УДК 678.82:544.14:547.495.1:661.857:544.77

А.Л.Толстов

СТРУКТУРА И СВОЙСТВА СИСТЕМ ДИМЕТИЛГЕКСАН-1,6-ДИКАРБАМАТ—Аg⁺

Исследовано взаимодействие диметилгексан-1,6-дикарбамата как низкомолекулярной модели полиуретанов с ионами серебра в водной среде. Предложен механизм образования наночастиц серебра в присутствии диметилгексан-1,6-дикарбамата. По данным ИК-спектрального анализа сдвиг максимумов полос поглощения N–H, C=O, C–N и C–O-связей уретановых –NH–C(O)O-групп свидетельствует о факте взаимодействия наночастиц серебра и молекул (их ассоциатов) диметилгексан-1,6-дикарбамата. Показано, что наночастицы серебра влияют на закономерности структурообразования диметилгексан-1,6-дикарбамата, увеличивая средний размер его кристаллов на 25–30 %, и проявляют каталитическую активность при термоокислительной деструкции диметилгексанбамата, ускоряя данный процесс и смещая его в низкотемпературную область.

ВВЕДЕНИЕ . Карбаматы (уретаны) — органические соединения, имеющие существенное значение для фармацевтики. Они применяются при синтезе новых лекарственных средств, например противоэпилептических [1] и противоопухолевых препаратов [2], как компоненты дентальных композиций [3], а также как исходные вещества при безфосгенном синтезе изоцианатов [4] и безизоцианатном синтезе полиуретанов [5].

В настоящее время детально исследован синтез и структура моно- [1, 6] и дикарбаматов [6–8]. Интерес к данным соединениям, в частности, связан с возможностью влияния на их надмолекулярную структуру, образования слоистых и волокноподобных структур, а также способностью –NH–C(O)O-групп формировать конъюгаты с различными функциональным группами [6].

Использование карбаматов при синтезе наносистем с высокодисперсными частицами металлов, в частности серебра, несет в себе две основные функции. Во-первых, это получение материалов с новыми свойствами для расширения функциональных особенностей исходных составляющих и расширения областей их применения. Вовторых, использование (ди)карбаматов в качестве модельных соединений при исследовании взаимодействия между –NH–C(O)O-группами и ионами (Ag⁺) и наночастицами серебра (AgHЧ) с целью дальнейшего применения найденных закономерностей при синтезе серебросодержащих полиуретановых систем, обладающих огромным практическим потенциалом.

На данный момент известна только одна попытка получения систем на основе дикарбамата и AgHЧ [9]. В данной работе для инкапсуляции полициклических красителей (фталоцианин и перилен) и наночастиц серебра применяли микроволокна дидодецилгексан-1,6-дикарбамата, полученные золь-гель методом из бензонитрила. Была изучена морфология и фазовая структура данных систем. И хотя детальное изучение взаимодействия в межфазной области не проводилось, распределение полярных (фталоцианин, наночастицы серебра) компонентов во внутренней полости микроволокон и неполярного перилена на внешней поверхности микроволокон свидетельствует о специфичности в самоорганизации молекул дикарбамата в надмолекулярные структуры (микроволокна). С учетом перспективности практического применения серебросодержащих полиуретановых систем важным является исследование взаимодействия между функциональными группами дикарбамата и Ag⁺/AgHU лля дальнейшего использования найденных закономерностей при синтезе композиционных материалов полиуретан—АдНЧ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Синтез диметилгексан-1,6-дикарбамата (ДМГД). 1,6-Гексаметилендиизоцианат (2 г, 11.9 ммоль) вводили в смесь, состоящую из 10-кратного избытка СН₃ОН (7.62 г, 0.238 моль) и каталитических количеств дибутилолова дилаурата (28.4 мг, 4.5- 10^{-5} моль). Реакционную смесь выдерживали при 60 °С в течение 4 ч, после чего непрореагировавший СН₃ОН удаляли при пониженном давлении. Продукт очищали перекристаллизацией из толуола. Выход ДМГД — 1.71 г (62 %). ИК (КВг): 3339, 3045, 2969, 2945, 2913, 2870, 2857, 1690, 1533,

© А.Л.Толстов, 2014

1479, 1463, 1436, 1385, 1341, 1261, 1222, 1196, 1141, 1053, 1008, 933, 780, 735, 705, 627, 566, 414 ${\rm cm}^{-1}.$

Найдено,%: С 51.65; Н 8.71; N 12.10; О 27.54. Вычислено, %: С 51.71; Н 8.68; N 12.06; О 27.55.

