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ON INVARIANTS OF ROOT SUBGROUPS
OF FINITE CLASSICAL GROUPS*

ITPO IHBAPIAHTH KOPEHEBUX IIATI'PYII
CKIHYEHHUX KJTACUYHHUX I'PYII

We show that invariant fields F,(X1, ..., X,,) are purely transcendental over F,, if G are root subgroups of finite classical
groups. The key step is to find good similar groups of our groups. Moreover, the invariant rings of the root subgroups of
special linear groups are shown to be polynomial rings, and their corresponding Poincaré series are presented.

IMoxasano, mwo iuBapiantHi momst Fy(X1,.. ., Xn)G € YHCTO TpaHCUeHIeHTHUMH Hax Fy, skmo G — KopeHeBi miarpynu
CKIHYEHHHX KJIACHYHHX Ipy1. KIlto4oBUM MiclieM TOBECHHS € 3HAXO/PKSHHS TapHUX IOAI0OHNX IpyH JUIs HAamuX rpymn. Kpim
TOTO, TOKA3aHO, 110 iHBapiaHTHI KUIBIS KOPEHEBUX HIATPYH CIEIiajJbHUX JTIHIHHUX TPYI € MOJiHOMIaJbHUMH KiJIbLSMHU.
Takox HaBeneHo BiamoBiaHi psaau [lyankape.

1. Introduction. Let F|, be a finite field with charF, = p, and GL(n, F,) be the general linear
group. For any T = (t;;) € GL(n, F,), it induces an F-linear action o7 on the rational function
field F,,(X1,...,X,) defined by

or(f(X1,..., X)) = flop(X1),...,01(Xp))
for all f(Xy,...,X,) € Fy(Xa1,...,X,), where
or(X) =t X1 +tipXo+ ... +tinXn, i=1,2...,n.
For a group G < GL(n, F,), Noether’s problem asks whether the rational invariant field
Fy(X1,.... Xp)9 ={f € Fy(X1,...,Xpn): op(f) = f forall T € G}

is purely transcendental over F.

When G = GL(n, Fy), Dickson [1] gave an affirmative answer by giving the explicit transcen-
dental bases. Chu [6] considered the invariant fields of finite orthogonal groups and obtained similar
results for n = 2, 3. Cohen [7] showed the result is true when n = 4, and finally the general case
was settled by Carlisle and Kropholler [8]. But they all assumed that the characteristic of Fj, is odd.
The case of characteristic two was settled by Rajaei [12] using quadratic form language and by Tang
and Wan [14] using matrix methods. Relatively recently, Chu [10] gave a unified treat on finding the
transcendental bases of the invariant fields of some finite classical groups of the form

Ga, ={Q € GL(n, F,): Q' AQ” = A},

where A € GL(n, Fy;) and p is an automorphism of Fj,.

In the paper, we consider the root subgroups of finite classical groups by giving explicit transcen-
dental bases. The key of our method is to find good similar groups of root subgroups and consequently
obtain the explicit transcendental bases through studying the similar groups.
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Based on our results on the invariant fields of root subgroups of the special linear groups, we
show that the invariant rings of root subgroups of the special linear groups are polynomial rings
and consequently derive the Poincaré series of these invariant rings. In the modular case, examples
of groups whose invariant rings are polynomial rings are, to name a few, the general and special
linear groups GL(n, Fy) and SL(n, Fy,) [1], the group of unipotent upper triangular matrices G <
< GL(n, Fy) [5], the orthogonal and unitary groups O(n, K, S) and U(n, K, H) for n < 3 and
n < 2, respectively [4], and the complex reflection groups Gag and (G3; of Shephard and Todd [2].
Also, the root subgroup of the special linear group is such an example.

Let us recall the definitions of the root subgroups of classical groups [11]. In these definitions,
denote by K an arbitrary field.

