УДК 546.571+547.556

Г.Г.Репіч, С.І.Орисик, В.І.Пехньо

СИНТЕЗ ТА КРИСТАЛІЧНА БУДОВА КОМПЛЕКСУ Ag(I) З САЛІЦИЛІДЕНГІДРАЗОНОМ ФЕНІЛОЦТОВОЇ КИСЛОТИ

Вперше синтезовано та виділено в кристалічному стані комплекс Ag(I) з O,N,O-координацією саліциліденгідразону фенілоцтової кислоти. Дослідження його структури методом рентгеноструктурного аналізу показало, що іон аргентуму формує сильно викривлений октаедричний координаційний поліедр. Встановлено, що навіть у нейтральному середовищі молекули ліганду координуються в молекулярній формі без депротонування OH-групи феноксильного ядра, що приводить до утворення комплексу катіонного типу. Виявлено, що при розчиненні в ДМСО комплекс зазнає руйнації внаслідок перекоординації центрального іона молекулами розчинника.

ВСТУП. Хімія гідразонів розпочала інтенсивно розвиватись всередині минулого століття. Результати перших досліджень узагальнені в книзі Ю.П.Китаєва і Б.І.Бузикіна "Гидразоны" [1]. За останні роки інтерес до гідразонів та комплексних сполук на їх основі знову зріс [2—8], що зумовлено широким спектром їх біологічної активності: протитуберкульозної, протибактеріальної, протигрибкової, протипухлинної, противірусної та ін. [7—10]. Деякі з них використовуються в медпрактиці (фтивазид, салюзид) та сільському господарстві [4]. Крім того, координаційні сполуки гідразонів проявляють каталітичні [11], люмінесцентні [12] та магнітні [13] властивості.

Ацилгідразони саліцилового альдегіду (саліциліденгідразони) добре відомі як лігандні системи, що наділені здатністю до тридентатно хелатного O,N,O-способу координації з широким рядом іонів перехідних металів та можуть утворювати біс- [14, 15] чи тріслігандні (для лантанідів) [16, 17] координаційні сполуки. У співвідношенні М:L=1:1 вони формують комплекси, в яких вільні координаційні положення центрального атома займають аніонні [11, 14, 18] чи нейтральні [12, 19] молекули іншого гетероліганду або розчинника [11, 18]. Особливістю даних лігандних систем є їх здатність до амідо-імідольної таутомерії, внаслідок чого вони можуть приймати участь в координації як у формі моно- (а) чи діаніона (б), так і в молекулярній формі (в) без депротонування [20] (схема 1).

Пошук у Кембриджській структурній базі даних [21] за 2015 рік виявив 867 структур координаційних сполук перехідних металів з О, N, O-

координованими ацилгідразонами саліцилового альдегіду і, разом з тим, не виявлено жодного рентгеноструктурно охарактеризованого комплексу Ag(I) з O,N,O-координацією даного класу лігандів.

У даній роботі вперше приведено синтез комплексу аргентуму з О, N, O-координацією саліциліденгідразону фенілоцтової кислоти (СГФОК) та його кристалічну будову, встановлену методом рентгеноструктурного аналізу.

ЕКСПЕРИМЕНТ І ОБГОВОРЕННЯ РЕЗУЛЬ-ТАТІВ. Синтез комплексу $[Ag(H_2L)_2]NO_3$ проводили за схемою 2. Він кристалізується в хіральній просторовій групі С2. Асиметрична комірка містить дві незалежні молекули комплексу (позначені індексами A і B) з однаковою молекулярною будовою (рисунок, *a*). Обидві молекули є центросиметричними, де атоми Ag(1A) та Ag(1B) розміщені в центрах інверсії. Координаційний поліедр атомів Ag(1A) та Ag(2B) має форму сильно деформованого октаедра з величи-

ною прилеглих кутів у діапазоні 67.7—168.1° та 68.2–162.2° відповідно (табл. 1). Молекули гідразону координуються до атома Ag в молекулярній формі за типовим для нього O,N,O-хелатним способом через атоми O(1) недепротонованої OH-групи феноксильного ядра, N(1) азометинової та O(2) карбонільної груп, утворюючи п'яти- та шестичленні металоцикли. Довжини зв'язків N(2A)–C(8A) 1.342(5) Å, N(2B)–C(8B) 1.330(5) Å, O(2A)–C(8A) 1.232(5) Å, O(2B)–C(8B) 1.251 (5) Å вказують на амідну таутомерну форму координованих молекул ліганду.