Получение систем ДМГД-А g⁺. ДМГД и AgNO₃ (CH₃COOAg) в молярном соотношении ДМГД : Ag⁺, равном 1:1 и/или 2:1, диспергировали в 10 мл H₂O. Реакционную смесь нагревали до получения гомогенного раствора и выдерживали 18 ч при температуре 90 °C с последующим медленным охлаждением до комнатной температуры. Для предотвращения побочной акции фотоинициированного восстановления Ад⁺ реакцию проводили в темноте. После охлаждения реакционной смеси выпал осадок красно-бурого цвета, который отфильтровали, промыли дистиллированной водой до отрицательной реакции на Ag^+ и сушили. Содержание серебра в каждом из образцов, по данным титриметрического анализа, равно 0.24 % (ДМГД : AgNO₃ = =1:1), 0.18 % (ДМГД : AgNO₃ =2:1) и 0.21 % $(ДМГД : CH_3COOAg = 2:1)$. Доля Ag^+ , образующего наночастицы, для образцов ДМГД : AgNO₃ =1:1, ДМГД : AgNO₃ =2:1 и ДМГД : CH₃COOAg =2:1 составляет 0.89, 1.05 и 1.22 % соответственно.

ИК-спектральные исследования образцов в смеси с КВг проводили на спектрометре Bruker Tensor® 37 в диапазоне 4000—400 см⁻¹ с разрешением 0.5 см⁻¹. Спектры UV-vis были получены на приборе Shimadzu UV-2400 РС в диапазоне длин волн 300—700 нм. Рентгенографические исследования выполняли на дифрактометре ДРОН 4-07 с использованием Си K_{α} -излучения, монохроматизированного Ni-фильтром ($\lambda = 0.15406$ нм). Микрофазовая структура образцов изучена методом рассеяния рентгеновских

лучей с помощью малоугловой рентгеновской камеры КРМ-1. Термические свойства исследовали методом ТГА на оборудовании ТА Q-1500D в температурном диапазоне 25—600 °С при скорости нагрева 20 °/мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Как известно, дикарбаматы представляют собой хорошо структурирующиеся (кристаллизующиеся) соединения вследствие образования упорядоченной сетки водородных связей типа C=O···H–N между соседними молекулами [7, 10]. Схема структурирования диметилгексил-1,6-дикарбамата приведена ниже.

Особенности химического строения образца исходного ДМГД и серебросодержащих систем на его основе были исследованы методом ИКспектроскопии (рис. 1, табл. 1). ИК-спектр исходного ДМГД характеризуется наличием следующих, типичных для алкилкарбаматов, полос поглощения С–Н (2969, 2945, 2913, 2870, 2857, 1479, 1463, 1436. 1385, 780 и 735 см⁻¹), N–H (3339, 3045, 1533 и 1261 (с С–N), 705 и 627 см⁻¹), С=О (1690 см⁻¹), С–N (1533 и 1261 см⁻¹ (с N–H)) и С–О связей (1222, 1196, 1141 и 1053 см⁻¹). При формиро-

Н-связи между молекулами ДМГД внутри слоя.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2014. Т. 80, № 10

	Волно					
$\boxed{\text{ДМГД} \frac{\text{ДМГД}}{\text{AgNO}_3} = 1:1}$		$\frac{\Delta M \Gamma \Delta}{AgNO_3}$ =2:1	<u>ДМГД</u> CH ₃ COOAg =2:1	частотные колебания		
3339	3337	3337	3337	ν ₁ (N–H)		
3045	3047	3047	3048	$v_2(N-H)$		
2969	2969	2969	2968	v _{as} (C−H) в −CH ₃		
2945	2945	2944	2944	v(C-H)		
2913	2913	2913	2914	ν _{as} (С−Н) в −СН ₂ −		
2870	2869	2871	2870	ν _s (С−Н) в −СН ₃		
2857	2857	2856	2857	ν _s (С−Н) в −СН ₂ −		
1690	1688	1687	1688	v(C=O)		
1533	1528	1535	1536	$\delta(N-H)/\nu(C-N)$		
1479	1478	1479	1479	δ_{as} (С-Н) в -СН $_2$ -		
1463	1463	1463	1463	$δ_{as}(C-H)$ в –CH ₃		
1436	1437	1438	1437	δ _s (С−Н) в −СН ₂ −		
1385	1385	1386	1386	δ_s (С-Н) в -СН $_3$		
1261	1263	1264	1264	$\nu(C-N)/\nu(N-H)$		
1222	1222	1222	1223	v(C–O)		
1196	1198	1198	1197	v(C–O)		
1141	1139	1140	1140	v(C–O)		
1053	1052	1051	1052	v(C–O)		
780	781	780	780	v(С-H) в -(CH ₂) _n -		
735	734	735	735	v(С-H) в -(CH ₂) _n -		
705	706	705	705	δ(N-H)		
627	630	629	628	δ(N-H)		

