа и изучения ИК-спектров высказано предположение о координационном окружении кобальта CoO_4N_2 при транс-положении атомов азота.

Получение электрокатализаторов восстановления кислорода на основе полиядерных комплексов является перспективным для создания электрохимических топливных элементов, химических источников тока и других [1].

Показано, что максимальную активность имеют электрокатализаторы, полученные из аминоэтилатных гетерополиядерных комплексов 3dметаллов [2]. Цель настоящей работы — выделить гетерометалльные соединения в свободном состоянии и на основе физико-химических исследований определить их строение.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Исходным веществом для получения гетерополиядерных соединений было внутрикомплексное соединение кобальта (III) с триэтаноламином состава [CoHtetmH2tetm]·6H2O, которое может взаимодействовать с солями d-металлов как сложный лиганд, образуя структуры за счет мостиковых связей кислорода депротонированных спиртовых групп.

Синтез гетерополиядерных комплексов был осуществлен по следующей методике. 0.1 Моля свежеприготовленного сухого внутрикомплексного соединения [CoHtetm H_2 tetm]· $6H_2$ O растирали в чашке с растворами солей Co(II), Ni(II), Cu(II) и Zn(II) в метаноле несколько минут при очень слабом нагревании до полного растворения исходного комплекса. Соотношение соль Me^{2+} : комплекс Co^{3+} составляло 1:1 и 1:2. Полученный маточный раствор оставляли для воздушного упаривания при комнатной температуре. Время образования комплексов разное, однако во всех случаях образуются мелкокристаллические осадки. Для работы использовали реактивы марки х.ч. и ч.д.а.

В полученных соединениях содержание кобальта (II) определяли потенциометрическим ти-

трованием гексацианоферратом (III) калия без разложения [3], а общий кобальт — после восстановления его в кислотах при разложении комплекса по методике [4].

Содержание азота устанавливали по Дюма и с использованием анализатора Perkin Elmer 2400 CHN. Хлорид-ион определяли потенциометрическим титрованием. Содержание никеля находили гравиметрическим диметилглиоксиматным методом [5], а содержание меди — иодометрическим методом [5]. Содержание цинка определили объемным методом по методике [6]. В табл. 1 представлены найденные и расчетные данные полученных соединений.

Электронные спектры поглощения измерены на спектрофотометре UNICO 2100 в кюветах толщиной 1 см. Исследование электронных спектров поглощения показало, что наблюдается смещение *d-d*-полосы электронного перехода кобальта ${}^{1}T_{1g} \leftarrow {}^{1}A_{1g}$ в спектре [CoHtetmH₂tetm]·6H₂O 556.7 нм до 572 нм для соединений {Me[CoHtet mH_2 tetm]}Cl₂ (1:1) и 565 нм для {Me[CoHtet mH_2 tetm $_2$ Cl_2 (1:2). Положение полос поглощения в спектрах сохраняется в течение суток. По нашему мнению, аналогия в спектрах поглощения комплексных соединений должна свидетельствовать в пользу устойчивости самих комплексов, а также говорить о том, что характер координации триэтаноламина кобальтом сохраняется в гетерометалльных соединениях.

Предполагаемое строение полученных соединений (рис. 1) можно представить схемой А, если соотношение исходных компонентов (1:1) или схемой В при соотношении (1:2), учитывая, что в результате проведенного ранее рентгеноструктурного исследования [7] было установлено транс-расположение атомов азота триэтаноламина относительно кобальта в комплексе

© В.А.Потаскалов, Н.И.Потаскалова, А.О.Зульфигаров, А.А.Андрийко, 2012

Таблица 1 Результаты элементного анализа полученных гетерометаллыных комплексных соединений

Состав	Найдено/рассчитано, %						
	Co	Me	N	H ₂ O	Cl		
{Co[CoHtetmH ₂ tetm]}Cl ₂ ·2H ₂ O	22.49 / 22.65	_	5.32 / 5.38	6.80 / 6.92	13.61 / 13.69		
{Cu[CoHtetmH ₂ tetm]}Cl ₂ ·4H ₂ O	10.43 / 10.51	11.21 / 11.33	4.87 / 4.99	12.70 / 12.84	12.57 / 12.64		
${\rm Zn[CoHtetmH_2tetm]}{\rm Cl_2\cdot 4H_2O}$	10.39 / 10.47	11.54 / 11.62	4.90 / 4.97	12.70 / 12.79	12.51 / 12.60		
{Ni[CoHtetmH ₂ tetm]}Cl ₂ ·5H ₂ O	10.12 / 10.26	10.10 / 10.23	4.82 / 4.87	15.53 / 15.68	12.21 / 12.35		
{Co[CoHtetmH ₂ tetm] ₂ }Cl ₂ ·4H ₂ O	19.31 / 19.42	_	6.03 / 6.15	7.84 / 7.91	7.65 / 7.78		
$\{Zn[CoHtetmH_2tetm]_2\}Cl_2\cdot7H_2O$	12.03 / 12.14	6.67 / 6.73	5.54 / 5.77	12.80 / 12.97	7.21 / 7.30		
{Cu[CoHtetmH ₂ tetm] ₂ }Cl ₂ ·4H ₂ O	12.72 / 12.87	6.84 / 6.94	6.03 / 6.12	7.80 / 7.86	7.62 / 7.74		
${\text{Ni[CoHtetmH}_2\text{tetm]}_2}{\text{Cl}_2 \cdot \text{6H}_2\text{O}}$	12.31 / 12.46	6.02 / 6.20	5.80 / 5.92	11.02 / 11.41	7.30 / 7.49		

