УДК 544.6:691.73

В.В.Даценко, Э.Б.Хоботова, В.И.Ларин, Л.М.Егорова АНОДНОЕ РАСТВОРЕНИЕ α-ЛАТУНЕЙ

Рассмотрен процесс анодного растворения сплава α-латуней в зависимости от состава и концентрации электролитов NaC1, NaC1O₄, Na₂SO₄, NaNO₃. По интенсификации активного анодного окисления α-латуни анионы располагаются в ряд: SO₄²⁻<Cl⁻<ClO₄⁻<NO₃⁻. Определены области пассивации и полной пассивации α-латуни в хлоридных и сульфатных растворах.

ВВЕДЕНИЕ. В настоящее время латуни являются технически важными сплавами в машиностроительной. электронной. авиашионной и других отраслях промышленности. Сложности, возникающие при анодной обработке поверхности медно-цинковых сплавов, требуют детального изучения анодного поведения латуней в растворах электролитов различного состава. Поэтому латуни до настоящего времени остаются одними из центральных объектов коррозионноэлектрохимических исследований. Изучение анодных процессов в системах сплав-поверхностная пленка-электролит требует особого внимания, так как правильная их трактовка позволяет обосновать выбор электролита и режима анодной обработки металлов.

Несмотря на большое количество теоретического материала по анодному растворению сплавов [1-11] остается много нерешенных вопросов. В частности, нет однозначной трактовки активного растворения сплавов, сопровождающегося изменением поверхностного слоя. Анодное окисление латуней в стационарных условиях лимитируется растворением медной компоненты [1-3], с чем связано селективное растворение цинка. Увеличение числа вакансий в поверхностных слоях латуней и искажение их кристаллической структуры приводит к росту активности медной составляющей и изменению электрохимических свойств латуней. При достижении стационарных условий процесса селективность уменьшается и растворение становится равномерным [5-7].

В литературе недостаточно представлены экспериментальные данные, характеризующие анодное растворение сплава Cu—Zn в водных растворах NaNO₃, NaClO₄, NaCl, и Na₂SO₄. При исследовании пассивирующихся металлов и сплавов особенно важны поляризационные измерения, с помощью результатов которых можно трактовать механизмы процессов растворения металлов и сплавов, влияние различных факторов на их электрохимическое растворение. В связи с этим актуально изучение закономерностей и механизма анодного окисления системы Cu—Zn.

Цель работы — исследование закономерностей анодного окисления α-латуней в растворах различного состава, а также изучение влияния состава и концентрации электролитов NaC1, NaC1O₄, Na₂SO₄ и NaNO₃ на анодные процессы на α-латунях.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬ-ТАТОВ. Использованы латуни состава $Cu_{39}Zn$ и $Cu_{38}Zn$ и растворы электролитов NaC1, NaC1O₄, Na₂SO₄, NaNO₃ различной концентрации. Составы образцов латуней определены методом элетронно-зондового микроанализа. Элементные составы образцов следующие, %: для $Cu_{39}Zn$ Cu — 60.954, Zn — 38.99; для $Cu_{38}Zn$ Cu — 61.3, Zn — 37.97, A1 — 0.24, Sn — 0.19. Согласно проведенному анализу образцы латуни полностью соответствуют марке α -латуни.

Анодное растворение латуней Cu₃₉Zn и Cu₃₈Zn в водных электролитах NaC1, NaC1O₄, Na₂SO₄, NaNO₃ исследовано поляризационными методами с применением потенциостата ПИ-50-1.1 и программатора ПР-8. Параметры потенциодинамического режима следующие: интервал изменения потенциала E = -0.2 - +2.0 В; скорость развертки потенциала $S = 2 \cdot 10^{-2}$ В/с; температура электролита t = 25 °C; электрод сравнения хлорсеребряный, вспомогательный — платиновый. Значения потенциалов E электродов приведены относительно стандартного водородного

[©] В.В.Даценко, Э.Б.Хоботова, В.И.Ларин, Л.М.Егорова, 2014

электрода. Точность поддержания потенциала $\pm 3.10^{-3}$ В. Погрешность установления поляризующего тока составляет ± 2 %.