Таблица 1 ИК-спектральные данные ДМГД и систем ДМГД—AgNO₃, ДМГД—AgNO₃, ДМГД—CH₃COOAg на его основе

вании систем ДМГД—Ag⁺ отмечаются характерные изменения полос поглощения функциональных групп (связей), способных взаимодействовать с Ag⁺/AgHЧ посредством образования ион-дипольных и диполь-диполь ных связей [11 —12]. При этом образование комплексов типа [Ag(L)_n]⁺, характерных для Ag⁺, и лигандов подобной структуры [13] отмечено не было. Одним из основных свидетельств данного факта является отсутствие на ИК-спектрах образцов полос поглощения противоионов Ag⁺ (NO₃⁻, CH₃COO⁻).

Наличие AgHЧ в составе образцов композитов отмечается по появлению красно-бурой окра-

ски кристаллов ДМГД. Спектры UV-vis образцов ДМГД : AgNO₃ и ДМГД : CH₃COOAg показывают наличие полос плазмонного резонанса наночастиц серебра умеренной интенсивности с максимумами при 426 и 417 нм соответственно (табл. 2). Взаимодействие между поверхностью АдНЧ и молекулами ДМГД в полученных образцах было установлено по смещению максимумов полос поглощения -- NH--С(О)Огрупп ДМГД. В частности, отмечается сдвиг полос v1(N-H) и v2(N-Н) на 2-3 см⁻¹ и полосы v(C=O) в низкочастотную область на 2-3 см⁻¹. Кроме того, сдвиг комплексной полосы $\delta(N-H)/\nu(C-N)$ при 1533 см⁻¹ главной составляющей которой является δ(N–H), на 2−5 см⁻¹ и сдвиг полосы v(C–N)/ δ (N–H) при 1261 см⁻¹, основной вклад в которую вносит полоса v(C-N), в высокочастотную область на 2-3 см⁻¹, является безусловным свидетельством дополнительной ассоциации и участия – NH– С(О)О-групп во взаимодействиях с АдНЧ. Менее значительные изменения в спектральной позиции отмечаются и для полос v(С-О) -NH-С-(О)О-групп. Из представленных данных следует, что наибольшие изменения в ИК-спектрах характерны для образца ДМГД : CH₃COOAg, что обусловлено повышенной эффективностью восстановления Ад⁺ при об-

разовании наносистем ДМГД—АgHЧ. При анализе ИК-спектров четко установить возможный механизм реакции восстановления Ag⁺ не удалось. С точки зрения традиционной химии ДМГД неспособен восстанавливать Ag⁺ до Ag⁰, однако современные представления о химии серебра позволяют предположить направление этого процесса.

Согласно последним данным, раствор $AgNO_3$ представляет собой относительно нестабильную систему, состоящую как из Ag^+ и NO_3^- , так и из более сложных структур — $[Ag_2(NO_3)]^+$, Ag_3^+ , $[Ag_3(NO_3)_2]^+$ и Ag_3^0 [14]. При этом Ag_3^+ и

Рис. 1. ИК-спектры образцов: *1* – ДМГД; 2 – ДМГД : AgNO₃ = = 1:1; *3* – ДМГД : AgNO₃ = 2:1; *4* – ДМГД : CH₃COOAg = 2:1.

