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FIXED-POINT THEOREMS AND COMMON FIXED-POINT THEOREMS
ON SPACES EQUIPPED WITH VECTOR-VALUED METRICS

ТЕОРЕМИ ПРО НЕРУХОМУ ТОЧКУ ТА СПIЛЬНУ НЕРУХОМУ ТОЧКУ
НА ПРОСТОРАХ IЗ ВЕКТОРНОЗНАЧНОЮ МЕТРИКОЮ

We show the existence of a fixed point and common fixed point for single-valued generalized contractions on spaces
equipped with vector-valued metrics.

Показано iснування нерухомої точки та спiльної нерухомої точки для однозначних узагальнених стискувальних
вiдображень на просторах iз векторнозначною метрикою.

1. Introduction. The classical Banach contraction principle was extended for contraction mappings
on spaces endowed with vector-valued metrics by Perov in 1964 [4]. Filip et al. [2] studied fixed
point property of a self mapping on generalized metric space (X, d) and generalized the results
of Perov. In this paper, Theorem 2.1 of [2] is generalized, and local fixed point property of a self
mapping on generalized metric space (X, d) is considered. Finally, common fixed point property of
two single-valued self mappings on generalized metric space (X, d) is studied.

Throughout this paper C,R and N are the sets of all complex, real and natural numbers, respec-
tively.

Let (V,�) be an ordered Banach space. The cone V+ = {v ∈ V : θ � v}, where θ is the
zero-vector of V, satisfies the usual properties

1) V+ ∩ −V+ = {θ};
2) V+ + V+ ⊂ V+;

3) αV+ ⊂ V+ for α ≥ 0.

Let X be a nonempty set. A mapping d : X ×X −→ V is called a vector-valued metric on X, if
the following properties are satisfied:

1) d(x, y) ≥ θ for each x, y ∈ X, if d(x, y) = θ, then x = y;

2) d(x, y) = d(y, x) for each x, y ∈ X;

3) d(x, y) � d(x, z) + d(z, y) for each x, y, z ∈ X.
The pair (X, d) is called vector-valued metric space. Agarwal and Khamsi [3] (Theorem 2) show that
for lower semi-continuous function F from complete vector-valued metric space (X, d) over an order
complete and order continuous Banach lattice V, if function T : X −→ X satisfied in the following
condition for every x ∈ X

d(x, T (x)) ≤ F (x)− F (T (x)),

then Fix(T ) 6= ∅. Now, we replace V by Rm and have the following definition for vector-valued
metric space.

Let X be a nonempty set. A mapping d : X ×X −→ Rm is called a vector-valued metric on X,
if the following properties are satisfied:
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1) d(x, y) ≥ 0 for each x, y ∈ X, if d(x, y) = 0, then x = y;

2) d(x, y) = d(y, x) for each x, y ∈ X;

3) d(x, y) ≤ d(x, z) + d(z, y) for each x, y, z ∈ X.
A set X equipped with a vector-valued metric d is called a generalized metric space and denoted

by (X, d). Let x1 be an element of generalized metric space X and r = (ri)
m
i=1 ∈ Rm, with ri > 0

for each 1 ≤ i ≤ n, then B(x1, r) = {x ∈ X|d(x1, x) < r} is the open ball centered in x1 with
radius r, also B̃(x1, r) = {x ∈ X|d(x1, x) ≤ r} is the closed ball centered in x1 with radius r.

Let f : X −→ X be a single-valued map. Fix(f) = {x ∈ X|f(x) = x} is the set of all fixed
points of f.

Mm,m(R+) means the set of all m×m matrices with positive elements, Θ the zero matrix, and
I the identity m×m matrix. Let A ∈Mm,m(R+), A is said to be convergent to zero, if and only if
An −→ 0 as n −→∞ (see [7], for more details).

Let α, β ∈ Rm, α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) and c ∈ R. Note that α ≤ β

(resp. α < β) means αi ≤ βi (resp. αi < βi) for each 1 ≤ i ≤ m, and also α ≤ c (resp. α < c)
means αi ≤ c (resp. αi < c) for 1 ≤ i ≤ m, respectively. As well as, we can define addition and
multiplication on Rm as follows:

α+ β = (α1 + β1, α2 + β2, . . . , αm + βm),

and

α · β = (α1β1, α2β2, . . . , αmβm),

for every α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Rm.

Now, we need the following equivalent statements:
1) A is convergent towards zero;
2) An −→ 0 as n −→∞;

3) the eigenvalues of A are in the open unit disc, that is, |λ| < 1, for each λ ∈ C with det(A−
− λI) = 0;

4) the matrix I −A is nonsingular and

(I −A)−1 = I +A+ . . .+An + . . . ;

5) Anq −→ 0 and qAn −→ 0 as n −→∞, for each q ∈ Rm.

