УДК 541.49+544.72

А.А.Роговцов, Л.И.Железнова., Е.А.Мазуренко СИНТЕЗ, СТРОЕНИЕ И СВОЙСТВА ФОРМИАТОВ ЖЕЛЕЗА

Проведен синтез комплексов Fe(COOH)₃·3H₂O, Fe(COOH)₂·2H₂O, Fe(COOH)₂(N₂H₂)₂. Строение и свойства полученных соединений исследованы с помощью элементного анализа EDAX, электронной спектроскопии, спектроскопии диффузного отражения, ИК-спектроскопии, термогравиметрии. Показана возможность использования этих соединений в качестве прекурсоров при получении методами CVD и спрей-пиролиза наноструктурированных покрытий оксида железа на кварцевых и кремниевых подложках. Определена перспективность применения этих пленок для современных технологических целей.

ВВЕДЕНИЕ. Развитие современных высоких технологий базируется на использовании новых функциональных материалов. Это требует разработки и применения новых или модифицирования известных методов их синтеза, основанных на использовании новых прекурсоров. При поиске новых соединений для CVD-процесса получения высокодисперсных магнитных порошков и сенсорных тонких пленок выбор был остановлен на комплексах формиатов железа Fe(II), Fe(III) и их аддуктов с гидразином. Эти координационные соединения мало исследованы, они могут быть использованы как прекурсоры для CVD-технологий (РЕ МОСVD, спрей-пиролиз).

Таким образом, исследование эффективных методов направленного синтеза координационных соединений, изучение их строения, свойств и влияния строения на пути фрагментации, формирование структуры осаждаемого материала является актуальной задачей.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬ-ТАТОВ. Строение и свойства полученных соединений исследовали с помощью элементного анализа EDAX, электронной спектроскопии, спектроскопии диффузного отражения, ИК-спектроскопии, термогравиметрии.

Формиат Fe(III) синтезировали, растворяя отмытый от щелочи Fe(OH)₃ в концентрированной муравьиной кислоте. Затем продукт перекристаллизовывали из воды. Синтез формиата Fe(II) проводили согласно методике [1] путем растворения металлического железа в 20 %-й муравьиной кислоте при температуре 70–75 °С. Горячий раствор отфильтровывали в инертной среде (N₂), после чего из пересыщенного раствора при охлаждении выкристаллизовывался Fe(CO-O)₂·2H₂O. Затем продукт был перекристаллизован из воды и высушен в атмосфере N₂. Смешанолигандный комплекс формиат—гидразин железа Fe(II) получали, прибавляя к раствору формиата Fe(III) гидрат гидразина, нейтрализованный муравьиной кислотой. Темно-красный раствор через 10 мин обесцвечивался, что свидетельствует о восстановлении железа (III) до железа (II).

Смешанолигандный комплекс в твердом состоянии получали, упаривая раствор в воздушной атмосфере при температуре 30 °С. При этом образовывались два различных продукта: бесцветные кристаллы формиата гидразина и темнофиолетовый мелкокристаллический порошок смешанолигандного комплекса железа состава $Fe(COO)_2(N_2H_2)_2$ (M=210). Из-за полной нерастворимости последнего в воде и органических растворителях их разделили в экстракторе непрерывного действия. Вещество стабильно на воздухе, растворяется в горячих азотной и серной кислотах с разрушением комплекса и окислением железа 2+ до 3+.

Для всех исследуемых комплексов были записаны их термические и спектроскопические характеристики.

Дериватограммы соединений приведены на рис. 1. На термограмме формиата трехвалентного железа, на кривой ДТА, фиксируется несколько эндоэффектов, накладывающихся друг на друга, при температурах 105, 165 и 185 °C, а на кривой ТГ — плавная потеря веса. Эти эффекты отражают процесс обезвоживания указанного соединения, до температуры 225 °C потеря

[©] А.А.Роговцов, Л.И.Железнова., Е.А.Мазуренко, 2012

Рис. 1. Дериватограммы комплексов: Fe(COOH)₃· 3H₂O (1); Fe(COOH)₂·2H₂O (2); Fe(COOH)₂(N₂H₂)₂ (3).

