УДК 541.49+546.47+547,792

Д.Н.Хоменко, Р.А.Дорощук, Р.Д.Лампека

ЯМР-СПЕКТРАЛЬНОЕ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ ЦИНКА С ПРОИЗВОДНЫМИ 3-(2-ПИРИДИЛ)-1,2,4-ТРИАЗОЛА

Определена кристаллическая структура двух координационных соединений цинка с амидом и этиловым эфиром 5-(2-пиридил)-1,2,4-триазолилуксусной кислоты. На основе данных ЯМР-спектров, записанных при пониженных температурах, сделаны выводы о возможной структуре полученных комплексов в растворе.

ВВЕДЕНИЕ. Важной структурной составляющей многих природных и синтетических биологически-активных веществ являются разнообразные гетероциклические соединения, в частности, 1,2,4-триазолы, которые представляют интерес с точки зрения как бионеорганической, так и координационной химии. Строение триазолов по своим структурным особенностям напоминает пиразол и имидазол, кислотно-основная природа которых обусловливает возможность их нахождения в составе комплексов как в ацидо-, так и в нейтральной форме.

Одним из перспективных направлений развития координационной химии является синтез комплексов, которые могут быть использованы в качестве модельных при изучении металлзависимых биологических процессов. Существует ряд работ по исследованию пиразолсодержащих биядерных комплексов цинка — эффективных катализаторов расщепления фосфоэфиров [1], что делает актуальным также исследование 3,5бизамещенных триазолов, способных к образованию полиядерных координационных соединений. Также изучение координационных соединений цинка с хелатирующими лигандами актуально в контексте разработки флуорофоров — соединений для измерения распределения и концентрации ионов металла в биологических системах. Одними из первых лигандов, способных выполнять такую функцию, были сульфамиды 8-аминохинолина, которые за счет депротонирования сульфамидной группы могут образовывать хелатные координационные соединения [2].

В данной работе представлен синтез комплексов цинка с этиловым эфиром 5-(2-пиридил)-1,2,4-триазолилуксусной кислоты (HL¹) и амидом 5-(2-пиридил)-1,2,4-триазолилуксусной кислоты (HL²). Определена кристаллическая структура соединений $Zn(HL^{1})_2(NO_3)_2$ и $Zn(HL^{2})_2$ -(NO₃)₂·3H₂O. На основе данных ЯМР-спектров, записанных при пониженных температурах, сделаны предположения о структуре полученных комплексов в растворе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Для синтеза комплексов использовали Zn(NO₃)₂·6H₂O марки ч.; этиловый ефир 5-(2-пиридил)-1,2,4-триазолилуксусной кислоты получали по ранее описанной методике [3].

Алид 5-(2-пиридил)-1,2,4-триазолилуксусной кислоты. К 20 мл концентрированного раствора аммиака прибавляли 2.32 г (0.01 моль) HL¹. Полученный раствор кипятили с обратным холодильником на протяжении одного часа, затем растворитель упаривали в вакууме. Сухой остаток перекристаллизовывали из смеси этанол—ацетонитрил. HL² кристаллизовался в виде белого порошка. Выход — 1.3 г, 64 %.

Вычислено, %: C₉H₉N₅O. C 53.20; H 4.46; N 34.46. Найдено, %: C 53.5; H 4.4; N 34.3.

 $Zn(HL^{1})_{2}(NO_{3})_{2}$. К раствору Zn(NO₃)₂·6H₂O (0.148 г, 0.5 ммоль) в 5 мл CH₃CN приливали раствор HL¹ (0.232 г, 1 ммоль) в 15 мл хлороформа. При медленной кристаллизации в течение двух дней при комнатной температуре из этого раствора выпадали бесцветные кристаллы. Их отфильтровывали, промывали смесью ацетонитрил—хлороформ и сушили на воздухе. Выход Zn(HL¹)₂(NO₃)₂ составил 76 %.

Вычислено, %: C₂₂H₂₄N₁₀O₁₀Zn. C 40.41; H 3.70; N 21.42. Найдено, %: C 40.4; H 3.9; N 21.1.