The root subgroup of the special linear group SL(n, K) is the subgroup )Z'ij = {Tij(c): ce K}
(¢ # j) or its conjugate subgroup in GL(n, K), where T;;(c) = I+cE;; and E;j is the (n x n)-matrix
with the (7, j)-entry 1 and other entries 0. We denote the root subgroup Pil)N(ijP of SL(n, K) by
XijJD with P € GL(TL, K)

Assume that K has an involutive automorphism ¢: a — a. The unitary group U(n, K, H) is
defined to be the group {A € GL(n,K): AHA' = H}, where

0 I® 0
H=|-1" 0 0
0 0 H,

is the congruence normal form of the nonsingular Hermitian matrix and Hy € GL(n —2v, K) is a
definite diagonal matrix.
The long root subgroup of U(n, K, H) is the subgroup

T,={l+ Hu'su: s € TrK},

where u is a fixed n-dimensional row vector satisfying uH@' = H and TrK = {a + a: a € K}.
And the short root subgroup of U(n, K, H) is

Tuw = {I + Hw'au+ H(au)w: a € K},

where u, w are noncollinear n-dimensional row vectors satisfying uH@' = wHw' = uH®@' = 0.
Let charK # 2. The orthogonal group O(n, K, S) is defined to be the group {A € GL(n,K):
ASA' = S}, where

o I» 0
S=|1» 0 0
0 0 A

is the congruence normal form of the nonsingular symmetric matrix and A € GL(n — 2v, K) is a
definite symmetric matrix. The long root subgroup of O(n, K, S) is

Yuw = {I + Sw'au — Sav'w: a € K},

where u, w are noncollinear n-dimensional row vectors satisfying uSu’ = wSw' = uSw’ = 0. The
element of Y, ,, is also called an orthogonal 2-transvection. The short root subgroup of O(n, K, S)
is
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?u,w = {I + Sw'au — Sav'(w + Q(w)au): a € K},

where u, w are noncollinear n-dimensional row vectors satisfying uSu' = uSw’ = 0 and wSw’' =
= 2Q(w) # 0, Q is a quadratic form on the n-dimensional vector space over K. For the definitions of
the long root subgroups and short root subgroups of symplectic groups the reader is referred to [11].

2. Invariant fields of root subgroups of the special linear groups over finite fields. In this
section, we give the explicit transcendental bases of invariant fields of root subgroups of the special
linear groups over finite fields. First of all, we prove a lemma which is very useful in the paper.

Lemma 2.1. Let K[Xy,...,X,] be the polynomial ring over an arbitrary field K. Assume that
fi,...,fn € K[X1,...,X,] are algebraically independent over K, then for any P = (p;;) €
€ GL(n,K), op(f1),...,0p(fn) € K[X1,...,X,] are algebraically independent over K.

Proof. Since for any P € GL(n, K),

dop(f1(X1,..., X)) dop(fi(X1,..., X))
0X1 0X,,
det —
aO'P(fn(Xla--~aXn)) aO'P(fn(Xla---aXn))
0X1 0X,
dfi (ZpuXi, e me’Xi> of1 <ZP11‘X¢; e aniXi>
i=1 i=1 i=1 i=1
0X1 0X,,
= det : : =
Ofn (ZPuXi, oo aniXi> Ofn (Zpuxz‘, o ,me'Xi>
i=1 i=1 i=1 i=1
0X1 0X,,
pinfui ... Pinf1i
; ; fir oo S
= det : : =det | : o | det(P) =
- " fnl o fnn
Zpilfm' mefm‘
i=1 i=1
afl(X17"'aXn) 8f1(X17"'7Xn)
0X1 00X,
= det : : det(P) # 0,
Ofn(X1,...,Xpn) Ofn(X1,..., Xn)
0X1 0X,
(Y1,....Y, n
where f;; = afz(gy’") if weletY; = Zlﬂ paX;. It follows that op(f1),...,o0p(fn) €
7 -

€ K[X;,...,X,] are algebraically independent over K.
Lemma 2.1 is proved.
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Now we pay attention to discussing the root subgroup X ;, p of the special linear group. For
convenience, we set 19 > jo.

Theorem 2.1. Let f; = X, for 1 <i <mn,i# i, fi, = XiOX;f’O*l - Xfo and g; = op-1(f;) for
1 <i < n. Then we have Fy(X, ... , X)) Niodo. P = Fy(g1,92,- -, 9n)-

Proof. 1t is clear that

ofi )
det < #0,
an 1<i,j<n

whence g1, g2, . . ., gn are algebraically independent over F, by Lemma 2.1.

