Zhigang Hu, Wenbin Liu (China Univ. Mining and Technology, Xuzhou, China)

SOLVABILITY FOR A COUPLED SYSTEM
 OF FRACTIONAL DIFFERENTIAL EQUATIONS
 WITH PERIODIC BOUNDARY CONDITIONS AT RESONANCE *
 РОЗВ'ЯЗНІСТЬ ЗВ'ЯЗАНОЇ СИСТЕМИ
 ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ДРОБОВОГО ПОРЯДКУ З ПЕРІОДИЧНИМИ ГРАНИЧНИМИ УМОВАМИ ПРИ РЕЗОНАНСІ

By using the coincidence degree theory, we study the existence of solutions for a coupled system of fractional differential equations with periodic boundary conditions. A new result on the existence of solutions for above fractional boundary-value problem is obtained.

Із використанням теорії збігу степенів досліджено існування розв’язків зв'язаних систем диференціальних рівнянь дробового порядку з періодичними граничними умовами. Встановлено новий результат щодо існування розв'язків граничної задачі дробового порядку.

1. Introduction. In recent years, the fractional differential equations have received more and more attention. The fractional derivative has been occurring in many physical applications such as a nonMarkovian diffusion process with memory [1], charge transport in amorphous semiconductors [2], propagations of mechanical waves in viscoelastic media [3], etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry and material science are also described by differential equations of fractional order (see [4-9]).

Recently, boundary-value problems for fractional differential equations have been studied in many papers (see $[10-19])$. Moreover, the existence of solutions to a coupled systems of fractional differential equations have been studied by many authors (see [20-26]). But the existence of solutions for a coupled system of fractional differential equations with periodic boundary conditions at resonance has not been studied. We will fill this gap in the literature. In this paper, we consider the following periodic boundary-value problem (PBVP for short) for a coupled system of fractional differential equations given by:

$$
\begin{array}{ll}
D_{0^{+}}^{\alpha} u(t)=f\left(t, v(t), v^{\prime}(t)\right), & t \in(0,1), \\
D_{0^{+}}^{\beta} v(t)=g\left(t, u(t), u^{\prime}(t)\right), & t \in(0,1), \tag{1.1}
\end{array}
$$

$$
u(0)=u(1), \quad u^{\prime}(0)=u^{\prime}(1), \quad v(0)=v(1), \quad v^{\prime}(0)=v^{\prime}(1),
$$

where $D_{0^{+}}^{\alpha}, D_{0^{+}}^{\beta}$ are the standard Caputo fractional detivative, $1<\alpha \leq 2,1<\beta \leq 2$ and $f, g:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary notations, definitions and lemmas. In Section 3, we establish a theorem on existence of solutions for PBVP (1.1) under nonlinear growth restriction of f and g, basing on the coincidence degree theory due to Mawhin (see [27]). Finally, in Section 4, an example is given to illustrate the main result.

[^0]2. Preliminaries. In this section, we will introduce some notations, definitions and preliminary facts which are used throughout this paper.

Let X and Y be real Banach spaces and let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator with index zero, and $P: X \rightarrow X, Q: Y \rightarrow Y$ be projectors such that

$$
\begin{gathered}
\operatorname{Im} P=\operatorname{Ker} L, \quad \operatorname{Ker} Q=\operatorname{Im} L \\
X=\operatorname{Ker} L \oplus \operatorname{Ker} P, \quad Y=\operatorname{Im} L \oplus \operatorname{Im} Q
\end{gathered}
$$

It follows that

$$
\left.L\right|_{\operatorname{dom} L \cap \operatorname{Ker} P}: \operatorname{dom} L \cap \operatorname{Ker} P \rightarrow \operatorname{Im} L
$$

is invertible. We denote the inverse by K_{P}.
If Ω is an open bounded subset of X, and $\operatorname{dom} L \cap \bar{\Omega} \neq \varnothing$, the map $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. Where I is identity operator.

Lemma 2.1 [27]. Let $L: \operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator of index zero and $N: X \rightarrow$ $\rightarrow Y$ is L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied
(1) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{Ker} L)] \cap \partial \Omega \times(0,1)$;
(2) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial \Omega$;
(3) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{Ker} L}, \operatorname{Ker} L \cap \Omega, 0\right) \neq 0$, where $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{Ker} Q$. Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.

Definition 2.1. The Riemann-Liouville fractional integral operator of order $\alpha>0$ of a function x is given by

$$
I_{0^{+}}^{\alpha} x(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} x(s) d s
$$

provided that the right-hand side integral is pointwise defined on $(0,+\infty)$.
Definition 2.2. The Caputo fractional derivative of order $\alpha>0$ of a continuous function x is given by

$$
D_{0^{+}}^{\alpha} x(t)=I_{0^{+}}^{n-\alpha} \frac{d^{n} x(t)}{d t^{n}}=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-s)^{n-\alpha-1} x^{(n)}(s) d s
$$

where n is the smallest integer greater than or equal to α, provided that the right-hand side integral is pointwise defined on $(0,+\infty)$.