The proof of the above statements are the classical results in matrix analysis (see [1, 5, 6] for more
details). For the sake of simplicity, we make an identification between row and column vectors inRm.

2. Fixed point property. Let (X, d) be a vector-valued metric space and A be an operator such
as [3] (Theorem 1). In [3], dA(x, y) identified by (I − A)d(x, y), for every x, y ∈ X. Then dA is a
vector-valued metric on X, and the vector-valued metric space (X, dA) is complete.

Theorem 2.1. Let (X, d) be a complete generalized metric space, and f : X −→ X be a
continuous map with the property that, there exists A,B,C ∈Mm,m(R+) such that

d(f(x), f(y)) ≤ Ad(x, y) +Bd(x, y)d(y, f(x))[d(x, f(x)) + d(y, f(y))]+

+Cd(x, y)[d(x, f(y))d(y, f(x))] (2.1)

for every x, y ∈ X. Suppose A is a matrix converging to zero. Then Fix(f) 6= ∅.
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Proof. It is sufficient to provide conditions [3] (Theorem 2). By condition (2.1), we have

d(f(x), f2(x)) ≤ Ad(x, f(x)), (2.2)

for every x ∈ X. Therefore

dA(x, f(x)) = (I −A)d(x, f(x)) ≤ d(x, f(x))− d(f(x), f2(x)).

Similar to [3] (Corollary 1), we define F (x) := d(x, f(x)), for every x ∈ X. Then F is a
continuous map, and by [3] (Theorem 2]), Fix(f) 6= ∅.

We recall B̃(x1, r) = {x ∈ X|d(x1, x) ≤ r}, is the closed ball centered in x1 with radius r.
Theorem 2.2. Let (X, d) be a complete generalized metric space, r := (ri)

m
i=1 ∈ Rm

+ with

0 < ri ≤ 1 for each i ∈ {1, 2, . . . ,m} and f : B̃(x1, r) −→ X having the property that, there exists
A,B,C ∈Mm,m(R+) such that

d(f(x), f(y)) ≤ A(d(x, y))d(x, y) +Bd(x, y)d(y, f(x))[d(x, f(x)) + d(y, f(y))]+

+Cd(x, y)[d(x, f(y))d(y, f(x))]

for every x, y ∈ X. Suppose
(i) A is a matrix converging to zero;
(ii) if u ∈ Rm

+ is such that u(I −A)−1 ≤ (I −A)−1r, then u ≤ r;
(iii) d(x1, f(x1))(I −A)−1 ≤ r.

Then Fix(f) 6= ∅.
Proof. Construct the sequence (xn)n∈N as follows: for each n ∈ N , set xn+1 = f(xn). By

(iii), d(x1, x2)(I − A)−1 = d(x1, f(x1))(I − A)−1 ≤ r ≤ (I − A)−1r. Therefore, by using (ii),
d(x1, x2) ≤ r and

d(x1, x2)(d(x1, x2)(I −A)−1) = d(x1, x2)(d(x1, f(x1))(I −A)−1 ≤

≤ d(x1, x2)r ≤ d(x1, x2)(I −A)−1r ≤ r2.

Therefore, A(d(x1, x2))d(x1, x2)(I −A)−1 ≤ Ar2. Similarly,

d(x2, x3)(I −A)−1 = d(f(x1), f(x2))(I −A)−1 ≤

≤ A(d(x1, x2))d(x1, x2)(I −A)−1+

+Bd(x1, x2)d(x2, f(x1))[d(x1, f(x1)) + d(x2, f(x2))](I −A)−1+

+ Cd(x1, x2)[d(x1, f(x2)d(x2, f(x1))](I −A)−1 ≤

≤ Ar2 + Θ = Ar2.

Above inequality hold by this fact since x2 = f(x1), thus d(x2, f(x1)) = Θ,

Bd(x1, x2)d(x2, f(x1))[d(x1, f(x1)) + d(x2, f(x2))](I −A)−1 = Θ,

and Cd(x1, x2)[d(x1, f(x2)d(x2, f(x1))](I −A)−1 = Θ.
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As well as, since d(x1, x3) ≤ d(x1, x2) + d(x2, x3), 0 < r < 1 and r2 < r, therefore,

d(x1, x3)(I −A)−1 ≤ d(x1, x2)(I −A)−1 + d(x2, x3)(I −A)−1 ≤

≤ Ir +Ar2 ≤ Ir +Ar ≤ (I +A+A2 + . . .+An + . . .)r =

= (I −A)−1r.

By induction, for all n ∈ N , the sequence (xn) is in B̃(x1, r) and satisfying
(1) xn+1 = f(xn);

(2) d(x0, xn)(I −A)−1 ≤ (I −A)−1r;

(3) d(xn, xn+1)(I −A)−1 ≤ An+1r.

