УДК 546.814

О.И.Милованова, С.М.Малеваный, Э.В.Панов, Т.С.Глущак СВОЙСТВА НЕСТАЦИОНАРНОЙ ЭЛЕКТРОПРОВОДНОСТИ ПЛЕНОК SnO₂ ПРИ АДСОРБЦИИ ГАЗОВ-ВОССТАНОВИТЕЛЕЙ

Изучен механизм изменения электропроводности G пленок из нанокристаллов SnO_2/M (M = Pd, Pt, Pd+MoO₃, Co₃O₄), синтезированных в нитратном расплаве. Характер поведения электропроводности (G) при взаимодействии SnO_2/M с парами этанола, бутанола, ацетона при 200 °C можно объяснить в рамках простой модели пленки SnO_2 : пленка сформирована из зерен SnO_2/M и межзеренной области (в основном допант M), в газовой реакции преимущественно участвует один тип активных центров SnO_2 , поведение G формирует межзеренная область как зона газовой реакции.

Ключевые слова: SnO₂, толстые пленки, газовый сенсор.

ВВЕДЕНИЕ. Величина электропроводности *G* поликристаллических пленок SnO₂ чувствительна к составу адсорбированных газов и удельной плотности их молекул на поверхности SnO₂. Обычно измеряемыми в эксперименте параметрами, характеризующими адсорбционную и реакционную способность газов, являются стационарная (установившаяся) величина электропроводности *G*_c пленки SnO₂, время ее установления *t*_c и время восстановления *t*'_c величины *G* на воздухе (*G*₀) при отсутствии в нем активного газа. В эксперименте измеряют значения, соответствующие 0.9*G*_c и 0.9*G*₀, которым отвечают времена $\tau_{res} = 0.9t_c$ и $\tau_{rec} = 0.9t'_c$.

Важным для понимания кинетики адсорбции (десорбции) газов-восстановителей и их реакций с молекулами кислорода, адсорбированными на SnO₂ из воздуха, являются параметры переходного процесса — изменение G во времени (графики G, t) при взаимодействии пленки SnO₂ с газами. Однако при анализе опытных данных графики переходного процесса G, t обычно не рассматриваются (см., например, обзоры [1, 2]), хотя по ним можно определить такие важные данные, как время начала реакции t_0 , когда температуры газа и пленки будут одинаковы, и время релаксации процесса адсорбции τ_a. Величины $G_0, G_c, \tau_{res}, \tau_{rec}$, как и t_0, τ_a , характеризуют кинетику газового взаимодействия на пленке SnO₂ и существенно зависят от электрофизических свойств широкозонного полупроводника *п*-типа SnO₂. Собственная электропроводность G_i изучаемой нами пленки SnO₂, то есть нелегированного SnO₂, целиком определяется концентрацией кислородных вакансий V_o⁺ [1], то есть дефектностью его структуры. Величина G_i зависит от размера частиц d SnO₂, их микроструктуры и морфологии. Все эти параметры можно изменить при допировании SnO₂ платиновыми металлами и оксидами *d*-металлов [1]. Указанные физико-химические параметры также существенно зависят от метода синтеза порошков SnO₂ [1, 2].

Нами был предложен [3-5] метод синтеза нанокристаллических фаз SnO2 и их допированных модификаций в расплавах неорганических солей. Этот метод сохраняет все преимущества жидкофазного синтеза и при этом позволяет организовывать кристаллизацию тугоплавкого оксида при невысоких температурах, исключив из процесса термообработку при 700-800 °C. Метод позволяет получить в значительной степени монодисперсные SnO₂ и его допированные образцы — как твердые растворы с допантом, так и нанокомпозиты. Последние очень чувствительны к адсорбции активных газов, поскольку она преобладает на межзеренной границе, которая и определяет электропроводность пленки SnO₂. Для пленок из порошков SnO₂, синтезированных в расплавах, еще недостаточно опытных данных для построения корреляционных зависимостей алгоритм синтеза-параметры газо-

[©] О.И.Милованова, С.М.Малеваный, Э.В.Панов, Т.С.Глущак, 2015

чувствительных свойств электропроводности *G* пленки SnO₂.

Такие данные нужны и для построения моделей, связывающих кинетику газовых реакций на SnO_2 с параметрами G, и для целенаправленного подбора сенсорных материалов, селективных к целевым реакциям.