 Ag_3^0 обладают большим сродством к электрону, что позволяет им играть роль центров нуклеации и образовывать кластеры и наночастицы металла при взаимодействии с веществами, которые по своей природе не являются восстановителями (например с поливинилпирролидоном). И хотя точный механизм данного процесса до настоящего времени досконально не изучен, существует предположение, что локализация электронной плотности на Ag^+ (их агрегатах) при взаимодействии с полярными функциональными группами органических веществ может инициировать образование кластеров типа Ag_n^{m+} и их дальнейший рост до наночастиц [15]. Вместе с тем достаточно низкая степень конверсии Ag^+ в AgHЧ, по-видимому, связана с низкой скоростью процесса восстановления по указанному выше механизму и может возрастать при увеличении соотношения ДМГД : Ag^+ .

Структура ДМГД и наносистем на его основе была изучена с помощью метода рентгеновского рассеяния в широких (РРШ) и малых углах (РРМ) (табл. 2). Дифрактограмма РРШ образца ДМГД : СН₃СООАд приведена на рис. 2,*а*. По данным РРШ было установлено, что ДМГД обладает типичной для дикарбаматов кристаллической слоистой структурой, о чем свидетельствует ряд интенсивных максимумов в области $2\Theta = 15-25^{\circ}$. Аналогичная структура, согласно полученным данным, сохраняется и для серебросодержа-

щих наносистем на основе ДМГД. Основные максимумы РРШ полученных образцов имеют угловое положение 2 Θ , равное 14.8 и 25.1°. Рассчитанные из уравнения Вульфа–Брэгга значения межплоскостного расстояния *d* кристаллов ДМГД во всех исследованных образцах равны 0.60 и 0.36 нм (6 и 3.6 Å), причем величина *d* = 3.6 Å согласуется с ранними результатами исследования дикарбаматов с более длинными концевыми алкильными цепями в структуре [9, 10]. Размер кристаллов исходного ДМГД, рассчитанный по методу Шерера, составляет 32.1 нм и увеличивается до 40–42.2 нм для серебросодержащих систем, что подтверждает формирование кристал-

Таблица 2

Данные UV-vis спектроскопии, рентгенографии и термогравиметрии образцов

	UV-vis		РРШ	РРШ		ΤΓΑ			
Образец	λ _{ПР} , нм	2Ө, град	d	D	l	Т _{д нач}	Т _{д макс}	dm/dt,	<i>m</i> _C ,
			НМ		°C		%·мин ⁻¹	%	
ДМГД		14.8	0.60	32.1		138	224	33.4	0.4
		25.1	0.36	,,		"	"	,,	,,
ДМГД : AgNO ₃	426	14.8	0.60	40.0	5.5				
		25.1	0.36	,,	,,			_	
ДМГД : CH ₃ COOAg	417	14.8	0.60	42.2	5.4	132	205	41.4	2.1
5		25.1	0.36	,,	,,	,,	,,	,,	,,
Примечание.	РРШ и	PPM — p	ентгеновсі	кое рассея	ние в шир	оких и ма	алых углах	х соответс	гвенно.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2014. Т. 80, № 10

Рис. 2. Рентгенограммы РРШ (а) и РРМ (б) образца ДМГД : CH₃COOAg = 2:1.

лов ДМГД с большей дефектностью вследствие наличия в системах AgHЧ, взаимодействующих с молекулами ДМГД. Кроме того, на дифрактограммах образцов ДМГД : AgNO₃ и ДМГД : CH₃COOAg отмечено наличие слабоинтенсивных (результат низкой концентрации серебра) сигналов, свидетельствующих о присутствии серебра в металлической форме с угловым положением $2\Theta \sim 38$ и $\sim 44^{\circ}$. Вследствие малой интенсивности и перекрывания пиков на рентгенограмме рассчитать размер нанокристаллов серебра в полученных образцах не представляется возможным.