Zn(*HL*²)₂(*NO*₃)₂·2*H*₂*O*. К раствору Zn(NO₃)₂· 6H₂O (0.148 г, 0.5 ммоль) в 5 мл CH₃OH при-

[©] Д.Н.Хоменко, Р.А.Дорощук, Р.Д.Лампека, 2012

ливали раствор HL² (0.207 г, 1 ммоль) в 10 мл CH₃OH. При медленной кристаллизации в течение двух дней при комнатной температуре из раствора выпадали бесцветные кристаллы. Их отфильтровывали, промывали смесью метанол—хлороформ и сушили на воздухе. Выход Zn(HL²)₂(NO₃)₂·3H₂O составил 48 %.

Вычислено, %: C₁₈H₂₄N₁₂O₁₁Zn. C 34.28; H 3.69; N 25.88. Найдено, %: C 33.8; H 3.8; N 26.2.

Спектры ЯМР регистрировали на приборе Bruker Avance DRX 500 на частоте 500 МГц (¹Н). Для отсчета химического сдвига в спектрах ПМР в качестве вторичного эталона использовали: в DMSO- d_6 — центральный сигнал остаточных протонов DMSO d_6 ($\delta = 2.503$ м.д.), в метаноле- d_4 — химический сдвиг протонов группы CH₃ ($\delta = 3.31$ м.д.).

РСА проводили по стандартной методике при комнатной температуре на дифрактометре Bruker Apex II ССD с использованием MoK_{α} -излучения (длина волны — 0.71073 Å). Основные параметры эксперимента указаны

в таблице. Кристаллические структуры расшифрованы прямым методом с использованием пакета программ CRYSTALS [4—8].

Кристаллографические данные и параметры рентгеноструктурного эксперимента

$Zn(HL^1)_2(NO_3)_2$	$Zn(HL^2)_2(NO_3)_2 \cdot 3H_2O$
$C_{22}H_{24}N_{10}O_{10}Zn$	C ₁₈ H ₂₄ N ₁₂ O ₁₁ Zn
653.87	649.84
293(2)	293(2)
$P2_1/n$	Fddd
9.1159(4),	11.5619(6),
19.8640(9), 15.5880(8)	29.3676(12), 32.311(2)
90, 99.970(2), 90	90, 90, 90
2780.0(2)	10970.9(10)
4	32
1.56	1,57
от 1.68 до 28.52	от 1.87 до 26.37
$-12 \le h \le 12, -25 \le k \le$	$-13 \le h \le 14, -27 \le k \le$
26, $-14 \le h \le 20$	36, $-39 \le h \le 32$
$15797/6572 \ [R(int)=$ =0.0003]	$16788/2803 \ [R(int) = 0.0003]$
1.101	1.101
1344	5344
$R_1 = 0.0372, wR_2 =$	$R_1 = 0.0483, wR_2 =$
=0.0412	=0.0516
$R_1 = 0.0728, \ wR_2 = = 0.0567$	$R_1 = 0.0702, wR_2 = = 0.0571$
	$\begin{array}{c} {\rm Zn}({\rm HL}^1)_2({\rm NO}_3)_2\\ {\rm C}_{22}{\rm H}_{24}{\rm N}_{10}{\rm O}_{10}{\rm Zn}\\ {\rm 653.87}\\ 293(2)\\ {\rm P2}_1/n\\ 9.1159(4),\\ 19.8640(9),\ 15.5880(8)\\ 90,\ 99.970(2),\ 90\\ 2780.0(2)\\ {\rm 4}\\ 1.56\\ {\rm ot}\ 1.68\ {\rm дo}\ 28.52\\ -12\le h\le 12,\ -25\le k\le 26,\ -14\le h\le 20\\ 15797/6572\ [R({\rm int})=\\ =0.0003]\\ 1.101\\ 1344\\ R_1=0.0372,\ wR_2=\\ =0.0412\\ R_1=0.0728,\ wR_2=\\ =0.0567\\ \end{array}$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Кристаллическая и молекулярная структуры $Zn(HL^1)_2$ -(NO₃)₂ и $Zn(HL^2)_2(NO_3)_2$ ·ЗН₂О (рис. 1, таблица)

Рис. 1. Молекулярная структура [Zn(HL¹)₂(NO₃)]⁺ (a) и Zn(HL²)₂(NO₃)₂ (б).