Анализ зависимостей G, t лучше проводить на примере взаимодействия SnO₂ с газами-восстановителями, для которых газовая чувствительность S пленок SnO₂ наиболее эффективна. Методически самые удобные газовые объекты для пленок SnO₂ — пары этанола и ацетона, в случае которых можно с достаточной для анализа точностью приготовить газовоздушные смеси с содержанием этанола (ацетона) от 0.1 ppm.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Порошки $Sn_{1-x}Sb_xO_2$ получали путем взаимодействия SnCl₂·2H₂O и SbCl₃·5H₂O с расплавами на основе KNO3 при 450 °C. Sb добавляли в SnO2 для увеличения электропроводности нанокристаллов. Для получения допированных порошков SnO₂/М прекурсоры допантов добавляли в расплав KNO_3 (M = MoO₃, Co₃O₄) или синтезированные в расплаве порошки пропитывали растворами PdCl₂ и HPtCl₄ с последующим восстановлением их до металлов. Для изучения морфологии, микроструктуры, химического и фазового составов использовали электронные микроскопы JEOL JEM 2100 (ТЭМ) и JEOL JSM 6060 (СЭМ) с их модулями для элементного анализа, а также дифрактометр ДРОН-4. Пленки SnO₂/M синтезировали по технологии screen printing. Тестирование пленок SnO₂/М газами выполняли на стенде с контролируемыми температурой и составом газовой среды в кварцевой кювете с пленкой SnO₂/M. Электропроводность G пленки измеряли с помощью мультиметра UT61E с выводом результатов на компьютер.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Возьмем за основу рассмотрения модель пленки из работы [6]. Здесь пленка SnO_2 структурно сформирована ленточками из зерен SnO_2 с перемычками (межзеренная область) из похожего материала. В случае введения допанта M в кристалл SnO_2 возможно образование двух типов структур SnO_2/M : твердого раствора компонента M в SnO_2 ($Sn_{1-x}M_xO_2$) или нанокомпозита (SnO_2/M). В первом случае G обусловливается электронной проводимостью объема, во втором G определя-

ет граница раздела зерен. Известно, что именно электрофизические свойства границы зерен весьма чувствительны к газовым реакциям. Поэтому свойства G нанокомпозитов SnO₂ как перспективных газочувствительных материалов для сенсоров широко изучаются в последние годы, особенно, вклад межзеренной области в величину G. Объекты исследования данной работы являются нанокомпозитами [4, 5], поэтому при рассмотрении измеренных G внимание будет обращено на область границы зерен. Считается [1, 6], что центрами адсорбции молекул газа на SnO₂ являются ионы O₂⁻, O⁻ и O²⁻. Для упрощения задачи будем принимать во внимание только один тип центров.

Тогда, следуя результатам работ [7,8] и принимая во внимание изложенное выше, попытаемся в рамках обозначенной упрощенной модели пленки SnO_2/M рассмотреть наши экспериментальные данные для образцов SnO_2/M (M = = Pd, Pt, Pd+MoO₃, Co₃O₄).

На примере поликристаллической пленки SnO_2 можно рассмотреть механизм формирования зависимости *G*, *t*.

Уравнение для скорости изменения плотности адсорбированных молекул ацетона на поверхности кристалла SnO₂ согласно [7] можно представить как:

$$N_{\rm B}(t) = N_{\rm BC}[1 - \exp(-t/\tau_{\rm a})]$$
 при (1)

$$\tau_{a} = \left[\alpha P \exp\left(-\frac{E_{ads}}{kT}\right) + v \exp\left(-\frac{E_{des}}{kT}\right)\right]^{-1}, \quad (2)$$

где τ_a — время релаксации процесса адсорбции; E_{ads} и E_{des} — энергии активации процессов адсорбции и десорбции молекул ацетона; P — его парциальное давление; α и v — некие кинетические постоянные для газа.

Следуя анализу работы [8], выражение (2) для τ_a можно переписать в более удобном для вычислений виде:

1 /

$$\tau_{\rm a} = \frac{v^{4/2} \exp[E_{des} / 2kT]}{rP^{1/2} + 1} \,. \tag{3}$$

Для нестационарной электропроводности G(t) и одного типа адсорбционных центров выражение (3) приводится к виду [8]:

$$\frac{\Delta G(t)}{G_0} = \frac{\Delta G_c}{G_0} \left[t - \exp\left(-\frac{t}{\tau_a}\right) \right]. \tag{4}$$

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2015. Т. 81, № 9

Выражение (4) пригодно для анализа экспериментальных графиков G(t) в форме:

$$\ln M_G = t/\tau_a , \qquad (5)$$

(6)

где $M_G = \Delta G_c / [\Delta G_c - \Delta G(t)]$.

Из наклона графика $\ln M_G$, *t* можно получить время релаксации τ_a , а из пересечения его с абсциссой — t_0 , то есть время, за которое температура поступившего газа становится равной температуре пленки SnO₂.