Lemma 2.2 [28]. Assume that $x \in C(0,1) \cap L(0,1)$ with a Caputo fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$. Then

$$
I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} x(t)=x(t)+c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1}
$$

where $c_{i} \in \mathbb{R}, i=0,1,2, \ldots, n-1$, here n is the smallest integer greater than or equal to α.

In this paper, we denote $X=C^{1}[0,1]$ with the norm $\|x\|_{X}=\max \left\{\|x\|_{\infty},\left\|x^{\prime}\right\|_{\infty}\right\}$ and $Y=$ $=C[0,1]$ with the norm $\|y\|_{Y}=\|y\|_{\infty}$, where $\|x\|_{\infty}=\max _{t \in[0,1]}|x(t)|$. Then we denote $\bar{X}=X \times$ $\times X$ with the norm $\|(u, v)\|_{\bar{X}}=\max \left\{\|u\|_{X},\|v\|_{X}\right\}$ and $\bar{Y}=Y \times Y$ with the norm $\|(x, y)\|_{\bar{Y}}=$ $=\max \left\{\|x\|_{Y},\|y\|_{Y}\right\}$ Obviously, both \bar{X} and \bar{Y} are Banach spaces.

Define the operator $L_{1}: \operatorname{dom} L \subset X \rightarrow Y$ by

$$
L_{1} u=D_{0^{+}}^{\alpha} u,
$$

where

$$
\operatorname{dom} L_{1}=\left\{u \in X \mid D_{0^{+}}^{\alpha} u(t) \in Y, u(0)=u(1), u^{\prime}(0)=u^{\prime}(1)\right\} .
$$

Define the operator L_{2} : dom $L_{2} \subset X \rightarrow Y$ by

$$
L_{2} v=D_{0^{+}}^{\beta} v
$$

where

$$
\operatorname{dom} L_{2}=\left\{v \in X \mid D_{0^{+}}^{\beta} v(t) \in Y, v(0)=v(1), v^{\prime}(0)=v^{\prime}(1)\right\} .
$$

Define the operator L : $\operatorname{dom} L \subset \bar{X} \rightarrow \bar{Y}$ by

$$
\begin{equation*}
L(u, v)=\left(L_{1} u, L_{2} v\right), \tag{2.1}
\end{equation*}
$$

where

$$
\operatorname{dom} L=\left\{(u, v) \in \bar{X} \mid u \in \operatorname{dom} L_{1}, v \in \operatorname{dom} L_{2}\right\} .
$$

Let $N: \bar{X} \rightarrow \bar{Y}$ be the Nemytski operator

$$
N(u, v)=\left(N_{1} v, N_{2} u\right),
$$

where $N_{1}: Y \rightarrow X$

$$
N_{1} v(t)=f\left(t, v(t), v^{\prime}(t)\right),
$$

and $N_{2}: Y \rightarrow X$

$$
N_{2} u(t)=g\left(t, u(t), u^{\prime}(t)\right) .
$$

Then PBVP (1.1) is equivalent to the operator equation

$$
L(u, v)=N(u, v), \quad(u, v) \in \operatorname{dom} L .
$$

3. Main result. In this section, a theorem on existence of solutions for PBVP (1.1) will be given.

Theorem 3.1. Let $f, g:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Assume that
$\left(H_{1}\right)$ there exist nonnegative functions $p_{i}, q_{i}, r_{i} \in C[0,1], i=1,2$, with

$$
\frac{\Gamma(\alpha+1) \Gamma(\beta+1)-(\alpha+1)(\beta+1)\left(Q_{1}+R_{1}\right)\left(Q_{2}+R_{2}\right)}{\Gamma(\alpha+1) \Gamma(\beta+1)}>0
$$

such that for all $(u, v) \in \mathbb{R}^{2}, t \in[0,1]$

$$
|f(t, u, v)| \leq p_{1}(t)+q_{1}(t)|u|+r_{1}(t)|v|,
$$

and

$$
|g(t, u, v)| \leq p_{2}(t)+q_{2}(t)|u|+r_{2}(t)|v|,
$$

where $P_{i}=\left\|p_{i}\right\|_{\infty}, Q_{i}=\left\|q_{i}\right\|_{\infty}, R_{i}=\left\|r_{i}\right\|_{\infty}, i=1,2$;
$\left(H_{2}\right)$ there exists a constant $B>0$ such that for all $t \in[0,1],|u|>B, v \in \mathbb{R}$ either

$$
u f(t, u, v)>0, \quad u g(t, u, v)>0
$$

or

$$
u f(t, u, v)<0, \quad u g(t, u, v)<0
$$

$\left(H_{3}\right)$ there exists a constant $D>0$ such that for every $c_{1}, c_{2} \in \mathbb{R}$ satisfying $\min \left\{c_{1}, c_{2}\right\}>D$ either

$$
c_{1} N_{1}\left(c_{2}\right)>0, \quad c_{2} N_{2}\left(c_{1}\right)>0
$$

or

$$
c_{1} N_{1}\left(c_{2}\right)<0, \quad c_{2} N_{2}\left(c_{1}\right)<0 .
$$

Then PBVP (1.1) has at least one solution.
Now, we begin with some lemmas below.
Lemma 3.1. Let L be defined by (2.1), then