We show, (xn) is a Cauchy sequence. For every n,m ∈ N , n ≤ m,

d(xn, xm)(I −A)−1 ≤ d(xn, xn+1)(I −A)−1 + d(xn+1, xn+2)(I −A)−1 + . . .

. . .+ d(xm−1, xm)(I −A)−1 ≤

≤ An+1r +An+2r + . . .+Amr ≤

≤ An+1(I +A+ . . .+Am−1 + . . .)r =

= An+1(I −A)−1r −→ 0 as n −→∞.

Therefore (xn) is a Cauchy sequence. Since the space
(
B̃(x1, r), d

)
is a complete, there exists

an element x∗ ∈ B̃(x1, r) such that xn −→ x∗. Now, x∗ is a fixed point of f, because

d(x∗, f(x∗)) ≤ d(x∗, xn) + d(xn, f(x∗)) =

= d(x∗, xn) + d(f(xn−1), f(x∗)) ≤

≤ d(x∗, xn) +Ad(xn−1, x
∗)d(xn−1, x

∗)+

+Bd(x∗, f(xn−1))[d(xn−1, f(xn−1)) + d(x∗, f(x∗))]+

+Cd(x∗, f(xn−1)d(xn−1, x
∗) −→ 0 as n −→∞.

Then Fix(f) 6= ∅.
An application for above stated theorem is the following operator system in Banach space X

with norm ‖ · ‖:

f1(u1, u2) = u1,

f2(u1, u2) = u2,
(2.3)

where fi : X2 → X, i = 1, 2, are given nonlinear operator.
It is obvious that the system (2.3) can be viewed as a fixed point problem as follows:
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f(u) = u

in the space X2, where u = (u1, u2) and f = (f1, f2). Now, we have the following theorem for an
application to Theorem 2.2.

Theorem 2.3. Assume that for i ∈ 1, 2, there exist nonnegative number ai, a′i, bi, b
′
i, ci, c

′
i

such that

‖fi(u1, u2)− fi(v1, v2)‖ ≤ ai‖u1 − v1‖2 + a′i‖u2 − v2‖2+

+bi‖u1 − v1‖
[
(‖v1 − fi(u1, u2)‖+ ‖v2 − fi(u1, u2)‖)×

×(‖u1 + v1 − fi(u1, u2)− fi(v1, v2)‖+ ‖u2 + v2 − fi(u1, u2)− fi(v1, v2)‖)
]
+

+b′i‖u2 − v2‖
[
(‖v1 − fi(u1, u2)‖+ ‖v2 − fi(u1, u2)‖)×

×(‖u1 + v1 − fi(u1, u2)− fi(v1, v2)‖+ ‖u2 + v2 − fi(u1, u2)− fi(v1, v2)‖)
]
+

+ci‖u1 − v1‖
[
(‖u1 − fi(v1, v2)‖+ ‖u2 − fi(v1, v2)‖)(‖v1 − fi(u1, u2)‖+ ‖v2 − fi(u1, u2)‖)

]
+

+c′i‖u2 − v2‖
[
(‖u1 − fi(v1, v2)‖+ ‖u2 − fi(v1, v2)‖)×

×(‖v1 − fi(u1, u2)‖+ ‖v2 − fi(u1, u2)‖)
]

(2.4)

for all u1, u2, v1, v2 ∈ X. In addition assume that A =

(
a1 a′1
a2 a′2

)
is a convergence to zero matrix,

and B =

(
b1 b′1
b2 b′2

)
and

(
c1 c′1
c2 c′2

)
belong to M2×2(R+). Then (2.3) has a unique solution u =

= (u1, u2) in X2.

Proof. Condition (2.4) can be rewritten as

‖f(u)− f(v)‖ ≤ A‖u− v‖2 +B[‖u− v‖‖v − f(v)‖(‖u− f(u)‖+ ‖v − f(v)‖)] +

+ C[‖u− v‖(‖u− f(v)‖‖v − f(u)‖)].

Thus Theorem 2.2 implies our desire. Here X2 = R2 and d(u, v) = ‖u− v‖.
3. Common fixed-point theorem. Let f and g be two self mappings on complete generalized

metric space (X, d). In this section, we study the existence of a common fixed point for these
mappings. Due to this, we need the following lemma.

