УДК 546.683+546.817+546.22+546.23+544.015.3

О.О.Масалович, М.Ю.Сабов, І.Є.Барчій, А.М.Соломон ФАЗОВІ РІВНОВАГИ В СИСТЕМІ Tl₂Se—Tl₉BiSe₆—Tl₄SnSe₃

Методами диференційного термічного (ДТА), рентгенівського фазового (РФА) та мікроструктурного (МСА) аналізів досліджено фазові рівноваги в системі $Tl_2Se-Tl_9BiSe_6-Tl_4SnSe_3$. Побудовано діаграму стану квазібінарного перерізу $Tl_9BiSe_6-Tl_4SnSe_3$, а також проекцію поверхні ліквідусу, ізотермічний переріз при 600 К та об'ємну діаграму стану квазіпотрійної системи $Tl_2Se-Tl_9BiSe_6-Tl_4SnSe_3$. Встановлено координати нонваріантних точок та границі твердих розчинів.

ВСТУП. Система Tl₂Se—Tl₉BiSe₆—Tl₄SnSe₃ реалізується в квазіпотрійній системі Tl₂Se—Bi₂-Se₃—SnSe і обмежена квазібінарними перерізами Tl₂Se—Tl₉BiSe₆, Tl₂Se—Tl₄SnSe₃ та Tl₉BiSe₆ —Tl₄SnSe₃ [1]. Сполуки Tl₂Se, Tl₉BiSe₆, Tl₄SnSe₃ мають тетрагональну структуру і дуже близькі параметри елементарних комірок [2—4]. Тому закономірним є те, що діаграми стану систем Tl₂Se—Tl₉BiSe₆ та Tl₂Se—Tl₄SnSe₃ відносяться до І типу за Розебомом, тобто характеризуються утворенням неперервних рядів твердих розчинів без екстремальних точок на кривих ліквідусу та солідусу [5—7]. Літературних даних щодо фазових рівноваг на перерізі Tl₉BiSe₆— Tl₄SnSe₃ немає.

ЕКСПЕРИМЕНТ І ОБГОВОРЕННЯ РЕЗУЛЬ-ТАТІВ. Для дослідження характеру фізико-хімічної взаємодії на квазібінарному перерізі Tl_9BiSe_6 — Tl_4SnSe_3 було синтезовано 11 сплавів через 10% мол. та додатково три сплави для уточнення координат нонваріантної точки та ширини граничних твердих розчинів. Синтез проводили прямим однотемпературним методом у вакуумованих до 0.133 Па кварцевих ампулах із попередньо синтезованих тернарних селенідів. Максимальна температура становила 850 К. Відпал здійснювали при температурі 600 К протягом 168 год, після чого сплави загартовували у льодяній воді.

Отримані сплави досліджували методами диференційного термічного (використовували хромель-алюмелеву термопару, лінійність нагрівання підтримували за допомогою терморегулятора РИФ-101), рентгенофазового (дифрактометр ДРОН -4, Си K_{α} -випромінювання, Ni-фільтр) та мікроструктурного аналізів (металографічний мікроскоп Ломо Метам Р-1, травильний розчин — 3 % H_2O_2 та концентрована HCl у співвідношенні 2:1), за результатами побудували діаграму стану системи Tl_9BiSe_6 — Tl_4SnSe_3 (рис. 1).

Рис. 1. Діаграма стану системи Tl₉BiSe₆—Tl₄SnSe₃.

Встановлено, що дана система відноситься до евтектичного типу (V тип за Розебомом). На перерізі утворюються граничні тверді розчини: α — на основі Tl₉BiSe₆ та β — на Tl₄SnSe₃. Координати евтектичної точки (нонваріантний евтектичний процес L $\leftrightarrow \alpha + \beta$) становлять 83 % мол. Tl₄SnSe₃, 650 К. Межі розчинності фаз при температурі відпалу, окрім РФА, визначали за даними мікроструктурного аналізу. Виявлено, що зразки з вмістом Tl₄SnSe₃ 50 % мол. — однофазні, а 55 та 95 % мол. — двофазні (рис. 2). Таким чином, ширина граничних твердих розчинів на основі Tl₄SnSe₃ при температурі 600 К не перевищує 5, а на Tl₉BiSe₆ — 55 % мол.

На основі літературних даних щодо температур фазових переходів на перерізах Tl_2Se — $Tl_9BiSe_6(Tl_4SnSe_3)$, результатів досліджень системи Tl_9BiSe_6 — Tl_4SnSe_3 і термічного аналізу спла-

© О.О.Масалович, М.Ю.Сабов, І.Є.Барчій, А.М.Соломон, 2015

β-твердих розчинів (моноваріантний евтектичний процес L $\leftrightarrow \alpha + \beta$, координати нонваріантної точки $e_1: Tl_2Se - 61, Tl_4Sn-Se_3 - 32, Tl_9BiSe_6 - 7$ % мол., 660 K). Склад обох твердих розчинів, які кристалізуються з розплаву e_1 , відповідає точці k (Tl_2Se - 65, Tl_4SnSe_3 - 28,

квазіпотрійної системи $Tl_2Se_Tl_9BiSe_6-Tl_4SnSe_3$.