$$
\begin{gather*}
\text { Ker } L=\left(\text { Ker } L_{1}, \operatorname{Ker} L_{2}\right)=\{(u, v) \in \bar{X} \mid(u, v)=(a, b), a, b \in \mathbb{R}\}, \tag{3.1}\\
\operatorname{Im} L=\left(\operatorname{Im} L_{1}, \operatorname{Im} L_{2}\right)=\left\{(x, y) \in \bar{Y} \mid T_{1}=0, T_{2}=0\right\}, \tag{3.2}
\end{gather*}
$$

where $T_{1}=\int_{0}^{1}(1-s)^{\alpha-2} x(s) d s, T_{2}=\int_{0}^{1}(1-s)^{\beta-2} y(s) d s$.
Proof. By Lemma 2.2, $L_{1} u=D_{0^{+}}^{\alpha} u(t)=0$ has solution

$$
u(t)=c_{0}+c_{1} t, \quad c_{0}, c_{1} \in \mathbb{R} .
$$

Combining with the boundary-value conditions of PBVP (1.1), one has

$$
\operatorname{Ker} L_{1}=\{u \in X \mid u=a, a \in \mathbb{R}\} .
$$

For $x \in \operatorname{Im} L_{1}$, there exists $u \in \operatorname{dom} L_{1}$ such that $x=L_{1} u \in Y$. By Lemma 2.2, we have

$$
u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} x(s) d s+c_{0}+c_{1} t
$$

Then, we obtain

$$
u^{\prime}(t)=\frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2} x(s) d s+c_{1}
$$

By conditions of PBVP (1.1), we can get that x satisfies

$$
T_{1}=\int_{0}^{1}(1-s)^{\alpha-2} x(s) d s=0 .
$$

On the other hand, suppose $x \in Y$ and satisfies $\int_{0}^{1}(1-s)^{\alpha-2} x(s) d s=0$. Let $u(t)=I_{0^{+}}^{\alpha} x(t)-$ $-\mu t$, where $\mu=\left.I_{0^{+}}^{\alpha} x(t)\right|_{t=1}$, then $u \in \operatorname{dom} L_{1}$ and $D_{0^{+}}^{\alpha} u(t)=x(t)$. So that, $x \in \operatorname{Im} L_{1}$. Then we have

$$
\operatorname{Im} L_{1}=\left\{x \in Y \mid T_{1}=0\right\} .
$$

Similarly, we can show that

$$
\begin{aligned}
& \operatorname{Ker} L_{2}=\{v \in X \mid v=b, b \in \mathbb{R}\}, \\
& \operatorname{Im} L_{2}=\left\{y \in Y \mid T_{2}=0\right\} .
\end{aligned}
$$

Lemma 3.1 is proved.
Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the linear continuous projector operators $P: \bar{X} \rightarrow \bar{X}$ and $Q: \bar{Y} \rightarrow \bar{Y}$ can be defined as

$$
\begin{aligned}
& P(u, v)=\left(P_{1} u, P_{2} v\right)=(u(0), v(0)), \\
& Q(x, y)=\left(Q_{1} x, Q_{2} y\right)=\left((\alpha-1) T_{1},(\beta-1) T_{2}\right) .
\end{aligned}
$$

Furthermore, the operator $K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{Ker} P$ can be written by

$$
K_{P}(x, y)=\left(I_{0^{+}}^{\alpha} x(t)-\mu t, I_{0^{+}}^{\beta} y(t)-\nu t\right),
$$

where $\mu=\left.I_{0^{+}}^{\alpha} x(t)\right|_{t=1}, \nu=\left.I_{0^{+}}^{\beta} y(t)\right|_{t=1}$.
Proof. Obviously, $\operatorname{Im} P=\operatorname{Ker} L$ and $P^{2}(u, v)=P(u, v)$. It follows from $(u, v)=((u, v)-$ $-P(u, v))+P(u, v)$ that $\bar{X}=\operatorname{Ker} P+\operatorname{Ker} L$. By simple calculation, we can get that $\operatorname{Ker} L \cap$ $\cap \operatorname{Ker} P=\{(0,0)\}$. Then we get

$$
\bar{X}=\operatorname{Ker} L \oplus \operatorname{Ker} P .
$$

For $(x, y) \in \bar{Y}$, we have

$$
\left.Q^{2}(x, y)=Q\left(Q_{1} x, Q_{2} y\right)\right)=\left(Q_{1}^{2} x, Q_{2}^{2} y\right) .
$$

By the definition of Q_{1}, we can get

$$
Q_{1}^{2} x=Q_{1} x \cdot(\alpha-1) \int_{0}^{1}(1-s)^{\alpha-2} d s=Q_{1} x .
$$

Similar proof can show that $Q_{2}^{2} y=Q_{2} y$. Thus, we obtain $Q^{2}(x, y)=Q(x, y)$.