П'ятичленні металоцикли є плоскими з середнім відхиленням від абсолютно плоскої конфігурації 0.0443 Å для $\{Ag(1A)-O(2A)-C(8A)-N(2A)-N(1A)\}$ та 0.0255 Å для {Ag(1B)--O(2B)--C(8B)--N(2B)–N(1B)}, тоді як шестичленні є значно деформованими, їх середнє відхилення від абсолютно плоскої конфігурації складає 0.1091 Å для {Ag(1A)-N(1A)-C(7A)-C(6A)-C(1A)-O(1A)} та 0.1982 Å для {Ag(1B)-N(1B)-C(7B)-C (6В)-С(1В)-О(1В)}. Двогранний кут між площинами 5- і 6-членних металоциклів становить 8.6 та 12.0° для молекул А і В відповідно. Саліциліденгідразонний фрагмент ліганду в молекулі комплексу А є майже плоским. Середнє відхилення від абсолютно плоскої конфігурації для {О(1)-С(1)-С(2)-С(3)-С(4)-С(5)-С(6)-C(7)-N(1)-N(2)-C(8)-C(9)-O(2)} молекули А не перевищує 0.0502 Å, тоді як друга молекула ліганду сильно деформована. Середнє відхилення для аналогічного структурного фрагменту молекули В дорівнює 0.1438 Å. Бензильні фрагменти лігандів повернуті відносно площин основної частини молекули, торсіонний кут N(2)–C(8)–C(9)–C(10) становить 111.46 та 150.28° для молекул А і В відповідно. Така сильна деформація координаційного поліедру комплекса та утворених металоциклів може бути пов'язана зі значно більшими довжинами координаційних зв'язків за участю атома Ag у порівнянні з аналогічними в комплексах Cu(II) [19], що утворюють координаційні поліедри більш правильної форми.

Два нітрат-іони займають зовнішньосферне положення, найкоротша відстань яких до центрального атома становить 5.540 Å. У кристалічній структурі молекули утворюють стопки вздовж кристалографічної осі [010], сполучені міжмолекулярними водневими зв'язками O(1A)– H(1A)...O(2A), O(1B)–H(1B)...O(2B), які поєдну-

Таблиця 1

Довжини зв'язків та кути в структурі комплексу [Ag(H₂L)₂]NO₃

Зв'язок	Довжина, Å	Кут	Значення, град	
Ag(1A)–O(1A)	2.478(3)	O(2B)–Ag(1B)–O(1B)	135.01(9)	
Ag(1A)–O(2A)	2.420(3)	N(1B)-Ag(1B)-O(1B)	70.94(11)	
Ag(1A)–N(1A)	2.470(3)	O(2B)–Ag(1B)–N(1B)	68.20(11)	
Ag(1B)–O(1B)	2.524(3)	O(1B)-Ag(1B)-O(1B)#1	79.03(13)	
Ag(1B)–O(2B)	2.490(3)	O(2B)-Ag(1B)-O(2B)#1	94.88(14)	
Ag(1B)–N(1B)	2.385(3)	N(1B)-Ag(1B)-O(2B)#1	99.31(10)	
O(2A)–C(8A)	1.232(5)	N(1B)-Ag(1B)-N(1B)#1	162.17(17)	
O(2B)–C(8B)	1.251(5)	N(1B)-Ag(1B)-O(1B)#1	124.44(10)	
N(2A)–C(8A)	1.342(5)	O(2B)-Ag(1B)-O(1B)#1	109.66(10)	
N(2B)–C(8B)	1.330(5)	O(2A)–Ag(1A)–O(1A)	135.02(9)	
N(1A)-C(7A)	1.287(5)	N(1A)-Ag(1A)-O(1A)	69.65(12)	
N(1B)–C(7B)	1.280(5)	O(2A)–Ag(1A)–N(1A)	67.56(11)	
N(1A)–N(2A)	1.397(5)	O(1A)-Ag(1A)-O(1A)#2	77.32(13)	
N(1B)–N(2B)	1.396(4)	O(2A)-Ag(1A)-O(2A)#2	89.24(14)	
O(1A)–C(1A)	1.366(5)	N(1A)-Ag(1A)-O(2A)#2	103.55(11)	
O(1B)–C(1B)	1.365(5)	N(1A)-Ag(1A)-N(1A)#2	168.1(2)	
		N(1A)-Ag(1A)-O(1A)#2	120.64(11)	
		O(2A)-Ag(1A)-O(1A)#2	113.85(10)	
Примітка. #1 — (-x+1, y, -z+2); #2 — (-x+1, y, -z+1).				

ють координовані ОН групи феноксильних фра гментів та оксигени кар бонільної групи сусідніх молекул комплексу (табл 2, рисунок, б). Стопки спо лучені за допомогою N-H...О водневих зв'язкіг між гідразидними ніт рогенами та зовнішньо сферними нітрат-іонами а також великої кілько сті слабких СН...π взає модій ароматичних фра гментів молекул ліганду.