Suppose that Fy(X,...,X,) is Galois over Fy(fi,..., fn) with Galois group G;. We claim
that G; = )Z',-Ojo. The inclusion Xz‘ojo C G is trivial. Conversely, for any Q = (¢;;) € G1, the
assumption og leaves fi invariant implies that g;; = 1 and ¢12 = ... = q1,, = 0. Similarly, we
know that g;; = 1 and ¢;; = 0, for 1 <7 # j < n and ¢ # 4g. Furthermore, o leaves f;, invariant,

-1

ie., (ZZ=1 QiOka>(Z::1 quka)q — Z::1 Giok X} = Xio)f}]oil — X!, which shows that
Qivio = 1, Giojo 18 arbitrary and g;,; = 0 for j # 49, jo. Hence G1 C X, j,, and this proves the claim.

Let Fy (X1, ..., X,) be Galois over Fy(g1, ..., gn) wWith Galois group G. To prove the theorem,
it suffices to prove that X; ;o p = Go. Forany Q = P~'TP € X, ;o p with T € )?iojm the fact o
leaves fi,..., f, invariant implies that o leaves g1, ..., g, invariant. Consequently, X; ;, p C Ga.
For the inverse inclusion, since for every Q) € Go, o leaves g1, ..., g, invariant, i.e., 0Q(g;) = ¢;
and opgp-1(fi) = fi(1 < i < n), we conclude that PQP~! € )?iojo by the previous claim. Hence,
Q € Xijo,p and X, p C Ga, as required.

Theorem 2.1 is proved.

Remark 2.1. (1) Let us present two examples to understand Theorem 2.1. When P = I,
Xigjor = Xigjo- Then Fy(X1, ..., X,) ool = Fy(Xy,..., X;XI " = X ... X,); Assume that
P = (pij) € GL(3,F,) and P~ = (r;;). By Theorem 2.1, we know that F, (X, X2, X3)%21.F =
= Fy(rii X1 +r12X2 +113X3, (ro1 X1 + 122 X2 + 193 X3) (r11. X1 + r12Xo +113X3)47 1 — (ra1 X1 +

+ 1rooXo + 193X3)9, 131 X1 + r32X2 + 133X3).

(2) For any two root subgroups X, p, and X, p, with 1 < ig # jo < n, if

Fy(X1,..., Xp)Nioiorr = Fy(hy,ha,... hy), then Fy(Xy,...,X,)%0ior = F(op-1(hy),...
e ,O'T—l(hn)) with P, = P|T.

(3) More generally, if a group G < GL(n, K) satisfies G = Q@Q‘l with @) a fixed inverse
(n x n)-matrix, then the transcendental basis of the invariant field of G reduces a transcendental basis
of the invariant field of our group G.

4) Ifwelet f; = X; for1 <i<mn,i £ 1, fio = H . (cXj, + Xi,) and g; = O'P—lfi for
C
1 < ¢ < n, then following arguments similar to Theorem 2.1 \(zlve can prove that g1, ..., g, form a

second transcendental basis of Fy (X1, ..., Xn)XiOJ'O*P over Fy.

3. Invariant fields of root subgroups of finite unitary, orthogonal and symplectic groups. In
this section, we begin with discussing the long root subgroups of finite unitary groups. Let us define
polynomials
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2k+1

Puo=(X,...X)H| = 3 myxx® k=0,1,....
ngkﬂ 1<i,j<n

Before we prove the main result on the long root subgroup of U(n, K, H), we need the following
lemmas.

Lemma 3.1 [10]. For Q € GL(n, F,), the following statements are equivalent:

() Q € U(n, Fy, H);

(2) oq fixes Py, for all k;

(3) oq fixes Py, for some k > 1.

Lemma 3.2 [3]. If X and Y are (m x n)-matrices with rank m, then there exists a unitary
matrix U € U(n, K, H) such that X = UY if and only if XHX' = YHY".

Remark 3.1. The analogues of Lemmas 3.1, 3.2 for orthogonal and symplectic groups are also
true (see [3, 10]).