Для исследования микрогетерогенной структуры образцов ДМГД : AgNO₃ и ДМГД : CH₃-COOAg были проведены рентгенографические исследования в малых углах рассеяния. Дифрактограмма HPPM-образца ДМГД : CH₃COOAg представлена на рис. 2, б. Характер зависимости *I*(*q*) от q свидетельствует о том, что полученные наносистемы представляют собой композиты с относительно малой долей наноструктурных фрагментов, характеризующихся высокой полидисперсностью. Расчет структурных неоднородностей образцов, проведенный по методу Порода (I(q)q)от q), показал наличие пика, максимум которого отвечает присутствию в системе структур с линейным размером 5.5 (ДМГД : AgNO₃) и 5.4 нм (ДМГД : CH₃COOAg). Поскольку размер кристаллов ДМГД, по данным РРШ, существенно больше, то возникло предположение, что неоднородности такого размера представляют собой AgHЧ. Данный факт полностью согласуется с представленными выше результатами UV-vis спектроскопии, поско льку отмеченные на спектре образцов ДМГД : AgNO3 и ДМГД : CH3COOAg максимумы ($\lambda_{\Pi P} = 426$ и 417 нм) характерны для АgHЧ аналогичного размера. Достаточно малый размер АдНЧ объясняется их стабилизацией молекулами ДМГД на ранних стадиях роста наночастиц и малой степенью превращения Ag⁺ в AgHЧ.

С целью оценки возможного влияния АдНЧ на термические характеристики полученных наносистем был проведен термогравиметрический анализ образцов. Чтобы исключить возможное влияние следов противоионов-окислителей (NO₃), способных инициировать преждевременное разложение ДМГД, для ТГА-исследований был выбран образец ДМГД: CH₃COOAg (рис. 3, табл. 2). По результатам ТГА композита видно, что исходный ДМГД характеризуется температурой начала деструкции (T_{д нач}) 138 °С, максимальной скоростью деструкции (dm/dt) 33.4 % мин⁻¹ при температуре ($T_{\rm д \, Makc}$) 224 °С, а также массой коксового остатка (*m_C*) по окончанию термодеструкции 0.4 % от массы исходного образца. Присутствие в системе АgHЧ заметно влияет на характер термического разложения ДМГД. В частности, отмечается значительное снижение $T_{\text{д нач}}$ и $T_{\text{д макс}}$ (ΔT составило 6 и 19 °C соответственно) и увеличение *dm/dt* до 41.4 %. Указанные факты являются свидетельством возможного каталитического влияния АgHЧ [16] на термоокислительное разложение ДМГД. Кроме того, определенный вклад в снижение термостойкости полученных систем могут вносить сильные неспецифические взаимодействия (водородные связи) с участием уретановых групп, способные ослабить валентные связи внутри молекул дикарбамата [6]. Повыше-

Рис. 3. Кривые термогравиметрии (*a*) и дифференциальной термогравиметрии (*б*) образцов ДМГД (О) и ДМГД: CH₃COOAg = 2:1 (O).

ние массы коксового остатка (с 0.4 до 2.1%), кроме наличия в составе образца металлического серебра, может быть обусловлено изменением механизма разложения и образованием полициклических структур, в том числе содержащих гетероатомы (N, O), при каталитической термодеструкции ДМГД, разложение которых происходит только при длительной высокотемпературной обработке.

ВЫВОДЫ. Синтезированный диметилгексил-1,6-дикарбамат был использован как модельное уретансодержащее соединение для исследования взаимодействия его функциональных групп с Ag⁺. Установлено, что в условиях синтеза комплекс Ag⁺ с диметилгексил-1,6-дикарбаматом не образуется, что, по-видимому, связано с высокой сольватирующей способностью молекул Н₂О, препятствующих взаимодействию элект-ронодонорных атомов (N и O уретановых групп) в составе органической составляющей с Ag⁺ в водной среде. Отмечается, что при длитль- ном прогреве системы диметилгексил-1,6-дикарбамат—Ад⁺ происходит образование на- ночастиц серебра, иммобилизированных на поверхности или в объеме кристаллов диме- тилгексил-1,6дикарбамата. По данным ИК- спектроскопии отмечено взаимодействие ме- жду уретановыми группами диметилгексил-1,6-дикарбамата и наночастицами сере- бра. Как результат, наночастицы серебра оказывают непосредственное влияние на процессы кристаллизации органической coставляющей, что приводит к образованию кристаллов диметилгексил-1,6-дикарбамата большего размера. Каталитическое влияние наночастиц серебра на процесс термодеструкции диметилгексил-1,6-дикарбамата видно по снижению температуры начала и максимума его термоокислительной деструкции, а также скорости термодеструкции. Найденные закономерности могут быть использованы при синтезе серебросодержащих полиуретановых систем.

Автор выражает благодарность сотрудникам ЦКПП ИХВС НАН Украины и ИФХ им. Л.В. Писаржевского НАН Украины за помощь в проведении исследований.