Let $(x, y)=((x, y)-Q(x, y))+Q(x, y)$, where $(x, y)-Q(x, y) \in \operatorname{Ker} Q=\operatorname{Im} L, Q(x, y) \in$ $\in \operatorname{Im} Q$. It follows from $\operatorname{Ker} Q=\operatorname{Im} L$ and $Q^{2}(x, y)=Q(x, y)$ that $\operatorname{Im} Q \cap \operatorname{Im} L=\{(0,0)\}$. Then, we have

$$
\bar{Y}=\operatorname{Im} L \oplus \operatorname{Im} Q .
$$

Thus

$$
\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L .
$$

This means that L is a Fredholm operator of index zero.
Now, we will prove that K_{P} is the inverse of $\left.L\right|_{\operatorname{dom} L \cap K e r} P$. In fact, for $(x, y) \in \operatorname{Im} L$, we have

$$
\begin{equation*}
L K_{P}(x, y)=\left(D_{0^{+}}^{\alpha}\left(I_{0^{+}}^{\alpha} x-\mu t\right), D_{0^{+}}^{\beta}\left(I_{0^{+}}^{\beta} y-\nu t\right)\right)=(x, y) . \tag{3.3}
\end{equation*}
$$

Moreover, for $(u, v) \in \operatorname{dom} L \cap \operatorname{Ker} P$, we get $u(0)=0, v(0)=0$ and

$$
\begin{gathered}
K_{P} L(u, v)=\left(I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)-\left.\left\{I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)\right\}\right|_{t=1} t, I_{0^{+}}^{\beta} D_{0^{+}}^{\beta} v(t)-\left.\left\{I_{0^{+}}^{\beta} D_{0^{+}}^{\beta} v(t)\right\}\right|_{t=1} t\right)= \\
=\left(u(t)+c_{0}+c_{1} t-\left.\left\{I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)\right\}\right|_{t=1} t, v(t)+c_{0}+c_{1} t-\left.\left\{I_{0^{+}}^{\beta} D_{0^{+}}^{\beta} v(t)\right\}\right|_{t=1} t\right),
\end{gathered}
$$

which together with $u(0)=u(1)$ and $v(0)=v(1)$ yields that

$$
\begin{equation*}
K_{P} L(u, v)=(u, v) . \tag{3.4}
\end{equation*}
$$

Combining (3.3) with (3.4), we know that $K_{P}=\left(\left.L\right|_{\text {dom } L \cap K e r ~} P\right)^{-1}$.
Lemma 3.2 is proved.
Lemma 3.3. Assume $\Omega \subset \bar{X}$ is an open bounded subset such that $\operatorname{dom} L \cap \bar{\Omega} \neq \varnothing$, then N is L-compact on $\bar{\Omega}$.

Proof. By the continuity of f and g, we can get that $Q N(\bar{\Omega})$ and $K_{P}(I-Q) N(\bar{\Omega})$ are bounded. So, in view of the Arzelà-Ascoli theorem, we need only prove that $K_{P}(I-Q) N(\bar{\Omega}) \subset \bar{X}$ is equicontinuous.

From the continuity of f and g, there exist constant $A_{i}, B_{i}>0, i=1,2$, such that $\forall(u, v) \in \bar{\Omega}$

$$
\begin{array}{ll}
\left|\left(I-Q_{1}\right) N_{1} v\right| \leq A_{1}, & \left|I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\right| \leq B_{1}, \\
\left|\left(I-Q_{2}\right) N_{2} u\right| \leq A_{2}, & \left|I_{0^{+}}^{\alpha}\left(I-Q_{2}\right) N_{2} u\right| \leq B_{2} .
\end{array}
$$

Furthermore for $0 \leq t_{1}<t_{2} \leq 1,(u, v) \in \bar{\Omega}$, we have

$$
\begin{aligned}
& \left|K_{P}(I-Q) N\left(u\left(t_{2}\right), v\left(t_{2}\right)\right)-\left(K_{P}(I-Q) N\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)\right)\right|= \\
& =\left(I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{2}\right)-\mu t_{2}, I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{2}\right)-\nu t_{2}\right)- \\
& -\left(I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{1}\right)-\mu t_{1}, I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{1}\right)-\nu t_{1}\right)=
\end{aligned}
$$

$$
\begin{aligned}
&=\left(I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{1}\right)-\mu\left(t_{2}-t_{1}\right),\right. \\
&\left.I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{2}\right)-I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{1}\right)-\nu\left(t_{2}-t_{1}\right)\right),
\end{aligned}
$$

where $\mu=\left.\left\{I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v(t)\right\}\right|_{t=1}, \nu=\left.\left\{I_{0^{+}}^{\alpha}\left(I-Q_{2}\right) N_{2} u\right\}\right|_{t=1}$.
By

$$
\begin{gathered}
\left|I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{2}\right)-I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\left(t_{1}\right)-\mu\left(t_{2}-t_{1}\right)\right| \leq \\
\left.\leq \frac{1}{\Gamma(\alpha)} \right\rvert\, \int_{0}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1}\left(I-Q_{1}\right) N_{1} v(s) d s- \\
-\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1}\left(I-Q_{1}\right) N_{1} v(s) d s\left|+B_{1}\right| t_{2}-t_{1} \mid \leq \\
\leq \frac{A_{1}}{\Gamma(\alpha)}\left[\int_{0}^{t_{1}}\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1} d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} d s\right]+B_{1}\left|t_{2}-t_{1}\right|= \\
=\frac{A_{1}}{\Gamma(\alpha+1)}\left(t_{2}^{\alpha}-t_{1}^{\alpha}\right)+B_{1}\left|t_{2}-t_{1}\right|
\end{gathered}
$$