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 7

были установлены с помощью ретгеноструктурного анализа. В обоих случаях координационная сфера центрального иона цинка образована двумя молекулами органического лиганда, координированного бидентатно-хелатно, и дополнена до шести нитрат-анионами. Координация лигандов осуществляется посредством атома азота пиридинового и N⁴ триазольного циклов. Расстояния Zn–N изменяются и составляют 2.053—2.207 Å. Координационный полиэдр цинка в полученных соединениях можно охарактеризовать как искаженный октаэдр; отклонения углов от идеальных значений (90° и 180°) составляют 15.7° и 13.1° для Zn(HL¹)₂(NO₃)₂ и Zn(HL²)₂-(NO₃)₂·3H₂O соответственно.

Следует отметить следующую особенность строения соединения $Zn(HL^1)_2(NO_3)_2$: органические лиганды в пределах одной координационной сферы отличаются конформацией и находятся в различных таутомерных формах (рис. 2). Такое строение координационного соединения судя по всему обусловлено особенностями кристаллической упаковки, а именно стабилизацией определенных таутомерных форм за счет образования межмолекулярных водородных связей с внешнесферным нитрат-анионом (рис. 3, *a*).

Системы водородных связей в кристаллах полученных соединений существенно отличаются. Так, в случае $Zn(HL^1)_2(NO_3)_2$ наблюдается образование водородных связей между протонами триазольных циклов лигандов, входящих в состав комплексного катиона $[Zn(HL^1)_2NO_3]^+$, инекоординированными нитрат-анионами. Следствием таких связей являются полимерные цепи типа $[Zn(HL^1)_2NO_3]^+(NO_3)^-[Zn(HL^1)_2NO_3]^+$ - $(NO_3)^-[Zn(HL^1)_2NO_3]^+$... (рис. 3, *a*). Для $Zn(HL^2)_2(NO_3)_2$ ·ЗН₂O, в резуль-

Для Zn(HL²)₂(NO₃)₂·3H₂O, в результате образования межмолекулярных водородных связей N(4)–H(41)...O(4) (N...O 2.670(5) Å, (N...O 2.670(5) Å, NHO 163°), N(5)–H(51)...O(1) (N...O 2.981 (5) Å, NHO 147°) и N(5)–H(51)...O(4) (N...O 3.033 (5) Å, NHO 164°), наблюдается образование сложной двумерной сетки (рис. 3, δ).

ПМР-спектры исследуемых координационных соединений в растворе DMSO-*d*₆ не позволяют сделать однозначные выводы об их строении из-за существенного уширения сигналов протонов, которое обусловлено какими-либо динамическими процессами. Область ароматических протонов ПМРспектра $Zn(HL^1)_2(NO_3)_2$ в дейтерометаноле при комнатной температуре характеризуется присутствием трех уширенных пиков (рис. 4). Анализируя их положение и мультиплетность, мож-

Рис. 2. Лиганды, образующие координационную сферу [Zn(HL¹)₂NO₃]⁺. Стрелкой указано положение протона.

Рис. 3. Системы водородных связей в кристаллах $Zn(HL^1)_{2^-}$ (NO₃)₂ (*a*) и $Zn(HL^2)_2(NO_3)_2 \cdot 3H_2O$ (б). Для упрощения рисунка сложноэфирные группы (*a*), пиридиновые циклы и молекулы воды (б) не показаны.

Рис. 4. Фрагменты ПМР-спектра HL^1 (*a*) и $Zn(HL^1)_2(NO_3)_2$ (*б*) при комнатной температуре (записаны в CD₃OD).

но предположить, что дублет при 8.45, триплет при 8.28 и широкий пик в области 7.5—7.8 м.д. соответствуют сигналам 4, 3 и 2-го протонов (тут и далее протоны обозначены в соответствии с нумерацией, приведенной на рис. 4). Интересной особенностью этой области спектра является отсутствие четкого сигнала α-пиридинового протона и повышенное значение интегральных интенсивностей дублета и триплета (рис. 4, б). Таким образом, из-за сильного уширения сигнала невозможно установить величину его химического сдвига. Из этих данных можно сделать вывод, что сигнал протона 1 в комплексе $Zn(HL^{1})_{2}(NO_{3})_{2}$ смещается в область более сильного поля относительно некоординированного лиганда.