веса составляет 21.8 %, что соответствует трем молекулам воды (теоретически 22.0 %). При повышении температуры до 260 °С происходит деструкция комплекса, сопровождающаяся значительным экзоэффектом и потерей массы. Разложение Fe(COOH)₃·3H₂O идет до образования оксида железа. Дериватограмма формиата двухвалентного железа отличается от рассмотренной дериватограммы формиата трехвалентного железа. На ней четко видно два хорошо разделенных эндоэффекта, первый при 111 °C, когда уходит одна молекула воды, и второй — при температуре 188 °С, связанный с прохождением сразу двух процессов — отщеплением второй молекулы воды и сублимацией комплекса. Дальнейшее нагревание соединения приводит к экзоэффекту при 273 °С и потере массы еще на 30 %. Этот экзоэффект возник в результате деструкции исходного соединения, при этом летучие компоненты уходят, а в тигле остается оксид железа (II). При температуре 298 °С наблюдается экзоэффект, проходящий без потери массы, который связан с переходом железа из состояния FeO в Fe₂O₃. Анализируя дериватограмму комплекса Fe(COOH)₂- $(N_2H_2)_2$, отмечаем, что он устойчив до температуры 230 °С. До этой температуры не происходит ни отщепление молекул гидразина, ни сублимации комплекса. При дальнейшем повышении температуры начинается его разрушение, сопровождающееся интенсивным выделением тепла и потерей массы. В широком экзоэффекте можно выделить два максимума — при температурах 280 и 315 °С. В области этих температур проходит деструкция $Fe(COOH)_2(N_2H_2)_2$ и окисление железа (II) до железа (III). Химический анализ оставшегося продукта показал, что это оксид железа (III).

Волновые числа и отнесение характеристических полос ИК-спектров комплексов $Fe(COOH)_3 \cdot 3H_2O$, $Fe(COOH)_2 \cdot 2H_2O$ и $Fe(COOH)_2(N_2-H_2)_2$ отображены в таблице. Отнесение основных полос в спектре было проведено с учетом литературных данных [2]. Анализируя ИК-спектры, можно сказать, что карбоксилат-ион координируется в этих комплексах различным образом. В спектре комплекса $Fe(COOH)_3 \cdot 3H_2O$ в интервале 900–640 см⁻¹ наблюдаются три полосы (деформационные колебания COO) и, согласно работе [2], можно говорить о монодентатной координации лиганда к металлу.

В спектре комплекса $Fe(N_2H_2)_2(COOH)_2$, в сравнении со спектром $Fe(COOH)_2 \cdot 2H_2O$, появляются новые полосы, а также изменения положений отдельных полос, обусловленные изменениями в строении координационного узла. Зафиксированы полосы валентных колебаний Fe–N и N–N, NH. Координация карбоксилат-иона в комплексе $Fe(COOH)_2(N_2H_2)_2$ осуществляется бидентатно. В спектре $Fe(COOH)_2 \cdot 2H_2O$ в области 1300–1650 см⁻¹ фиксируется большее количество полос, чем для смешанолигандного комплекса, что, вероятно, связано с наличием в этом комплексе двух различных координаций карбоксилат-иона — бидентатной и мостиковой. Это влечет за собой возможность образования олигомеров.

На рис. 2 представлены электронные спектры поглощения формиатов железа (II), (III) и аддукта формиата железа (II). Анализ полученных спектров проводили в рамках теории поля лигандов, используя диаграммы Танабе–Сугано.

Fe(HCOO)₃·3H₂O (рис. 2). Электронная конфигурация d^5 — все переходы запрещены по правилу Лапорта и по спину, отсюда очень слабая интенсивность d-d-полос, возникающая в результате спин-орбитального взаимодействия. Анализируя полученный спектр, можно указать лишь область полосы поглощения, так как она находится на ниспадающей ветви полосы переноса заряда ≈ 20500 см⁻¹. Этот переход можно отнести к переходу 4T_1 — 6A_1 хромофора Fe(III)O₆ [3].

Fe(COOH) ₃ ·3H ₂ O		Fe(COOH) ₂ ·2H ₂ O		$Fe(N_2H_2)_2(COOH)_2$	
Полоса, см $^{-1}$	Соотнесение	Полоса, см $^{-1}$	Соотнесение	Полоса, см ⁻¹	Соотнесение
340	v Fe–O			350	v Fe–O
405	v Fe–O	558	v Fe–O	407, 428	v Fe–O
585	v Fe–O	625		455	v Fe–N
767, 798	деф. v OCO	718	деф. v _s OCO	842	v N–N
	- 3	985	- 3	997	
		1095, 1120	πΟCΟ		
1305, 1318	v _s OCO	1282	v _s OCO	1310, 1335	
1368, 1380	деф. v _{as} OCO	1380, 1395	деф. v _{as} OCO	1380	деф. v _{as} OCO
1405	~ us	1320, 1480	~ us		~ us
		1496, 1509		1500, 1511	
1550-1650	v _{as} OCO	1544			
	45	1600		1582	
1660, 1668	v _s OCO	1625, 1651сл	v _s OCO	1625, 1660	v _s OCO
3380	νOH	3080, 3430	v OH	3440	v NH

Отнесение полос в ИК-спектрах комплеков Fe(COOH)₃·3H₂O, Fe(COOH)₂·2H₂O, Fe(N₂H₂)₂(COOH)₂

Рис. 2. Электронные спектры поглощения, отражения формиатов железа: $Fe(HCOO)_2 \cdot 2H_2O(1)$; $Fe(HCOO)_3 \cdot 3H_2O(2)$; $Fe(HCOO)_2(N_2H_4)_2(3)$.