and

$$
\begin{gathered}
\left|\left(I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\right)^{\prime}\left(t_{2}\right)-\left(I_{0^{+}}^{\alpha}\left(I-Q_{1}\right) N_{1} v\right)^{\prime}\left(t_{1}\right)\right|= \\
= \\
\left.\frac{\alpha-1}{\Gamma(\alpha)} \right\rvert\, \int_{0}^{t_{2}}\left(t_{2}-s\right)^{\alpha-2}\left(I-Q_{1}\right) N_{1} v(s) d s- \\
-\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-2}\left(I-Q_{1}\right) N_{1} v(s) d s \mid \leq \\
\leq \frac{A_{1}}{\Gamma(\alpha-1)}\left[\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-2}-\left(t_{2}-s\right)^{\alpha-2} d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-2} d s\right] \leq \\
\leq \frac{A_{1}}{\Gamma(\alpha)}\left[t_{2}^{\alpha-1}-t_{1}^{\alpha-1}+2\left(t_{2}-t_{1}\right)^{\alpha-1}\right] .
\end{gathered}
$$

Similar proof can show that

$$
\left|I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{2}\right)-I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\left(t_{1}\right)-\nu\left(t_{2}-t_{1}\right)\right| \leq
$$

$$
\begin{gathered}
\leq \frac{A_{2}}{\Gamma(\beta+1)}\left(t_{2}^{\beta}-t_{1}^{\beta}\right)+B_{2}\left|t_{2}-t_{1}\right| \\
\left|\left(I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\right)^{\prime}\left(t_{2}\right)-\left(I_{0^{+}}^{\beta}\left(I-Q_{2}\right) N_{2} u\right)^{\prime}\left(t_{1}\right)\right| \leq \\
\leq \frac{A_{2}}{\Gamma(\beta)}\left[t_{2}^{\beta-1}-t_{1}^{\beta-1}+2\left(t_{2}-t_{1}\right)^{\beta-1}\right]
\end{gathered}
$$

Since $t^{\alpha}, t^{\alpha-1}, t^{\beta}$ and $t^{\beta-1}$ are uniformly continuous on $[0,1]$, we can get that $K_{P}(I-Q) N(\bar{\Omega}) \subset \bar{X}$ is equicontinuous.

Thus, we get that $K_{P}(I-Q) N: \bar{\Omega} \rightarrow \bar{X}$ is compact.
Lemma 3.3 is proved.
Lemma 3.4. Suppose $\left(H_{1}\right),\left(H_{2}\right)$ hold, then the set

$$
\Omega_{1}=\{(u, v) \in \operatorname{dom} L \backslash \operatorname{Ker} L \mid L(u, v)=\lambda N(u, v), \lambda \in(0,1)\}
$$

is bounded.
Proof. Take $(u, v) \in \Omega_{1}$, then $N(u, v) \in \operatorname{Im} L$. By (3.2), we have

$$
\begin{aligned}
& \int_{0}^{1}(1-s)^{\alpha-2} f\left(s, v(s), v^{\prime}(s)\right) d s=0 \\
& \int_{0}^{1}(1-s)^{\beta-2} g\left(s, u(s), u^{\prime}(s)\right) d s=0
\end{aligned}
$$

Then, by the integral mean value theorem, there exists constants $\xi, \eta \in(0,1)$ such that $f\left(\xi, v(\xi), v^{\prime}(\xi)\right)=$ $=0$ and $g\left(\eta, u(\eta), u^{\prime}(\eta)\right)=0$. So, from $\left(H_{2}\right)$, we get $|v(\xi)| \leq B$ and $|u(\eta)| \leq B$. Hence

$$
\begin{equation*}
|u(t)|=\left|u(\eta)+\int_{\eta}^{t} u^{\prime}(s) d s\right| \leq B+\left\|u^{\prime}\right\|_{\infty} \tag{3.5}
\end{equation*}
$$

That is

$$
\begin{equation*}
\|u\|_{\infty} \leq B+\left\|u^{\prime}\right\|_{\infty} \tag{3.6}
\end{equation*}
$$

Similar proof can show that

$$
\begin{equation*}
\|v\|_{\infty} \leq B+\left\|v^{\prime}\right\|_{\infty} \tag{3.7}
\end{equation*}
$$

By $L(u, v)=\lambda N(u, v)$, we have

$$
u(t)=\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(s, v(s), v^{\prime}(s)\right) d s+u(0)-\lambda \mu t
$$

and

$$
v(t)=\frac{\lambda}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} g\left(s, u(s), u^{\prime}(s)\right) d s+v(0)-\lambda \nu t
$$

where $\mu=\left.I_{0^{+}}^{\alpha} f\left(t, v(t), v^{\prime}(t)\right)\right|_{t=1}, \nu=\left.I_{0^{+}}^{\beta} g\left(t, u(t), u^{\prime}(t)\right)\right|_{t=1}$.
Then we obtain

$$
u^{\prime}(t)=\frac{\lambda}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2} f\left(s, v(s), v^{\prime}(s)\right) d s-\lambda \mu
$$

and

$$
v^{\prime}(t)=\frac{\lambda}{\Gamma(\beta-1)} \int_{0}^{t}(t-s)^{\beta-2} g\left(s, u(s), u^{\prime}(s)\right) d s-\lambda \nu
$$