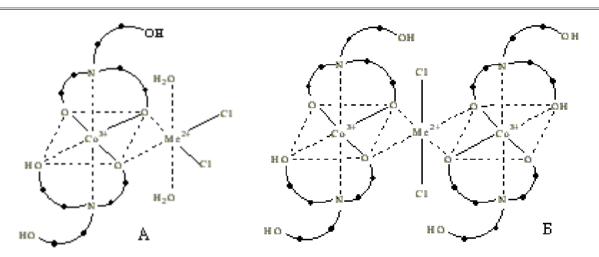


Рис. 1. Схема координации атомов в комплексах $\{Me[CoHtetmH_2tetm]\}Cl_2$ (A) и $\{Me[CoHtetmH_2tetm]_2\}Cl_2$ (Б).

[CoHtetmH2tetm]-6H2O. В структуре A и В катион Me^{2+} удерживается атомами кислорода депротонированных спиртовых групп триэтаноламина, а координационные числа Me^{2+} могут дополняться до их характерных значений за счет кислорода молекул воды и хлорид-ионов, создавая координационное окружение MeO_4Cl_2 .

ИК-спектры сняты с использованием спектрофотометра Specord 75 UR в области частот 400—4000 см⁻¹ в таблетках с КВг. На рис. 2 представлены ИК-спектры полученных соединений, в табл. 2 — основные частоты поглощения. Сравнение спектров поглощения многоядерных соединений кобальта с триэтаноламином в литературных источниках ранее не при-

водилось.В высокочастотной области спектра поглощения [CoHtetm H_2 tetm]· $6H_2O$, где проявляются валентные симметричные и антисимметричные колебания кристаллизационной воды и валентные колебания групп ОН фрагментов – CH_2 – CH_2 –OH, наблюдается широкая область, вероятно, вследствие возникновения в кристалле разнообразных водородных связей [8, 9].

Полосы при 2952 и 2833 см⁻¹, вероятно, обусловлены валентными колебаниями метиленовых групп –СН₂– координированного триэтаноламина. В интервале частот поглощения 1600—1200 см⁻¹ проявляются полосы веерных внеплоскостных колебаний групп –СН₂–, которые находятся возле депротонированого кислорода и де-

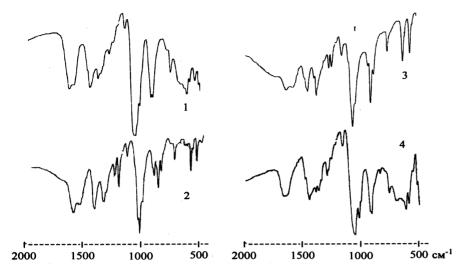


Рис. 2. ИК-спектры гетерометалльных комплексов Zn[Co·Htetm·H2tetm]Cl₂· $2H_2O$ (*I*), Co[Co·Htetm·H2tetm]Cl₂· H_2O (*2*), Cu[Co·Htetm·H2tetm]Cl₂· $2H_2O$ (*3*) и внутрикомплексного соединения [Co·Htetm·H2tetm]·6H3O (*4*).

формационных колебаний кристаллизационной воды, участвующей в создании водородных связей [10].

В частотном интервале 1200—1000 см⁻¹, где наблюдаются валентные колебания С-N, С-O.

С-С, можно выделить несколько составляющих (табл. 2). На наш взгляд, наиболее информативной должна быть область $\bar{7}00-500$ см⁻¹. Характер поглощения может быть обусловлен координацией лиганда кобальтом через атомы азота аминогруппы и атомы кислорода ОН-групп и депротонированных ОН-групп. По литературным данным, группа ОН в роли мостика в гидроксокомплексах даут в области деформационных колебаний полосы поглощения ниже 1100 см^{-1} [11], а алкоксиды металлов дают частоты валентных колебаний С-О примерно около 1000 cm^{-1} и валентные Me-O в области 600 —300 cm⁻¹.

Полосы 590—550 см $^{-1}$, вероятнее всего, соответствуют валентным колебаниям Co-O, а полосы 520—500 см $^{-1}$ следует считать результатом валентных колебаний Co-N.