Примеры графиков $\ln M_G$, *t*, результаты обработки их (значения τ_0 , τ_a) и графиков *G*, *t* (значения τ_{res} , τ_{rec}) для пленок SnO_2/M (M = Pd, Pt, Pd+MoO₃, Co₃O₄) представлены на рис. 1–3 и в таблице. Для этанола получены графики $\ln M_G$, *t*, подобные показанным на рис.1, 2 для ацетона. Высокая концентация паров ацетона (этанола) выбрана с целью обеспечить заполнение всех активных центров газовой реакции на поверхности кристаллов SnO₂/M.

По форме графиков $\ln M_G$, t (рис.1–3) мы наблюдаем два вида взаимодействия паров ацетона на поверхности пленки SnO₂/M. В первом случае (рис. 1) преобладает один тип центров. Это подтверждается линейностью графиков $\ln M_G$, t, построенных по нашим данным для

Рис. 1. Зависимость $\ln M_G$, t для пленок состава $\operatorname{Sn}_{0.97}$ Sb_{0.03}O₂ (a) и Sn_{0.97}Sb_{0.03}O₂/5 % ат. Pd (δ) при 200 °С в присутствии паров ацетона концентрацией 350 ppm.

Рис. 2. Зависимость $\ln M_G$, t для пленок состава $\mathrm{Sn}_{0.97}$ Sb_{0.03}O₂/5 % ат Pt (a) и $\mathrm{Sn}_{0.97}$ Sb_{0.03}O₂/1 % мол. Co₃O₄ (δ) при 200 °C в присутствии паров ацетона концентрацией 350 ppm (a) и 5 (l), 10 (2), 50 (3), 100 (4), 350 (5) ppm (δ).

пленок SnO2 и SnO2 /Pd. Для Pd этими центрами будут ионы О⁻, которые генерируют поверхностные атомы Pd по механизму диссоциативной адсорбции молекул O₂ [4]., а для чистого SnO₂ центрами могут быть кислородные вакансии V_0^+ , всегда присутствующие в SnO₂ и обеспечивающие его собственную электронную проводимость [1]. У допантов Pt, MoO_3 , Co_3O_4 возможно возникновение сразу нескольких активных центров. Для Pt, помимо ионов O²⁻, O₂⁻, эту функцию выполняют различные поверхностные ОНгруппы. В МоО₃ [5] и, по-видимому, в Со₃О₄ к ним добавляются продукты взаимодействия ионов молибдена и кобальта с кислородными вакансиями V_o^+ в SnO₂. Таким образом, только на примере SnO2 и SnO2 /Pd мы получаем один тип центров. В случае других допантов (рис.2, 3) наличие нескольких центров реакции приводит к нелинейности графиков $\ln M_G - t$.

Отдельных комментариев требуют параме-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2015. Т. 81, № 9

Рис. 3. Зависимость $\ln M_G$, *t* для пленки состава $\operatorname{SnO}_2/$ 0.2% ar.Pd + 1 % мол. MoO₃ при 200 °C в присутствии паров ацетона (*a*) и этанола (*б*) концентрацией 552 ppm.

тры t_0 , τ_a , τ_{res} , τ_{rec} , представленные в таблице. Так, время начала газовой реакции t_0 близко по величине для всех пленок и, по-видимому, определяется параметрами процесса тепломассопереноса в кювете с пленкой SnO₂/M. Они во время всех измерений были одинаковыми. Отклоне-

Значения параметров t_0 , t_a , t_{res} , t_{rec} (в с) при 200 °С для пленок SnO₂/M разного состава

Состав пленки	Газ	t_0	τ_{a}	τ_{res}	τ_{rec}
$Sn_{0.97}Sb_{0.03}O_2$	Eth*	27	580	64	118
0.07 0.00 2	Acet*	24	260	65	68
Sn _{0.97} Sb _{0.03} O ₂ /5 %ат. Pd	Eth	24	252	60	15
	Acet	22	81	59	10
Sn _{0.97} Sb _{0.03} O ₂ /5 %ат. Pt	Eth	32	168	49	143
	Acet	25	26	7	45
Sn _{0.97} Sb _{0.03} O ₂ /1 %мол. Co ₃ O ₄	Eth	9	1150	90	117
	Acet	17	2000	80	70

ние величин t_0 для пленок с Pt и Co₃O₄ вызвано большой ошибкой определения t_0 по нелинейным графикам $\ln M_G$, t.