Охлаждение раствора образца $Zn(HL^1)_2$ -(NO₃)₂ (исследование $Zn(HL^2)_2(NO_3)_2$ · $3H_2O$ в аналогичных условиях не проводилось из-за ограниченной растворимости комплекса) приводит к появлению новых сигналов, которые мы отнесли к α -протону пиридинового кольца, а также к расщеплению широкого сигнала от соседнего протона в области 7.8—7.5 м.д., на четыре мультиплета (рис. 5). В случае изучаемых систем такое расщепление может быть обусловлено присутствием лиганда в растворе в трех таутомерных формах, взаимный переход которых замедляется при охлаждении и, как результат, в ПМР-спектре должны, теоретически, наблюдаться сигналы протонов от каждого таутомера:

Практически, из-за схожести структур таутомеров, значительно отличается лишь резонансная частота протонов (групп протонов), непосредственно принимающих участие во взаимопревращении одного изомера в другой, а также близлежащих протонов. В нашем случае существование лиганда в различных таутомерных формах должно обусловливать уширение сигнала в ПМР-спектре ближайшего к триазольному циклу протона, что не наблюдается. Напротив, сигнал протона 4 единственный, о мультиплетности которого можно однозначно сказать, что

Рис. 5. Фрагменты ПМР-спектра Zn(HL¹)₂(NO₃)₂ при 10 (*a*), -10 (*б*) и 30 °С (*в*). Стрелками указаны сигналы α-протона пиридинового кольца.

это дублет. Еще одной причиной уширения сигналов в ПМР-спектре может быть существование в растворе $Zn(HL^1)_2(NO_3)_2$ динамического равновесия между комплексными частичками с разным окружением центрального атома. При этом наибольшее влияние ион металла будет оказывать на 1 и 2 протоны, что и подтверждается ЯМР-спектрами.

Таким образом, на примере $Zn(HL^1)_2(NO_3)_2$ показано, что изучаемые координационные соединения не сохраняют свое строение при растворении в метаноле и существуют в виде частиц с разной геометрией координационного окружения центрального атома. На присутствие среди них частиц с тетраэдрическим окружением цинка может указывать сильнопольный сдвиг α -протона пиридинового кольца по сравнению с некоординированным лигандом, что согласуется с литературными данными [9].

РЕЗЮМЕ. Встановлено кристалічну структуру двох координаційних сполук цинку з амідом та етиловим ефіром 5-(2-піридил)-1,2,4-триазолілоцтової кислоти. На основі даних ЯМР-спектрів, записаних при понижених температурах, зроблено висновки щодо можливої будови отриманих комплексів у розчині.

Киевский национальный университет им. Тараса Шевченко

SUMMARY. Crystal structure of two coordination compounds of zinc with 5-(2-pyridyl)-1,2,4-triazolylacetic acid ethyl ether and amid has been studied. Probable structure of obtained compounds in methanol solution were founded by means of low temperature NMR-spectroscopy.

ЛИТЕРАТУРА

- Benning M.M., Hong S.-B., Raushel F.M. et al. // J. Biol. Chem. -2000. -275. -P. 30556—30560.
- 2. Kimura E., Koike T. // Chem. Soc. Rev. -1998. -27. -P. 179-184.
- 3. Хоменко Д.Н., Дорощук Р.А., Лампека Р.Д. // Укр. хим. журн. -2009. -75, № 7. -С. 30—34.
- 4. Kuleshova L.N., Zorkii P.M. // Acta Crystallogr. B. -1981. -37, № 7. -P. 1363—1366.
- 5. Bertolasi V., Gilli P., Ferreti V., Gilli G. // Ibid. -1995. -51, № 3. -P. 1004—1015.
- 6. Sheldrick G.M. SADABS: Program for scaling and correction of area detector data. -University of Gottingen, Germany, 1996.
- 7. Watkin D.J., Prout C.K., Carruthers J.R., Betteridge P.W. CRYSTALS Issue 10. Oxford: Chemical Crystallography Laboratory, University of Oxford, 1996.
- 8. Carruthers J.R., Watkin D.J. // Acta Crystallogr. A. -1979. -35, № 3. -P. 698—699.
- 9. Nikitin S.O., Lampeka R.D., Volovenko Y.M. et al. // Polyhedron. -2008. -27. -P. 1161---1167.

Поступила 19.12.2011