вів відповідного складу всередині системи Tl₂Se — Tl₉BiSe₆—Tl₄SnSe₃, із залученням методу рухомих симплексних трикутників [8], була побудована проекція поверхні ліквідусу на концентраційний трикутник (рис. 3) та просторова діаграма системи Tl₂Se—Tl₉BiSe₆—Tl₄SnSe₃ (рис. 4).

Квазіпотрійна система Tl₂Se—Tl₉BiSe₆—Tl₄-SnSe₃ характеризується евтектичним розривом розчинності на перерізі Tl₉BiSe₆—Tl₄SnSe₃. Поверхня ліквідусу складається з трьох поверхонь первинних виділень. Поверхня $l_1e_1el_1$ відповідає первинній кристалізації α -твердого розчину, $l_2e_1el_2$ — β -твердого розчину. Поверхні первинної кристалізації α (на основі Tl₉BiSe₆ та Tl₂Se) і β (на основі Tl₄SnSe₃ та Tl₂Se) граничних твердих розчинів перетинаються по евтектичній лінії e_1e — спільної кристалізації α - і

верхня ліквідусу відповідає неперервному ряду твердих розчинів і може бути представлена як поверхня початку кристалізації твердого розчину на основі α - та β -фаз. Об'єм спільного існування α - і β -твердих розчинів обмежується поверхнями $k_1ka_1a_2k_1$, $k_1kb_1b_2k_1$, ke_1ea_1k , ke_1eb_1k , $a_1eb_1b_2a_2a_1$. Дані про характер взаємодії на квазібінар-

дані про характер взаємодії на квазюїнарних перерізах, фазовий аналіз додатково синтезованих потрійних зразків, що знаходяться на межах граничних твердих розчинів, дали змогу встановити фазові поля при температурі гомогенізуючого відпалу (600 K) (рис 5).

Ізотермічний переріз потрійної системи Tl_2Se — Tl_9BiSe_6 — Tl_4SnSe_3 складається з однофазного поля неперервних рядів твердих розчинів на основі α - та β -фаз і двофазної $\alpha + \beta$, що відмежова-

Рис. 4. Діаграма стану системи $Tl_2Se_{Tl_9}BiSe_6 - Tl_4SnSe_3$.

 $Tl_2Se_Tl_9BiSe_6-Tl_4SnSe_3$ (600 K).

ні лінією *abk*₁ (склад точки *k*₁ : Tl₂Se — 68, Tl₄Sn-Se₃ — 24, Tl₉BiSe₆ — 8 % мол.) при 600 К.

РЕЗЮМЕ. Методами дифференциального термического (ДТА), рентгеновского фазового (РФА) и микроструктурного (МСА) анализов исследованы фазовые равновесия в системе $Tl_2Se-Tl_9BiSe_6-Tl_4$ -SnSe₃. Построена диаграмма состояния квазибинарного разреза $Tl_9BiSe_6-Tl_4SnSe_3$, а также проекция поверхности ликвидуса, изотермическое сечение при температуре 600 К и объемная диаграмма состояния квазитройной системы $Tl_2Se-Tl_9BiSe_6-Tl_4SnSe_3$. Ус-

Ужгородський національний університет

тановлены координаты нонвариантных точек и границы твердых растворов.

SUMMARY. Phase equilibria in the Tl₂Se—Tl₉Bi-Se₆—Tl₄SnSe₃ system were studied by differential thermal analysis, X-ray powder diffraction, and microstructure analyses. Phase diagram of the Tl₉BiSe₆—Tl₄SnSe₃ quasibinary section, projection of the liquidus surface, isothermal section at 600 K and the phase diagram of Tl₂Se —Tl₉BiSe₆—Tl₄SnSe₃ quasiternary system were constructed. The coordinates of nonvariants points and solubility ranges of compounds were determined.

ЛІТЕРАТУРА

- 1. *Масалович О.О., Рак Д.М., Сабов М.Ю. //* Наук. вісн. Ужгород. націон. ун-ту. Сер. Хімія. -2011. -№ 26. -С. 13—15.
- 2. *Stasova M.M.*, *Vainshtein B.K.* Kristallografiya. -1958. -3. -P. 140—146.
- 3. Ворошилов Ю.В., Гурзан М.И., Киш З.З., Лада Л.В. // Изв. АН СССР. Неорган. материалы. -1988. -24, № 6. -С. 1479—1484.
- 4. Bradtmoeller S., Kremerr K., Boettcher P. Zeitschrift fur Anorganische und Allgemeine Chemie. -1994. -P. 1073—1080.
- 5. Барчій І.Є., Козьма А.А. // Укр. хим. журн. -2011. -77, № 7. -С. 32—37.
- Бабанлы М.Б., Поповкин Б.А., Замани И.С., Гусейнова Р.Р. // Журн. неорган. химии. -2003. -48, № 12. -С. 2091—2096.
- 7. Малаховська Т.О., Сабов М.Ю., Барчій І.Є., Переш С.Ю. // Укр. хим. журн. -2009. -75, № 2. -С. 89—91.
- 8. Барчій І.Є. // Там же. -2001. -67, № 11. -С. 18-23.

Надійшла 17.03.2015