При дослідженні Я тру даного комплексу в, явлено, що отриманий с тичним до спектру вілы ну. Це свідчить про руйі плексу внаслідок переко на аргентуму молекулам

РСА виконаний на трі Bruker SMART AP випромінювання, графі хроматор, γ =0.71073 Å) турі –173 °С, за методиї ції рентгенівських пронокристалі. Дані зібран ω - і ф-сканування та інтє грамою SAINT [22]. Корє ції проведена з мульті

програмі SADABS [23]. Структури розшифровані прямим методом і уточнені повноматричним методом найменших квадратів в анізотропному наближенні для неводневих атомів, з використанням пакета програм SHELXTL [24]. Позиції водневих атомів були визначені з різницевого синтезу Фур'є і уточнені за допомогою моделі вершника з $U_{i30}(H) =$ $= nU_{ekB}$, n = 1.5 для OH-протонів та n == 1.2 для всіх інших водневих атомів. Процедура перевірки структури виконана з використанням багатоцільової кристалографічної програми PLATON [25].

Дані експерименту та основні параметри кристалічної гратки комплексу наведено в табл. 3.

[*Ag*(*H*₂*L*)₂]*NO*₃. Подрібнену наважку AgNO₃ (0.0425 г, 0.00025 моль) розчинили в 10 мл CH₃OH.

Кристалічна структура комплексу [Ag(H₂L)₂]NO₃.

Таблиця 2 Водневі зв'язки в структурі комплексу [Ag(H₂L)₂]NO₃

D–H…A	<i>d</i> (D–H)	<i>d</i> (HA)	<i>d</i> (DA)	<(DHA)
N(2A)–H(2NA)O(4)	0.86	1.98	2.836(5)	171.9
N(2B)–H(2NB)O(5)	0.86	2.08	2.812(5)	142.2
O(1A)-H(1A)O(2A)#3	0.82	1.83	2.637(4)	167.6
O(1B)–H(1B)O(2B)#4	0.82	1.87	2.683(4)	169.5
$\overline{\Pi p \mu m i \tau \kappa a}$. #3 — -x+1, y+1, -z+1; #4 — -x+1, y+1, -z+2.				

До отриманого розчину при перемішуванні додали 10 мл метанольного розчину СГФОК (0.127 г, 0.0005 моль). Утворений безбарвний розчин залишили на кристалізацію в темному місці шля-

Таблиця З

Кристалографічні дані та	основні	параметри	уточнення	для
комплексу $[Ag(H_2L)_2]NO_3$				

Параметри	Значення		
Емпірична формула	C ₃₀ H ₂₈ AgN ₅ O ₇		
Молекулярна маса	678.44		
Кристалографічна система,	Моноклінна, С2		
просторова група			
Параметри елементарної	a = 23.0446(11), b = 5.5249(3),		
комірки, А	$c = 23.7492(11), \ \beta = 112.355(3)$		
Об'єм елементарної комірки, Аз	2796.5(2)		
Z, розрахована густина, мг/мм ³	4, 1.611		
Коефіцієнт поглинання, мм ⁻¹	0.779		
<i>F</i> (000)	1384		
Розмір кристалу, мм×мм×мм	0.61×0.07×0.06		
Діапазон θ для колекції даних, °	1.78–26.40		
Обмеження індексів	$-28 \le h \le 28, -6 \le k \le 6, -28 \le l \le 29$		
Накопичені відбиття / унікальні	22025 / 5605		
Завершеність до Ө _{макс} , %	0.997		
Максимальне / мінімальне про- пускання	0.9562 / 0.6483		
Дані / обмеження / параметри	5605 / 1 / 377		
Критерій узгодження F^2	0.976		
Кінцевий <i>R</i> індекс [I>2 $\sigma(I)$]	$R_1 = 0.0432, \ wR_2 = 0.0579$		
Індекс R (всі дані)	$R_1 = 0.0796, \ wR_2 = 0.0636$		
Найбільший / найменший ди- фракційні піки, <i>е</i> ·Å ⁻³	0.788 / -0.824		

хом повільного випаровування розчинника. Через 2–3 дні на дні ємності утворились безбарвні тонкі голчасті кристали. Розчин залишили на кристалізацію ще на 2 доби. Кристали відфільтрували, промили спиртом, ефіром. Вихід 0.117 г (68 %).

Знайдено, %: С 53.03, Н 4.15; N 10.23. С₃₀H₂₇N₅O₇Ag. Розраховано, %: С 53.19; Н 4.02; N 10.34.

Таким чином, нами вперше отримано комплекс Ag(I) з O,N,O-координацією двох молекул гідразону саліцилового альдегіду та досліджено його структуру методом рентгеноструктурного аналізу. Показано, що навіть у нейтральному середовищі полідентатна молекула гідразону координується до іона Ag^+ без депротонування OH-групи феноксильного ядра, що зумовлює катіонний тип комплексу. Встановлено, що координаційний поліедр аргентуму має сильно викривлену октаедричну будову з величиною прилеглих кутів у діапазоні 67.7–168.1°.