Fe(HCOO)₂·2H₂O (рис. 2). Электронная конфигурация d^6 – основным состоянием высокоспиновых комплексов является терм ${}^5T_{2g}$ (октаэдрическое поле) и 5E_g (тетраэдрическое поле). Для низкоспиновых комплексов основным состоянием является терм ${}^1A_{1g}$ (октаэдрическое поле). Низкоспиновая конфигурация характерна для большого количества октаэдрических и псевдооктаэдрических комплексов железа (II). В спектре $Fe(HCOO)_2 \cdot 2H_2O$ выявлен разрешенный по спину переход ${}^5T_{2g} \leftrightarrow {}^5E_g$, который расщеплен, вероятно, из-за искажения Яна-Теллера на две полосы поглощения — 10385 и 10659 см⁻¹.

Для Fe(HCOO)₂(N₂H₄)₂ был снят электронный спектр отражения (рис. 2). Поглощение имеет интенсивность выше, чем для комплекса Fe(HCOO)₂·2H₂O, и лежит в более высокоэнергетической области — 20000 см⁻¹. Можно предположить, что ион железа в этом комплексе находится в низкоспиновом состоянии.

Спектр был разложен на Гауссовы составляющие, при этом выявлены две полосы, отнесенные к переходам: ${}^{1}A_{1} \leftrightarrow {}^{1}T_{1g}({}^{3}D) - 18400 \text{ см}^{-1}$ и ${}^{1}A_{1} \leftrightarrow {}^{1}T_{2g}({}^{3}D) - 24000 \text{ см}^{-1}$. Энергия этих двух полос позволяет оценить 10 Dq и B. Разность энергий двух состояний составляет около 16 В, энергия состояния ${}^{1}T_{1g}$ равна 10 Dq – С и C=4 В, тогда 10 Dq =13.8, B =0.35 и C =1.4. Во внутреннюю сферу комплекса входят два различных по природе лиганда. Анализ спектра позволяет предположить, что муравьиная кислота координируется бидентатно в экваториальной плоскости, а молекулы гидразина расположены в транс-положениях. Строение комплекса отвечает симметрии D_{4h} .

Неорганическая и физическая химия

ВЫВОДЫ. Нами получены образцы покрытий на кремниевых подложках аддукта формиата железа (II) с гидразином двумя методами плазмохимическим CVD и спрей-пиролизом. Исследование с помощью электронного микроскопа MIRA 3 TESCAN оксидных наноструктур железа показывает, что элементный состав (EDAX) и морфология различных частей образца однотипны (рис. 3). Пиролиз комплекса при 450 °C привел к образованию сплошной пленки с высокоразвитой поверхностью. Анализ распределения частиц по размеру (рис. 3) показывает, что наиболее часто встречаются частицы хаоти-

Рис. 3. Микрофотография СЭМ-образца оксида железа, полученного из Fe(HCOO)₂(N₂H₄)₂.

чески сросшихся нанокристаллов с размером агломератов порядка 300–500 нм. Эти частицы представляют собой агрегаты наноструктур кристаллической морфологии, образованные соеди-

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев

нением в одну кристаллическую структуру двух или нескольких сфероидов.

Показана перспективность применения аддукта формиата железа (II) с гидразином в качестве прекурсора для получения тонких пленок наноостровных структур оксида железа методами плазмохимического CVD и спрей-пиролиза для современных технологических целей.

РЕЗЮМЕ. Проведено синтез комплексів Fe(CO-OH)₃·3H₂O, Fe(COOH)₂·2H₂O, Fe(COOH)₂(N₂H₂)₂. Будову і властивості одержаних сполук досліджено за допомогою хімічного аналізу EDAX, електронної спектроскопії, спектроскопії дифузного відбиття, IЧспектроскопії, термогравіметрії. Показано можливість використання цих сполук в якості прекурсорів при одержанні методами CVD і спрей-піролізу наноструктурованих покриттів оксиду заліза на кварцевих та кремнієвих підложках. Визначено перспективність застосування цих плівок для сучасних технологічних цілей.

SUMMARY. The synthesis of complexes of $Fe(COOH)_3 \cdot 3H_2O$, $Fe(COOH)_2 \cdot 2H_2O$, $Fe(COOH)_2 \cdot (N_2H_2)_2$ was carried out. Structure and properties of these compounds were studied by EDAX, electron spectroscopy, diffuse reflectance spectroscopy, IR spectroscopy, thermogravimetry. The determined a possibility of these compounds as precursors for obtaining by SVD and spray-pyrolysis methods of nano-structured iron oxide coatings on quartz and silicon substrates. The perspective of application of these films for modern technological purposes is defined.

ЛИТЕРАТУРА

- 1. Пат. России № 2291856. -Опубл. 20.01.2007.
- 2. Накамото К. ИК-спектры и спектры КР неорганических координационных соединений. -М.: Мир, 1991.
- 3. *Ливер* Э. Электронная спектроскопия неорганических соединений. -М.: Мир, 1987.

Поступила 30.03.2012