Lemma 3.3 [3]. Any unitary transvection in U(n, K, H) can be represented as I + Hu'su,
where uHu' = 0 and § = s. And any unitary transvection is unitary similar to the normal form

K 1w , (3.1)

where

R'I+HusuyR=| K IW¥ : (3.2)

where

and the matrix R is independent on s. Let Tu be the group consisting of all the matrices of the
form (3.2). Then we have that T}, = RT,R~! and T}, is the similar group of T}, for which we are
searching.
3 -1
Lemma 3.4. Let f = Zlgmgn hij XiXE, oy = Xy X{7 = X2, and fi = X, for all

1<i<n,i#2,v+ 1. Then we have Fq(Xl,...,Xn)i‘ = F,(f1, fo,---, fn)-
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Proof. 1t is trivial that fi, fo, ..., f, are algebraically independent over Fj, by the fact

Afi >
det( # 0.
9Xj /) 1<ij<n

Suppose that (X7, ..., X)) is Galois over Fy(f1,..., f,) with Galois group G. We only need
to prove that G = T, The inclusion T}, C G is obvious. Conversely, for any () € G, one can easily
conclude that p;; = 1 and p;; =0 (1 <4,j < n,i# 2,v+ 1,i # j) from the fact that o leaves f;
(1<i<n, i#2,v+1).

Moreover, o leaves f, 11 invariant, i.e., (p,4+1,1X1 + ... —|—py+1,an)Xf_1 — (P10 X1+ ...
ot Pt X)) = XVHXf_l — X!, then we know that p, 1 j =0 for2 < j <n,j #v+1and
Pv+1u+1 = 1. According to Lemma 3.1, the fact o leaves f invariant shows that Q € U(n, Fy, H),
which implies that poy = 1, pa; = 0 (j # 2) and py41,1 = Py+1,1. Therefore, we have that () € Tu
and G = fu

Lemma 3.4 is proved.

From Lemmas 3.1, 3.3 and 3.4, we deduce the following theorem.

Theorem 3.1. Let f;, 1 < i < n, be as in Lemma 3.4 and g; = Rf; for 1 < i < n. Then we
have Fy(Xq,... , X)) T = Fy(91,92,---,9n)-

Proof. By Lemmas 2.1 and 3.4, we know that g1, ..., g, are algebraically independent over F7,.

Suppose that Fy (X7, ..., X,) is Galois over Fy(g1, ..., g,) with Galois group G. According to
Lemmas 3.3 and 3.4, we have that G = T, by using the same arguments as in Theorem 2.1, and the
proof of this theorem is complete.

Now we come to the short root subgroup T3, ,, of U(n, K, H). By the normal form of T, ,,, we
obtain the similar group of 717, .

Lemma 3.5. The element I + Hw'au + H(au)'w of the short root subgroup T, ., is unitary
similar to the normal form

T7W)
K W) , 3.3)
J(n—2v)
where
0 a
K=1]la 0
0(1/72)

Proof. We represent the matrix I + Hw'au + H (au)'w as the following form:

0 1\/au
I+ H((au), @) (1 0><w>' (3.4)

Observe that
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from the conditon that uHu' = wHw' = uHw' = 0. Clearly,

<au> (a o 0 ... 0>
= Ry. 3.5)
w o 1 0 ... O

Substituting (3.5) into (3.4), we get

7w
Ro(I + Hwau+ H(@u)w)Ry' = | K I¥ :
J(n—2v)
where
0 a
K=|a o

0v—2)

Lemma 3.5 is proved.

Remark 3.2. In Lemma 3.5, it is proved that there exists a unitary matrix Ry such that Ry (I +
+ Hw'au+ H(@u)'w)Ry* has the form (3.3). We remark that the matrix Ry here is independent on
the choice of a.

Theorem 3.2. Let fop1 = Xp1Xg ' — X0, fosz = Y hyXeX? and f; = X; for all
1<i<n,i#v+l,v+2. Letg; = Ralfi with 1 < i < n. Then we have that Fy(X1, ... , X)) Tww =
= Fq(917927 ey Gn)-

Proof. Similar to the proof of Theorem 3.1.

In the following, let us pay attention to the discussion of the long root subgroups and the short
root subgroups of the finite orthogonal groups.