From $\left(H_{1}\right)$ and (3.7), we get that

$$
\begin{gathered}
|\mu|=\left|I_{0^{+}}^{\alpha} f\left(t, v(t), v^{\prime}(t)\right)\right|_{t=1} \mid= \\
=\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1}\left|f\left(s, v(s), v^{\prime}(s)\right)\right| d s \leq \\
\leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1}\left[p_{1}(s)+q_{1}(s)|v(s)|+r_{1}(s)\left|v^{\prime}(s)\right|\right] d s \leq \\
\leq \frac{1}{\Gamma(\alpha)}\left[P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right)\left\|v^{\prime}\right\|_{\infty}\right] \int_{0}^{1}(t-s)^{\alpha-1} d s \leq \\
\leq \frac{1}{\Gamma(\alpha+1)}\left[P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right)\left\|v^{\prime}\right\|_{\infty}\right] .
\end{gathered}
$$

So, we have

$$
\begin{gathered}
\left\|u^{\prime}\right\|_{\infty} \leq \frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2}\left|f\left(s, v(s), v^{\prime}(s)\right)\right| d s+|\mu| \leq \\
\leq \frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2}\left[p_{1}(s)+q_{1}(s)|v(s)|+r_{1}(s)\left|v^{\prime}(s)\right|\right] d s+|\mu| \leq \\
\leq \frac{1}{\Gamma(\alpha-1)}\left[P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right)\left\|v^{\prime}\right\|_{\infty}\right] \int_{0}^{t}(t-s)^{\alpha-2} d s+|\mu| \leq
\end{gathered}
$$

$$
\begin{gather*}
\leq\left(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha+1)}\right)\left[P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right)\left\|v^{\prime}\right\|_{\infty}\right]= \\
=\frac{\alpha+1}{\Gamma(\alpha+1)}\left[P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right)\left\|v^{\prime}\right\|_{\infty}\right] \tag{3.8}
\end{gather*}
$$

Similarly, we can get

$$
\begin{equation*}
\left\|v^{\prime}\right\|_{\infty} \leq \frac{\beta+1}{\Gamma(\beta+1)}\left[P_{2}+Q_{2} B+\left(Q_{2}+R_{2}\right)\left\|u^{\prime}\right\|_{\infty}\right] . \tag{3.9}
\end{equation*}
$$

Together with (3.8), (3.9), we have

$$
\begin{gathered}
\left\|u^{\prime}\right\|_{\infty} \leq \\
\leq \frac{\alpha+1}{\Gamma(\alpha+1)}\left\{P_{1}+Q_{1} B+\left(Q_{1}+R_{1}\right) \frac{\beta+1}{\Gamma(\beta+1)}\left[P_{2}+Q_{2} B+\left(Q_{2}+R_{2}\right)\left\|u^{\prime}\right\|_{\infty}\right]\right\} .
\end{gathered}
$$

Thus, from $\frac{\Gamma(\alpha+1) \Gamma(\beta+1)-(\alpha+1)(\beta+1)\left(Q_{1}+R_{1}\right)\left(Q_{2}+R_{2}\right)}{\Gamma(\alpha+1) \Gamma(\beta+1)}>0$ and (3.9), we obtain that

$$
\left\|u^{\prime}\right\|_{\infty} \leq \frac{(\alpha+1)\left[\Gamma(\beta+1)\left(P_{1}+Q_{1} B\right)+(\beta+1)\left(Q_{1}+R_{1}\right)\left(P_{2}+Q_{2} B\right)\right]}{\Gamma(\alpha+1) \Gamma(\beta+1)-(\alpha+1)(\beta+1)\left(Q_{1}+R_{1}\right)\left(Q_{2}+R_{2}\right)}:=M_{1}
$$

and

$$
\left\|v^{\prime}\right\|_{\infty} \leq \frac{\beta+1}{\Gamma(\beta+1)}\left[P_{2}+Q_{2} B+\left(Q_{2}+R_{2}\right) M_{1}\right]:=M_{2} .
$$

Together with (3.6), (3.7), we get

$$
\|(u, v)\|_{\bar{X}} \leq \max \left\{M_{1}+B, M_{2}+B\right\}:=M .
$$

So Ω_{1} is bounded.
Lemma 3.4 is proved.
Lemma 3.5. Suppose $\left(H_{3}\right)$ holds, then the set

$$
\Omega_{2}=\{(u, v) \mid(u, v) \in \operatorname{Ker} L, N(u, v) \in \operatorname{Im} L\}
$$

is bounded.
Proof. For $(u, v) \in \Omega_{2}$, we have $(u, v)=\left(c_{1}, c_{2}\right), c_{1}, c_{2} \in \mathbb{R}$. Then from $N(u, v) \in \operatorname{Im} L$, we obtain

$$
\begin{aligned}
& \int_{0}^{1}(1-s)^{\alpha-2} f\left(s, c_{2}, 0\right) d s=0 \\
& \int_{0}^{1}(1-s)^{\beta-2} g\left(s, c_{1}, 0\right) d s=0
\end{aligned}
$$