Lemma 3.1. Let (X, d) be a complete generalized metric space and (yn)n∈N∪{0} be a se-
quence in X. If A ∈Mm,m(R+) is a matrix converging to zero, and for every n ∈ N

d(yn, yn+1) ≤ Ad(yn, yn−1). (3.1)

Then (yn)n∈N is converging in X.
Proof. By (3.1) we have

d(yn, yn−1) ≤ Ad(yn−1, yn−2), d(yn−1, yn−2) ≤ Ad(yn−2, yn−3), . . . , d(y2, y1) ≤ Ad(y1, y0).
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Thus

d(yn+1, yn) ≤ Ad(yn, yn−1) ≤ A2d(yn−1, yn−2) ≤ . . . ≤ And(y1, y0) −→ 0 as n −→∞.

Therefore (yn) is a Cauchy sequence. Since (X, d) is a complete, there exists an element x ∈ X
such that yn −→ x.

Theorem 3.1. Let (X, d) be a complete generalized metric space, f : X −→ X be a continu-
ous function and A ∈ Mm,m(R+) be a nonzero matrix converging to zero. Suppose g is a selfmap
function such that g ◦ f = f ◦ g, g(X) ⊂ f(X), and

d(g(x), g(y)) ≤ Ad(f(x), f(y)), x, y ∈ X. (3.2)

Then f and g have a unique common fixed point.
Proof. Choose the elements x0, x1 ∈ X such that f(x1) = g(x0). Construct the sequence

(xn)n∈N∪{0}, as follows
f(xn) = g(xn−1).

By the assumption g(X) ⊂ f(X), and (3.2), we have

d(g(xn), g(xn−1)) ≤ Ad(f(xn), f(xn−1)),

d(f(xn), f(xn−1)) = d(g(xn−1), g(xn−2)) ≤ Ad(f(xn−1), f(xn−2)),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d(f(x2), f(x1)) = Ad(g(x1), g(x0)) ≤ Ad(f(x1), f(x0)).

Thus

d(f(xn+1), f(xn)) = d(g(xn), g(xn−1)) ≤

≤ Ad(f(xn), f(xn−1)) = Ad(g(xn−1), g(xn−2)) ≤

≤ A2d(f(xn−1), f(xn−2)) ≤ . . .

. . . ≤ And(f(x1), f(x0)) −→ 0 as n −→∞.

Therefore (f(xn)) is a Cauchy sequence. Thus by Lemma 3.1, there exists a t ∈ X such that
f(xn) −→ t. Also, by the definition of g, g(xn) −→ t. Continuity of f implies that g is a continuous
map. Thus g(f(xn)) −→ g(t) and since g ◦ f = f ◦ g, so f(g(xn)) −→ f(t). By these results,
f(t) = g(t) and f(f(t)) = f(g(t)) = g(g(t)). But,

d(g(t), g(g(t))) ≤ Ad(f(t), f(g(t))) = Ad(g(t), g(g(t))),

and so

d(g(t), g(g(t)))(I −A) ≤ 0.

But I 6= A, hence d(g(t), g(g(t))) = 0. This means
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g(g(t)) = g(t) = f(g(t)) = g(f(t)).

Therefore g(t) ∈ Fix(f)∩Fix(g). Finally, suppose there are x, y ∈ X such that x, y ∈ Fix(f)∩
∩ Fix(g). Then by (2.2),

d(x, y) = d(g(x), g(y)) ≤ Ad(f(x), f(y)) = Ad(x, y),

and so

d(x, y)(I −A) ≤ 0.

Therefore x = y and the common fixed point of f and g is unique.
Corollary 3.1. Let f and g be two commuting and self mappings on a complete generalized

metric space (X, d). Suppose f is continuous and g(X) ⊂ f(X). If, there exists a matrix A ∈
∈Mm,m(R+) such that A converges to zero, and for each x, y ∈ X, following condition holds

d(gk(x), gk(y)) ≤ Ad(f(x), f(y)), k ∈ N .

Then f and g have a common fixed point.
Proof. For every k > 1,

gk ◦ f = gk−1 ◦ g ◦ f = gk−1 ◦ f ◦ g = . . . = f ◦ gk,

also gk(X) ⊆ g(X) ⊂ f(X). Therefore, by Theorem 3.1, gk and f have a unique common fixed
point. Let a ∈ X be the unique common fixed point of gk and f. Thus a = f(a) = gk(a). Since f
and g are commuting mappings, then

g(a) = g(f(a)) = g(gk(a)) = gk(g(a)) = f(g(a)).

Thus g(a) is a common fixed point of gk and f. Since, the common fixed point of gk and f was
unique. Hence, we should have a = g(a) = f(a).

Corollary 3.2. Let n ∈ N and A invertible matrix which A > I. Suppose g is a continuous self
mapping on a complete generalized metric space (X, d) satisfying:

d(gn(x), gn(y)) ≥ Bd(x, y), x, y ∈ X,

where B is the matrix A−1. Then g has a unique fixed point.
Proof. Take f = gn+1, then proof is clear.
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