Параметры анодной ионизации сплавов $Cu_{39}Zn$ и $Cu_{38}Zn$ в растворах $NaNO_3$, $NaC1O_4$, NaC1, Na_2SO_4 определены на основании анодных поляризационных кривых (рис. 1), полученных на стационарном электроде $\omega = 0$ об/с. Ха-

Рис. 1. Анодные поляризационные кривые для сплава Cu₃₉Zn (*a*, *б*, *г*) и Cu₃₈Zn (*b*) в растворах NaNO₃ (*a*), NaClO₄ (*b*), NaCl (*b*), Na₂SO₄ (*c*). Концентрации, моль/л: *a*-*b*: *1*-0.1; *2*-0.25; *3*-0.5; *4*-1.0; *5*-2,0; *c*: *1*-0.1; *2*-0.25; *3*-0.5; *4*-1.0; *5*-2,0; *c*: *1*-0.1; *2*-0.25; *3*-0.5; *4*-1.0; *5*-2,0; *c*: *1*-0.1; *2*-0.25; *3*-0.5; *4*-0.75; *5*-1.0; *b*-1.25; *7*-1.5.

рактер растворения сплава α -латуни в электролитах NaNO₃, NaC1O₄ практически идентичен (рис. 1, *a*, δ), но отличается от хлоридных и сульфатных растворов (рис. 1, *в*,*г*). В то же время наблюдается аналогия протекания растворения сплава в хлоридных и сульфатных растворах (рис. 1, *в*,*г*), а именно пассивация поверхности латуни. Активность растворения α -латуни в NaNO₃,

> NaC1O₄ (рис. 1, *a*, δ) увеличивается с повышением плотности тока *j* во всем заданном интервале потенциалов (*E* =0– 2.0 B), а в электролитах NaC1, Na₂SO₄ зарегистрированы экстремумы *j* (рис. 1, *в* — кривые *1*–5 и *г* — кривые *4*–7).

> Активное растворение латуни в растворах при $C_{\rm Cl}^{-} = 0.5 -$ 2.0 моль/л (рис. 1, *в*, кривые 1-5) наблюдается в интервале потенциалов E = 0 - 0.8 В, при более высоких Е наступает пассивация поверхности α-латуни. В сульфатных растворах при концентрациях $C_{SO_4^{2-}} = 0.1 - 0.5$ моль/л (рис. 1, г, кривые 1–3) активное растворение наблюдается на протяжении исследуемого интервала потенциалов. В растворах при $C_{SO_4^{2-}} = 0.75 - 1.5$ моль/л (рис. 1, г — кривые 4–7) происходит активное растворение до E = 0.8 - 1.3 В, при дальнейшем повышении Е наблюдаются максимумы плотности тока *j*, свидетельствующие о наступлении пассивации поверхности анода. Появление максимумов *і* на соответствующих кривых (рис. 1, в,г) вызвано образованием поверхностного пассивного слоя. Различие протекания растворения α-латуни в рассмотренных электролитах объясняется тем, что тенденция нитрат- и перхлорат-ионов к комплексообразованию незначительна и в объеме раствора устойчивые комплексы с катио

нами металлов не образуются. Вследствие активирующего действия ионов Cl_4^- и NO_3^- компоненты α -латуней в растворах $NaClO_4$ и $NaNO_3$ не переходят в пассивное состояние. Присутствие же в растворе ионов $C\Gamma^-$ и SO_4^{2-} (при высоких концентрациях) способствует пассивации поверхности α -латуни.

В растворах NaC1, NaNO₃ и NaC1O₄ (рис. 1, *a*–*в*) увеличение углов наклона *j*,*E*-кривых пропорционально росту концентрации анионов в растворе, что сопровождается возрастанием скорости растворения металлической фазы [6].

В сульфатных растворах (рис. 1, *г*) увеличение углов наклона *j*,*E*-кривых наблюдается только в растворах с концентрацией ионов SO_4^{2-} 0.1—0.5 моль/л (кривые *1*–3), а при дальнейшем увеличении содержания аниона (кривые *5*–7) угол наклона практически не меняется.

Более активное растворение латуни наблюдается в нитратных растворах (рис. 1, *a*), что подтверждают зависимости $\Delta j/\Delta E$ от концентрации электролита (рис. 2). Кривая *1* (рис. 2) имеет больший угол наклона участка активного растворения в области концентраций C_{NO_3} =0.25– 0.5 моль/л и более высокие значения $\Delta j/\Delta E$ с ростом концентрации аниона по сравнению с кривыми 2–4 на этом же рисунке. На кривых *1*, *3* (рис. 2) в области концентраций электролита 0.1 —0.25 моль/л имеются участки с постоянным значением $\Delta j/\Delta E$, что свидетельствует о равномерном ускорении растворения сплава при отмеченных концентрациях аниона независимо от его природы.