Lemma 3.6 [3]. Any orthogonal 2-transvection is orthogonal similar to the following normal
form:

K I® , (3.6)

where

ov—2)
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Lemma 3.7. The element I + Sw'au — Sau'(w + Q(w)au) of the short root subgroup }A’u,w is
orthogonal similar to the normal form

K,

7(v=2)
) (3.7
K, K3

J(n—v=2)

where

( 0 —aQ(w)) (1 a) ( 1 0>
Ky = ; Ky = : and K3 = _
—aQ(w) —a’Q(w) 0 1 —a 1

Proof. We prove the normal form of I + Sw'au — Sav'(w + Q(w)au) through considering the
normal form of its transpose matrix. Note that I + au/wS — (aw’ + a>Q(w)u')uS can be written as

s ( , /) <0 —a ><w> g
7 a —a’Qw))\u .
Let

Then we have

Moreover,

from the assumption that uSu’ = uSw’ = 0 and wSw’ = 2Q(w). So by Remark 3.1 there exists an
orthogonal matrix Rg such that

Consequently, we know that

. 0 —a w
I+ (w ,u) (a —aQQ(w)> <u> S
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where

. ( 0 —aQ(w) ) . (1 ()) ) (1 —a)
K = L K= S ad Kj= |
—aQ(w) —a*Q(w) a 1 0 1

Taking the transpose of both sides of equality (3.8), then we have that I +Sw’au— Sau' (w+Q(w)au)
is orthogonal similar to

K,
T(v=2)
K K3
J(n—v=2)
as desired.

Lemma 3.7 is proved.
By Lemma 3.6, there exists an orthogonal matrix R; such that

7w
RN+ Sw'au — Sau'w)Ry = | K IW ,
J(n—2v)
where
0 a
K=]|—-a 0

ov—2)

Using similar arguments as in the proof of Theorem 3.1, we get the following theorem. The details
are omitted.

Theorem 3.3. (1) Let fyr1 = XonX§ = X200, foro = D5 X X! and f; = X;
forall 1 < i < n,i # v+ 1,v+ 2. Assume that g; = Ryif; with 1 < i < n. Then we have
Fy(Xq,..., Xp)Ymw = Fy(g1, 92, -+, Gn)-

) Let fi = X1 X3 " = X{, fup1 = Xpn X3 ' — X2, fore = ZS@X@'X;I and f; = X;
foralll <i<n-—1,i# 1, v+ 1,v+ 2. Assume that g; = R;lfi with 1 < i < n. Then we have
Fy(Xq,..., X)) = Fy(g1, 92, -, Gn)-

Remark 3.3. Note that the techniques we use can be applied to the case of the root subgroups
of finite sympletic groups.

4. Invariant rings of root subgroups of the special linear groups over finite fields and
Poincaré series. In the section, we show that the invariant rings of the root subgroups X ;, p
of the special linear groups over finite fields are polynomial rings, and we give the Poincaré¢ series of
the invariant rings F,[X1, . .., X,]¥ioio.?.

Here is an algorithm to check if the invariant ring is a polynomial ring.

Lemma 4.1 [9]. Let I be the invariant ring of a finite group G < GL(n, K) over an arbitrary
field K and f1,..., fn € I be homogeneous invariants of degrees di,...,d,. Then the following
Statements are equivalent:
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() I =K[f1,..., fnl; .
2) f1, fo,..., fn are algebraically independent over K and H . d; = |Gl.
1=
Theorem 4.1. Let g1,...,9, and G1,...,Gn be as in Theorem 2.1 and in Remark 2.1. Then

Fq[Xla .. -aXn]XiojO’P = Fq[glnga o 7gn} = Fq[glag%' .. agn]

Proof. This assertion follows form Lemma 4.1 and the fact
n n
| Xiojo.p| = | [ deg(g:) = [ [ deg(@) = ¢
i=1 i=1

Theorem 4.1 is proved.
Let M = K|z, ..., x,] be a polynomial ring over an arbitrary field with deg(x;) = k;. Then the

1
Poincaré series of M is equal to n —— (see [13], Ch. 16.1, Ch. 7.1). From this assertion and
11—tk
1= — (3

Theorem 4.1, we have the following theorem.

Theorem 4.2. The Poincaré series of the invariant ring Fo[ X1, ... , X, ] X0 of the root sub-

group X, p is equal to
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