На примере ацетона видно (таблица) влияние допантов на кинетику газовой реакции: Pt улучшает кинетику адсорбции и газовой реакции (самые малые τ_a , τ_{res}), Pd увеличивает поверхностную плотность основного реагента атомарного кислорода. Оксиды молибдена и кобальта формируют лишь универсальные центры реакций окисления, которые не обязательно селективны к изучаемым в данной работе парам.

При малых концентрациях паров ацетона над пленкой $\text{SnO}_2/\text{Co}_3\text{O}_4$ можно наблюдать линейность графиков $\ln M_G$, *t*, то есть участие в газовой реакции одного типа центров (рис. 2, *б*, 5– 10 ppm). Это, возможно, характерные для SnO_2 вакансии V_0^+ , концентрация которых уменьшилась из-за взаимодействия их с ионами кобальта. При увеличении концентрации ацетона в реакцию вступает все многообразие центров и графики $\ln M_G$, *t* становятся нелинейными.

Остается невыясненным вопрос о резком (в 10—15 раз) увеличении электропроводности газами в случае пленок $SnO_2/0.2$ % ат. Pd +1 % мол. MoO₃.

ВЫВОДЫ. Простая модель изменения электропроводности G толстой пленки SnO₂ позволяет решить две важные задачи. Первую (теоретическую) — о характере влияния условий синтеза нанокристалов SnO₂ и типа допанта на кинетику взаимодействия газа-восстановителя с их поверхностью, а также о составе активных по-

> верхностных центров. Вторую (прикладную) — о возможностях формирования в процессе синтеза как активных центров, так и динамики сенсорного отклика. Рассмотренная модель подтверждается полученными экспериментальными данными в случае пленок, в которых предположительно работает один тип центров — ионы O^- (SnO₂ и SnO₂/Pd), и не согласуется с данными для поверхностей со стандартными катализаторами окисления низкомолекулярных спиртов и кетонов (SnO₂/Pt, SnO₂/MoO₃, SnO₂/ Со₃О₄), которые активируют множество различающихся центров (например, ионы $O^{2-}, O_2^{-}, O^{-}).$

РЕЗЮМЕ. Вивчено механізм зміни електропровідності G плівок із нанокристалів SnO₂/M (M = Pd, Pt, Pd+MoO₃, Co₃O₄), синтезованих у нітратному розплаві. Характер поведінки G при взаємодії SnO₂/M з парами етанолу, бутанолу, ацетону при 200 °C можна пояснити в рамках простої моделі плівки SnO₂: плівка сформована із зерен SnO₂/M та міжзернової ділянки (здебільшого допант M), у газовій реакції переважно приймає участь один тип активних центрів SnO₂, поведінку G формує міжзернова ділянка як зона газової реакції.

Ключові слова: SnO₂, товсті плівки, газовий сенсор.

SUMMARY. The change mechanism of electroconductivity G of films based on SnO_2/M (M = Pd, Pt, Pd+MoO₃, Co₃O₄) nanocrystals, synthesized in nitrate melt has been studied. The G behavior pattern under interaction of SnO_2/M with ethanol, butanol, acetone vapor at 200 °C can be explained within the framework of simple model of SnO_2 film: film is formed of SnO_2/M grains and intergranular region (mainly dopant M), primarily one type of SnO_2 active sites take part in gas

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев reaction, G behavior is formed by intergranular region as the gas reaction zone.

Keywords: SnO₂, thick film, gas sensor.

ЛИТЕРАТУРА

- 1. Korotcenkov G. // Sensors and Actuators B. -2005. -107 (1). -P. 209—232.
- 2. Korotcenkov G., Cho B.K. // Progress in Crystal Growth. -2012. -58. -P. 167-208.
- 3. Малеваный С.М., Генкина Е.А., Панов Э.В. // Укр. хим. журн. -2003. -69, № 3. -С. 11—15.
- 4. Панов Э.В., Милованова О.И., Малеваный С.М., Генкина Е.А. // Химия, физика и технол. поверхности. -2014. -5, № 3. -С. 309—316.
- 5. Панов Э.В., Милованова О.И., Малеваный С.М. // Укр. хим. журн. -2015. -81, № 5. -С. 47—53.
- Barsan N., Koziej D., Weimar U. // Sensors and Actuators B. -2007. -121. -P. 18—35.
- 7. Мясников И.А., Сухарев В.Я., Куприянов Л.Ю. Полупроводниковые сенсоры в физико-химических исследованиях. -М.: Наука, 1991.
- 8. Анисимов О.В., Гаман В.И., Максимов В.И. и др. // Физика и техника полупроводников. -2006. -40, № 5. -С. 724—729.

Поступила 27.08.2015