В области концентраций, моль/л: NaNO₃≈0.25 —0.5, Na₂SO₄ ≈ до 0.5, NaCl ≈ 0.25—0.5, NaClO₄ ≈ до 0.25 скорость растворения α-латуни увеличивается. Однако с увеличением концентрации электролита ход кривых меняется. Возрастание скорости растворения латуни замедляется с ростом концентрации NaNO3 и NaCl (рис. 2, кривые 1, 3). Такой же характер растворения наблюдается и в растворах NaClO₄ (кривая 2). После некоторого замедления процесса в области концентраций $C_{\text{CIO}_4} = 0.25 - 0.5$ моль/л с ростом концентрации аниона ClO₄ наблюдается дальнейшее повышение активности растворения. В растворах Na₂SO₄ (кривая 4) после интенсификации растворения латуни в области низких концентраций $C_{SO_4}^{2-} = 0.1 - 0.25$ моль/л отмече-

Рис. 2. Зависимости $\Delta j/\Delta E$ от концентрации электролита *C* при *E* = +0.95 В для растворов: *I* — NaNO₃; *2* — NaClO₄; *3* — NaCl; *4* — Na₂SO₄.

но замедление процесса с повышением $C_{SO_4}^{2^-}$.

Увеличение скорости анодного процесса растворения α -латуней в растворах, содержащих ионы ClO₄⁻, NO₃⁻, Cl⁻, по сравнению с протеканием аналогичного процесса в сульфатном электролите может быть обусловлено поведением медной составляющей латуни при ее растворении.

Таким образом, по увеличению активности растворения α -латуни анионы можно расположить в ряд: SO₄²⁻<Cl⁻<ClO₄⁻<NO₃⁻. Как видно из представленного ряда, наибольшую активность растворения латуни имеют нитрат-ионы, наименьшую — сульфат-ионы, являющиеся ингибитором коррозии не только для чистых металлов, но и для α -латуней.

Появление максимумов j на соответствующих поляризационных кривых в хлоридных и сульфатных растворах (рис. 1, в (кривые 1–5) и г (кривые 4-7)) вызвано образованием пассивного слоя на поверхности латуни при достаточном повышении потенциала. На анодных поляризационных кривых с разным содержанием хлориди сульфат-ионов наблюдается смещение потенциалов как начала, так и полной пассивации в положительную сторону. Пассивация поверхности сплава наблюдается при растворении латуни в хлоридных растворах всего исследованного концентрационного интервала (рис. 1, в, кривые 1-5). В сульфатных растворах (рис. 1, r) появление пассивации поверхности сплава происходит при $C_{\text{SO}_4}^{2-} \ge 0.75$ моль/л (кривые 5–7).

Электрох имия

В пассивной области скорость растворения сплава в хлоридных (рис. 1, e, кривые 1-4) в отличие от сульфатных растворов практически не зависит от потенциала, что связано с увеличением количества пассивных соединений на поверхности сплава. Потенциал пассивации $E_{\rm n}$, при котором начинается переход металла из активного состояния в пассивное, для хлоридных растворов находится в интервале 0.8—0.9 В (рис. 1, e, кривые 3–5), а для сульфатных (рис. 1, e, кривые 4–7)—0.8–1.3 В.

Ход изменения зависимостей потенциалов пассивации $E_{\rm nr}$, полной пассивации $E_{\rm nn}$ и токов пассивации $j_{\rm n}$ и полной пассивации $j_{\rm nn}$ α -латуни от $C_{\rm CI}$ и $C_{\rm SO_4}$ ²⁻ изучен в определенных кон-

Рис. 3. Зависимости потенциалов пассивации $E_{\rm n}$ (1,2) и полной пассивации $E_{\rm nn}$ (1',2') α -латуни от концентрации электролитов, моль/л: 1, 1' – Na₂SO₄; 2, 2' – NaCl.

Рис. 4. Зависимости плотности тока пассивации j_{Π} (1,2) и полной пассивации $j_{\Pi\Pi}$ (1',2') α -латуни от концентрации электролитов, моль/л: 1, 1' – Na₂SO₄; 2, 2' – NaCl.