which together with $\left(H_{3}\right)$ implies $\left|c_{1}\right|,\left|c_{2}\right| \leq D$. Thus, we get

$$
\|(u, v)\|_{\bar{X}} \leq D
$$

Hence, Ω_{2} is bounded.
Lemma 3.5 is proved.
Lemma 3.6. Suppose the first part of $\left(\mathrm{H}_{3}\right)$ holds, then the set

$$
\Omega_{3}=\{(u, v) \in \operatorname{Ker} L \mid \lambda(u, v)+(1-\lambda) Q N(u, v)=(0,0), \lambda \in[0,1]\}
$$

is bounded.
Proof. For $(u, v) \in \Omega_{3}$, we have $(u, v)=\left(c_{1}, c_{2}\right), c_{1}, c_{2} \in \mathbb{R}$ and

$$
\begin{align*}
& \lambda c_{1}+(1-\lambda)(\alpha-1) \int_{0}^{1}(1-s)^{\alpha-2} f\left(s, c_{2}, 0\right) d s=0 \tag{3.10}\\
& \lambda c_{2}+(1-\lambda)(\beta-1) \int_{0}^{1}(1-s)^{\beta-2} g\left(s, c_{1}, 0\right) d s=0 \tag{3.11}
\end{align*}
$$

If $\lambda=0$, then $\left|c_{1}\right|,\left|c_{2}\right| \leq D$ because of the first part of $\left(H_{3}\right)$. If $\lambda=1$, then $c_{1}=c_{2}=0$. For $\lambda \in(0,1]$, we can obtain $\left|c_{1}\right|,\left|c_{2}\right| \leq D$. Otherwise, if $\left|c_{1}\right|$ or $\left|c_{2}\right|>D$, in view of the first part of $\left(H_{3}\right)$, one has

$$
\lambda c_{1}^{2}+(1-\lambda)(\alpha-1) \int_{0}^{1}(1-s)^{\alpha-2} c_{1} f\left(s, c_{2}, 0\right) d s>0
$$

or

$$
\lambda c_{2}^{2}+(1-\lambda)(\beta-1) \int_{0}^{1}(1-s)^{\beta-2} c_{2} g\left(s, c_{1}, 0\right) d s>0
$$

which contradict to (3.10) or (3.11). Therefore, Ω_{3} is bounded.
Lemma 3.6 is proved.
Remark 3.1. If the second part of $\left(H_{3}\right)$ holds, then the set

$$
\Omega_{3}^{\prime}=\{(u, v) \in \operatorname{Ker} L \mid-\lambda(u, v)+(1-\lambda) Q N(u, v)=(0,0), \lambda \in[0,1]\}
$$

is bounded.
Proof of Theorem 3.1. Set $\Omega=\left\{(u, v) \in \bar{X}\| \|(u, v) \|_{\bar{X}}<\max \{M, D\}+1\right\}$. It follows from Lemmas 3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on $\bar{\Omega}$. By Lemmas 3.4 and 3.5, we get that the following two conditions are satisfied:
(1) $L(u, v) \neq \lambda N(u, v)$ for every $((u, v), \lambda) \in[(\operatorname{dom} L \backslash \operatorname{Ker} L) \cap \partial \Omega] \times(0,1)$;
(2) $N x \notin \operatorname{Im} L$ for every $(u, v) \in \operatorname{Ker} L \cap \partial \Omega$.

Take

$$
H((u, v), \lambda)= \pm \lambda(u, v)+(1-\lambda) Q N(u, v) .
$$

According to Lemma 3.6 (or Remark 3.1), we know that $H((u, v), \lambda) \neq 0$ for $(u, v) \in \operatorname{Ker} L \cap \partial \Omega$. Therefore

$$
\begin{aligned}
& \operatorname{deg}\left(\left.Q N\right|_{\text {Ker } L}, \Omega \cap \operatorname{Ker} L,(0,0)\right)=\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{Ker} L,(0,0))= \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{Ker} L,(0,0))=\operatorname{deg}(\pm I, \Omega \cap \operatorname{Ker} L,(0,0)) \neq 0 .
\end{aligned}
$$

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that $L(u, v)=$ $=N(u, v)$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$. Therefore PBVP (1.1) has at least one solution.

Theorem 3.1 is proved.

4. Example.

Example 4.1. Consider the following PBVP:

$$
\begin{align*}
& D_{0^{+}}^{\frac{3}{2}} u(t)=\frac{1}{16}[v(t)-10]+\frac{t^{2}}{16} e^{-\left|v^{\prime}(t)\right|}, \quad t \in[0,1], \\
& D_{0^{+}}^{\frac{5}{4}} v(t)=\frac{1}{12}[u(t)-8]+\frac{t^{3}}{12} \sin ^{2}\left(u^{\prime}(t)\right), \quad t \in[0,1], \tag{4.1}\\
& u(0)=u(1), \quad u^{\prime}(0)=u^{\prime}(1), \quad v(0)=v(1), \quad v^{\prime}(0)=v^{\prime}(1) .
\end{align*}
$$

Choose $p_{1}(t)=\frac{11}{16}, p_{2}(t)=\frac{3}{4}, q_{1}(t)=\frac{1}{16}, q_{2}(t)=\frac{1}{12}, r_{1}(t)=r_{2}(t)=0, B=D=10$.
By simple calculation, we can get that $\left(H_{1}\right),\left(H_{2}\right)$ and the first part of $\left(H_{3}\right)$ hold.
By Theorem 3.1, we obtain that the problem PBVP (4.1) has at least one solution.