ИК-спектрах полученных комплексов должны быть отличия от ИК-спектра исходного внутрикомплексного соединения, связанные с образованием мостиковой связи Со-О...Ме. То есть следует выявить отклонение частот по сравнению с исходным комплексом в области валентных колебаний С-О, Ме-О. Действительно, в ИК-спектрах фиксируется полоса 615 —620 см⁻¹ и появляются полосы 640—660 см⁻¹, которые отсутствуют у исходного внутрикомплексного соединения, что, по-нашему мнению, и связано с образова-

По нашему мнению, в

нием мостиковой связи.

В высокочастотной области спектров существенных отличий не обнаруживается, и спектры весьма схожи. В области 1400—1100 см⁻¹ в спектрах многоядерных соединений можно выде-

Таблица 2

Частоты поглощения в ИК-спектрах исходного внутрикомплексного соединения [CoHtetmH $_2$ tetm]·6H $_2$ O и полученных гетерометалльных соединений {Me[CoHtetmH $_2$ tetm]}Cl $_2$

[CoHtetm- H ₂ tetm]	{Me[CoHtetmH ₂ tetm]}Cl ₂			[CoHtetm-	$\{Me[CoHtetmH_2tetm]\}Cl_2$		
	Co ²⁺	Cu ²⁺	Zn ²⁺	H ₂ tetm]	Co ²⁺	Cu ²⁺	Zn^{2+}
3357	3347	3480	3373			1093	1066
	3320	3306	3226	1055	1053	1053	1053
2952	2933	3146		1021	1026	1026	1026
		2946	2960	927	933	920	920
2833	2853	2866	2853	900	893	893	906
		2340		837	866	866	840
1664	1647	1630	1640	760	746	746	750
	1586	1586	1600	700	660		666
1493	1466	1453	1460		640	640	640
1452	1453	1400		615	613	613	613
1397	1373	1380	1386	590	586		586
1370				555	560	560	546
1297	1280	1266	1293	521	513	543	493
1167	1173	1153	1160	500			

лить несколько составляющих. Понятно, что главным фактором, определяющим частоту поглощения, является эффект координации и влияние природы металла.

Усложнение спектров поглощения гетерополиядерных комплексов по сравнению с ИКспектром исходного комплекса можно объяснить усилением связи Ме-О и ослаблением связи Со-О, то есть существованием кислородного мостика. Полосы поглощения связей Ме-С1, которые находятся в области 400—200 см⁻¹, в наших спектрах не могут быть зафиксированы [12].

РЕЗЮМЕ. Одержано ряд гетерометальних комплексів на базі внутрішньокомплексної сполуки кобальту (ІІІ) з триетаноламіном. На основі проведеного елементного анализу і порівняння спектрів поглинання та ІЧ-спектрів комплексів {Me[CoHtetmH2tetm] $_n$ }Cl $_2$ (n=1,2), зроблено припущення про координаційне оточення кобальту транс-N,N-CoO $_4$ N $_2$ і металу MeO $_4$ Cl $_2$.

SUMMARY. A series of compounds based on geterometal chelate compounds of cobalt (III) with triethanolamine has been obtained. As follows from the data of elemental analysis and IR-spectra, the most probable coordinating surroundings in the complexes {Me[CoHtetm- H_2 tetm] $_n$ }Cl $_2$ (n=1,2) is trans-N,N-CoO $_4$ N $_2$ for cobalt (III) and MeO $_4$ Cl $_2$ for Me(II).

Национальный технический университет Украины "КПИ", Киев

ЛИТЕРАТУРА

- 1. Kublanovsky V.S., Pirsky Yu.K., Potaskalov V.A. // Book of Abstr. 8th Int. Frumkin Symp. "Kinetics of electrode processes". -Moscow, 2005. -P. 148.
- 2. Пирский Ю.К., Кублановский В.С., Потаскалов В.А., Андрийко А.А. // Доп. НАН України (математика, природознавство, технічні науки). -2006. -№ 11. -С. 152.
- 3. *Пятницкий И.В.* Аналитическая химия кобальта. -М.: Наука. -1965. -С. 210.
- 4. *Евреев В.Н., Петрунькин В.Е.* // Журн. неорган. химии. -1968. -**13**, № 9. -С. 2496.
- 5. *Шарло Г.* Методы аналитической химии. -М.: Химия, 1965.
- 6. Flaschka H. // Z. anal. Chem. -1953. -138. -P. 332.
- 7. Потаскалов В.А., Потаскалова Н.И., Лисовская И.В., Пацкова Т.В. // Укр. хим. журн. -2004. -70, № 4. -C. 88—90.
- Беллами Л. Новые данные по ИК-спектрам сложных молекул. -М.: Мир, 1971. -С. 294.
- 9. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. -М.: Мир, 1991. -С. 411.
- 10. *Бранд Дж.*, *Эглинтон И*. Применение спектроскопии в органической химии. -М.: Мир, 1965. -С. 186.
- 11. Blyholder G., Ford N. // J. Phys. Chem. -1964. -68. -P. 1496.
- 12. Postmus C., Terraro J.R., Quattrochi A. et al. // Inorg. Chem. -1969. -8. -P. 1851.

Поступила 20.03.2012