центрационных интервалах хлорид- и сульфатионов (рис. 3, 4). На представленных зависимостях наблюдаются некоторые различия в изменении E_{Π} и $E_{\Pi\Pi}$, j_{Π} и $j_{\Pi\Pi}$ от концентрации растворов NaCl и Na₂SO₄. В сульфатных растворах изменения E_{Π} , $C_{SO_4}^{2^-}$ - (рис. 3, кривая *l*) и $E_{\Pi\Pi}$, $C_{SO_4^{2^-}}$ -зависимостей (кривая l'), а также j_{Π} , $C_{SO_4}^{2^-}$ - (рис. 4, кривая *1*) и $j_{\Pi\Pi}$, $C_{SO_4}^{2^-}$ -зависимостей (кривая 1') во всем интервале концентраций электролитов подобны. С ростом $C_{SO_4}^{2^-}$ до 1.0 моль/л происходит увеличение j_{Π} и $j_{\Pi\Pi}$, сопровождающееся сдвигом E_{Π} и $E_{\Pi\Pi}$ в анодную область. При дальнейшем увеличении $C_{SO_{1}}^{2-}$ и росте j_{Π} , $j_{\Pi\Pi}$ потенциал смещается в катодную область. Выраженный максимум $E_{\rm nn}$, $j_{\rm nn}$ говорит о затруднении пассивации α-латуни.

Ход изменения зависимостей E_{Π} , $E_{\Pi\Pi}$ и j_{Π} , $j_{\Pi\Pi}$ от $C_{C\Gamma}$ при растворении α -латуни в растворах NaCl иной (рис. 3, 4). E_{Π} , C_{Cl} - и $E_{\Pi\Pi}$, C_{Cl} -зависимости (рис. 3, кривые 2,2') подобны между собой и представляют ниспадающие кривые, с ростом C_{Cl^-} происходит увеличение j_{Π} , сопровождающееся сдвигом Е_п в катодную область. При дальнейшем увеличении C_{Cl} и росте j_{π} потенциал незначительно смещается в анодную область с последующей стабилизацией значения. Величины j_{Π} и $j_{\Pi\Pi}$ при малых C_{Cl^-} близки, с увеличением C_{Cl}⁻ направленность их изменения меняется и становится различной: j_{Π} — повышается, а $j_{\Pi\Pi}$ — уменьшается (рис. 4, кривые 2,2'). Причем разрыв между их значениями с ростом *С*_{СГ} увеличивается. Отсутствие выраженных максимумов $E_{\Pi\Pi}$, $j_{\Pi\Pi}$, а также снижение значений $j_{\Pi\Pi}$ с увеличением C_{CI^-} позволяет судить о значительной пассивации латуни.

Наступление пассивации при меньших $E_{\rm n}$ и более широкий интервал пассивации в области высоких концентраций СГ (рис. 1, *в*, кривые 1–3) можно объяснить параллельно протекающей реакцией химического растворения сплава [9]. Однако интервал пассивации в области высоких концентраций СГ (кривая 5) и SO₄^{2–} (рис. 1, *г*, кривые 4–7) короткий, пассивное состояние сплава частично или полностью нарушается введением в раствор анионов [10]. Процесс нарушения пассивности вблизи потенциала полной пассивации $E_{\rm nn}$ авторы [11] связывают с возникновением в дефектных местах пассивного слоя очагов быстрого растворения, которые затем превраща-

Рис. 5. Поверхность α -латуни после анодной ионизации в растворах 0.5 M NaCl (a, δ) и 1.5 M Na₂SO₄ (e, c). Увеличение: a, e - b 1000; $\delta - b$ 6000; c - bв 5000 раз.

ются в питтинги. Решающее значение при возникновении питтингов имеет конкуренция между пассивным действием воды и активирующим действием анионов.

Для определения природы пассивных соединений получены поверхностные слои на α-латуни при ее анодной поляризации в потенциостатическом режиме в хлоридных и сульфатных электролитах. Выбор концентрации раствора, в которых поляризовали α-латунь, обусловлен наименьшим значением j_{Π} по анодной ветви поляризационных кривых (рис. 1, в,г). С помощью рентгенофазового анализа определена природа поверхностных фаз: в растворе NaC1—CuOHCl; в растворе Na₂SO₄ основными фазами являются тенардит Na_2SO_4 , $Na_2Zn(SO_4)_2$ ·4H₂O, кронкит Na₂Cu(SO₄)₂(H₂O)₂. Соединения Cu (II) образуются в том случае, когда возможно окисление внешней стороны пассивных слоев соединений Cu (I) как в результате химических, так и электрохимических реакций [9]. Данные электронно-зондового микроанализа поверхности латунного электрода (рис. 5) после травления в хлоридных растворах свидетельствуют о достаточно высокой полноте покрытия поверхности латуни пассивным слоем, с одновременным уменышением рыхлости и пористости поверхностных слоев (рис. 5, a, δ). Поверхностный слой после травления в сульфатном растворе имеет рыхлую, пористую структуру с множественными пустотами, состоит из отдельных конгломератов (рис. 5, e, e).