РЕЗЮМЕ. Впервые синтезирован и выделен в кристаллическом состоянии комплекс Ag(I) с O,N,О-координацией салицилиденгидразона фенилуксусной кислоты. И сследование его структуры методом рентгеноструктурного анализа показало, что ион серебра формирует сильно искаженный октаэдрический координационный полиэдр. Установлено, что даже в нейтральной среде молекулы лиганда координируются в молекулярной форме без депротонирования ОН-группы феноксильного ядра, что приводит к образованию комплекса катионного типа. Выявлено, что при растворении в ДМСО комплекс разрушается вследствие перекоординации центрального иона молекулами растворителя.

SUMMARY. The Ag(I) complex with O,N,O-coordinated phenylacetic acid salicylhydrazone has been first synthesized and isolated in the crystalline state. The X-ray diffraction studying showed the formation of highly distorted octahedral environment of central Ag(I) ion. It has been found that even in a neutral media the ligand molecule coordinate in mole-

cular form without deprotonation of OH-group of phenoxyl ring that leads to the formation of a cationic type complex. The complex decomposition in DMSO solution was observed due to recoordination of central ion by solvent molecules.

ЛІТЕРАТУРА

- 1. *Китаев Ю.П., Бузыкин Б.И*. Гидразоны -М.: Наука, 1974.
- Anbazhagan R., Sankaran K.R. // Spectrochim. Acta Pt A: Mol. and Biomol. Spectr. -2015. -135. -P. 984—993.
- 3. Lindgren E.B., de Brito M.A., Vasconcelos T. R. et al. // Eur. J. Med. Chem. -2014. -86. -P. 12-16.
- Backes G.L., Neumanna D.M., Jursic B.S. // Bioorg. Med. Chem. -2014. -22. -P. 4629—4636.
- Dordevic M.M., Jeremic D.A., Rodic M.V. et al. // Polyhedron. -2014. -68. -P. 234—240.
- 6. Mukherjee S., Mal P., Stoeckli-Evans H. // Ibid. -2014. -73. -P. 87—97.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2015. Т. 81, № 1

- 7. Recio Despaigne A.A., Da Costa F.B. Piro O.E. et al. // Ibid. -2012. -38. -P. 285—290.
- Pillai M.V., Rajeswari K., Vidhyasagar T. // J. Mol. Structure. -2014. -1076. -P. 174—182.
- 9. *Kocyigit Kaymakcioglu B., Rollas S. //* Farmaco. -2002. -**57.** -P. 595—599.
- Vicini P., Zani F., Cozzini P., Doytchinova I. // Eur. J. Med. Chem. -2002. -37. -P. 553—562.
- Monfared H.H., Sadighian S. et al. // J. Mol. Catal. -2009. -304. -P. 139—146.
- 12. Borbone F., Caruso U. et al. // Eur. J. Inorg. Chem. -2014. -P. 2695-2703.
- Anwar M.U., Dawe L.N. et al. // Dalton Trans. -2013. -42. -P. 7781—7794.
- 14. Anwar M.U., Shuvaev K.V. et al. // Inorg. Chem. -2011. -50. -P. 12141-12154.
- Gudasi K.B., Patil S.A. et al. // J. Mol. Struct. -2014.
 -1065–1066. -P. 179–185.

Інститут загальної та неорганічної хімії ім. В.І.Вернадського НАН України, Київ

- Bu X.-H., Du M. et al. // Inorg. Chim. Acta. -2000.
 -308. -P. 143—149.
- 17. Albrecht M., Latorre I. et al. // Dalton Trans. -2011. -40. -P. 12067.
- Ainscough E.W., Brodie A.M. et al. // Inorg. Chim. Acta. -1998. -267. -P. 27—38.
- 19. Das S., Pal S. // J. Mol. Struct. -2005. -753. -P. 68-79.
- 20. Zou L.-F., Yang X.-Y. et al. // Asian J. Chem. -2012. -24, № 7. -P. 2909—2912.
- 21. Allen F.H. // Acta Cryst. -2002. -B58. -P. 380.
- 22. Bruker. SAINT. Bruker AXS Inc. -Madison, Wisconsin, USA, 2002.
- 23. Sheldrick G.M. SADABS. -University of Gottingen, Germany, 2003.
- 24. Bruker. SHELXTL. Bruker AXS Inc. -Madison, Wisconsin, USA, 2001.
- 25. Spek A.L. PLATON. -University of Utrecht, The Netherlands, 2002.

Надійшла 28.11.2014