РЕЗЮМЕ. Досліджено взаємодію диметилгексан-1,6-дикарбамату як низькомолекулярної моделі поліуретанів з іонами срібла в водному Запропоновано механізм утворення середовищі. наночастинок срі-бла за наявності диметилгексан-1,6дикарбамату. За да- ними ІЧ-спектрального аналізу зсув максимумів смуг поглинання N-H, C=O, C-N і С-О зв'язків уретанових -NH-С(О)О-груп свідчить про факт взаємодії на- ночастинок срібла і молекул (їх асоціатів) диметилгексан-1,6-дикарбамату. Показано, що наночастинки срібла впливають на закономірності структуроутворення диметилгексан-1,6дикарбамату, збільшують середній розмір його кристалів на 25-30% і проявля- ють каталітичну активність при термоокиснювальної деструкції диметилгексан-1,6-дикарбамату, прискорюючи даний процес і зміщуючи його в низькотемпературну область.

SUMMARY. An interaction of dimethylhexane-1, 6-dicarbamate, as low-molecular model of polyurethanes, and ionic silver in aqueous media has been studied. A mechanism of silver nanoparticles formation in a presence of dimethylhexane-1,6-dicarbamate was proposed. Analysis of FTIR data shown that shifts of absorption bands of N–H, C=O, C–N i C–O bonds of urethane –NH–C(O)Ogroups are evidenced of interaction of silver nanoparticles and dimethylhexane-1,6-dicarbamate molecules (their associates). It was clearly found that silver nanoparticles affect on features of structurization of dimethylhexane1,6-dicarbamate via increasing averaged crystallite size by 25–30%. Increasing thermooxidative decomposition rate of dimethylhexane-1,6-dicarbamate and shift of thermal destruction to lower temperatures could be explained by catalytic influence of silver nanoparticles.

ЛИТЕРАТУРА

- 1. *Hempel A., Camer N., Mastropaolo D. et al.* // Acta Crystallogr. E. -2005. -61, № 5. -P. 01381—01383.
- Byun H.-S., Bittman R., Samadder P. et al. // Chem. Med. Chem. -2010. -5, № 7. -P. 1045—1052.
- 3. Kurata S., Yamazaki N. // Dent. Mater. J. -2011. -30, № 1. -P. 103—108.
- 4. Sun D.-L., Luo J.-Y., Wen R.-Y. et al. // J. Hazard. Mater. -2014. -266, № 1. -P. 167—173.
- 5. Wang X., Wang J., Zhang L. // China Synth. Resin Plast. -2009. -26, № 3. -P. 37-41.
- Zavodov I.A., Maklakov L.I., Atovmyan E.G. // Russ. Chem. Bull. -1998. - 47, №. 2. -P. 293—296.

Институт химии высокомолекулярных соединений НАН Украины, Киев

- 7. Lu Y.-Y., Yin Q.-X., Wang J.-K. et al. // Acta Crystallogr. E. -2005. -61, № 10. -P. o3412—o3413.
- 8. Lu Y.-Y., Yin Q.-X., Wang J.-K. et al. // Ibid. -2005. -61, № 11. -P. 03874—03875.
- 9. Khan M.K., Sundararajan P. // Chem. Eur. J. -2011. -17, № 4. -P. 1184—1192.
- 10. Kim K., Plass K.E., Matzger A.J. // J. Amer. Chem. Soc. -2005. -127, № 13. -P. 4879-4887.
- 11. Liu H.-L., Dai S.A., Fu K.-Y. et al. // Int. J. Nanomed. -2010. -5, № 1. -P. 1017—1028.
- 12. *Толстов А.Л.* // Теорет. и эксперимент. химия. -2013. -49, № 6. -Р. 331—343.
- 13. Young A.G., Hanton L.R. // Coordin. Chem. Rev. -2008. -252, № 12-14. -P. 1346-1386.
- Xia Y., Xiong Y., Lim B. et al. // Angew. Chem. Int. Ed. -2009. -48, № 1. -P. 60—103.
- 15. Chen C., Wang L., Jiang G. et al. // Rev. Adv. Mater. Sci. -2006. -11, № 1. -P. 1—18.
- 16. Jiang Z.-J., Liu C.-Y., Sun L.-W. // J. Phys. Chem. B. -2005. -109, № 5. -P. 1730—1735.

Поступила 04.03.2014