ВЫВОДЫ. Показано изменение характера протекания анодного растворения сплава в зависимости от состава и концентрации электролита. Скорость анодного растворения α -латуни увеличивается во всей концентрационной области электролитов NaNO₃ и NaC1O₄ в отличие от электролитов NaC1 и Na₂SO₄, в которых наблюдается поверхностная пассивация сплавов. По интенсификации активного анодного окисления α -латуни анионы расположены в ряд: SO₄²⁻ < Cl⁻ <ClO₄⁻ <NO₃⁻, подтверждающий ингибирующее действие сульфат-ионов не только для чистых металлов, но и для α -латуней.

Установлены значения потенциалов пассивации, при которых начинается переход металла из активного состояния в пассивное, при анодном растворении α-латуни в электролитах различной природы. В хлоридных растворах с увеличением C_{Cl} наблюдается значительная пассивация латуни, для сульфатных растворов с ростом $C_{SO,2^{-}}$ происходит затруднение пассивации. Определена природа поверхностных фаз: в растворе NaC1 — CuOHCl; в растворе Na₂SO₄ основными фазами являются тенардит Na₂SO₄, $Na_2Zn(SO_4)_2·4H_2O$, кронкит $Na_2Cu(SO_4)_2(H_2O)_2$. В хлоридных растворах отмечается достаточно высокая полнота покрытия поверхности латуни пассивным слоем, с одновременным уменьшением рыхлости и пористости поверхностных слоев; для пассивного слоя, формирующегося в сульфатном растворе, характерно наличие множества пустот.

РЕЗЮМЕ. Розглянуто процес анодного розчинення сплаву α -латуней залежно від складу та концентрації електролітів NaC1, NaC1O₄, Na₂SO₄, NaNO₃. За інтенсифікацією активного анодного окиснення α -латуні аніони розташовуються в ряд: SO₄²⁻<CГ< ClO₄⁻<NO₃⁻. Визначено області пасивації і повної пасивації α -латуні в хлоридних і сульфатних розчинах.

SUMMARY.The process of α -brass alloy anodic dissolution depending on the composition and concentration of NaC1, NaC1O₄, Na₂SO₄, NaNO₃ electrolytes was

considered. The number of anions intensification of α -brass active anodic oxidation SO_4^{2-} < CI^- < CIO_4^- < NO_3^- was substantiated. The areas of passivation and complete passivation of α -brass in chloride and sulfate solutions were determined.

ЛИТЕРАТУРА

- 1. Зарцын И.Д., Боков Г.А., Маршаков И.К. // Защита металлов. -1993. -29, № 3. -С. 368—374.
- 2. Кондрашин В.Ю., Боков Г.А., Маршаков И.К. // Там же. -1994. -30, № 3. -С. 229—233.
- 3. Попов Ю.А., Мухаммед С., Саха С. // Там же. -2000. -36, № 2. -С. 181—189.
- 4. *Ismail K.M., El-Egamy S.S., Abdelfatah M.* // J. Appl. Electrochem. -2001. -**31**, № 6. -P. 663—670.
- 5. Введенский А.В. // Тез. докл. 3-й международ. шк.-се-

Харьковский национальный автомобильно-дорожный университет

минара "Современные методы исследования и предупреждения коррозионных разрушений". -Ижевск, 2001. -С. 55—59.

- Florianovich G.M., Lazorenko-Manevich R.M. // Electrochim. Acta. -1997. -42, № 5. -P. 879—885.
- 7. Колотыркин Я.М., Попов Ю.А., Алексеев Ю.В. // Электрохимия. -1973. -9, № 5. -С. 624—629.
- 8. Diard J.-P., Le Canut J.-M., Le Gorrec B., Montella C. // Electrochim. Acta. -1998. -43, № 16. -P. 2469—2483.
- 9. Хоботова Э.Б., Глушко В.И. // Электрохимия. -1994. -**30**, № 5. -С. 616—624.
- Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многкомпонентных растворов неорганических веществ. Справочное изд. -М.: Химия, 1988.
- Фрейман Л.И., Макаров В.А., Брыксин И.Е. Потенциостатические методы в коррозионных исследованиях и электрохимической защите. -Л.: Химия, 1972.

Поступила 27.11.2013