1. Metzler R., Klafter J. boundary-value problems for fractional diffusion equations // Phys. A. - 2000. - 278. P. $107-125$.
2. Scher H., Montroll E. Anomalous transit-time dispersion in amorphous solids // Phys. Rev. B. - 1975. - 12. P. 2455-2477.
3. Mainardi F. Fractional diffusive waves in viscoelastic solids // Nonlinear Waves in Solids / Eds J. L. Wegner, F. R. Norwood. - Fairfield, 1995. - P. 93-97.
4. Diethelm K., Freed A. D. On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity // Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties / Eds F. Keil, W. Mackens, H. Voss, J. Werther. - Heidelberg: Springer-Verlag, 1999. - P. 217-224.
5. Gaul L., Klein P., Kempfle S. Damping description involving fractional operators // Mech. Syst. Signal Process. 1991. - 5. - P. 81-88.
6. Glockle W. G., Nonnenmacher T. F. A fractional calculus approach of self-similar protein dynamics // Biophys. J. 1995. - 68. - P. 46-53.
7. Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics // Fractals and Fractional Calculus in Continuum Mechanics / Eds A. Carpinteri, F. Mainardi. - Wien: Springer-Verlag, 1997. - P. 291 348.
8. Metzler F., Schick W., Kilian H. G., Nonnenmacher T. F. Relaxation in filled polymers: A fractional calculus approach // J. Chem. Phys. - 1995. - 103. - P. 7180-7186.
9. Oldham K. B., Spanier J. The fractional calculus. - New York; London: Acad. Press, 1974.
10. Agarwal R. P., O'Regan D., Stanek S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations // J. Math. Anal. and Appl. - 2010. - 371. - P. 57-68.
11. Bai Z. Positive solutions for boundary-value problem of nonlinear fractional differential equation // J. Math. Anal. and Appl. - 2005. - 311. - P. 495-505.
12. Kaufmann E. R., Mboumi E. Positive solutions of a boundary-value problem for a nonlinear fractional differential equation // Electron. J. Qual. Theory Different. Equat. - 2008. - 3. - P. 1-11.
13. Jafari H., Gejji V. D. Positive solutions of nonlinear fractional boundary-value problems using Adomian decomposition method // Appl. Math. and Comput. - 2006. - 180. - P. 700-706.
14. Benchohra M., Hamani S., Ntouyas S. K. boundary-value problems for differential equations with fractional order and nonlocal conditions // Nonlinear Anal. - 2009. - 71. - P. 2391-2396.
15. Liang S., Zhang J. Positive solutions for boundary-value problems of nonlinear fractional differential equation // Nonlinear Anal. - 2009. - 71. - P. 5545-5550.
16. Zhang S. Positive solutions for boundary-value problems of nonlinear fractional differential equations // Electron. J. Different. Equat. - 2006. - 36. - P. 1-12.
17. Kosmatov N. A boundary-value problem of fractional order at resonance // Electron. J. Different. Equat. - 2010. 135. - P. 1-10.
18. Wei Z., Dong W., Che J. Periodic boundary-value problems for fractional differential equations involving a RiemannCLiouville fractional derivative // Nonlinear Anal. - 2010. - 73. - P. 3232-3238.
19. Jiang W. The existence of solutions to boundary-value problems of fractional differential equations at resonance // Nonlinear Anal. - 2011. - 74. - P. 1987-1994.
20. Su X. boundary-value problem for a coupled system of nonlinear fractional differential equations // Appl. Math. Lett. - 2009. - 22. - P. 64-69.
21. Bai C., Fang J. The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations // Appl. Math. and Comput. - 2004. - 150. - P. 611-621.
22. Ahmad B., Alsaedi A. Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations // Fixed Point Theory and Appl. - 2010. - Article ID 364560. - $\mathbf{1 7}$.
23. Bashir Ahmad, Juan J. Nieto. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions // Comput. Math. and Appl. - 2009. - 58. - P. 1838-1843.
24. Rehman M., Khan R. A note on boundary-value problems for a coupled system of fractional differential equations // Comput. Math. and Appl. - 2011. - 61. - P. 2630-2637.
25. Su X. Existence of solution of boundary-value problem for coupled system of fractional differential equations // Eng. Math. - 2009. - 26. - P. 134-137.
26. Yang W. Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions // Comput. Math. and Appl. - 2012. - 63. - P. 288-297.
27. Mawhin J. Topological degree methods in nonlinear boundary-value problems // NSFCBMS Reg. Conf. Ser. Math. - Providence, RI: Amer. Math. Soc., 1979.
28. Lakshmikantham V., Leela S., Vasundhara Devi J. Theory of fractional dynamic systems. - Cambridge: Cambridge Acad. Publ., 2009.

[^0]: * This research was supported by the Fundamental Research Funds for the Central Universities (Project 2013QNA33).

