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FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES
FOR MAPPINGS SATISFYING AN IMPLICIT RELATION OF A NEW TYPE

РЕЗУЛЬТАТИ ПРО НЕРУХОМУ ТОЧКУ
НА ПОВНИХ G-МЕТРИЧНИХ ПРОСТОРАХ ДЛЯ ВIДОБРАЖЕНЬ,
ЩО ЗАДОВОЛЬНЯЮТЬ НЕЯВНЕ СПIВВIДНОШЕННЯ НОВОГО ТИПУ

We prove some general fixed-point theorems in complete G-metric space that generalize some recent results.

Доведено загальнi теореми про нерухому точку у повних G-метричних просторах, що узагальнюють деякi резуль-
тати, отриманi нещодавно.

1. Introduction. In [3, 4] Dhage introduced a new class of generalized metric space, named D-metric
space. Mustafa and Sims [7, 8] proved that most of the claims concerning the fundamental topological
structures on D-metric spaces are incorrect and introduced appropriate notion of generalized metric
space, named G-metric space. In fact, Mustafa, Sims and other authors [2, 9 – 11] studied many
fixed-point results for self mappings in G-metric spaces under certain conditions.

Quite recently [12], Mustafa et al. obtained new results for mappings in G-metric spaces.
In [13, 14], Popa initiated the study of fixed points in metric spaces for mappings satisfying an

implicit relation.
Let T be a self mapping of a metric space (X, d). We denote by Fix (T ) the set of all fixed

points of T. T is said to satisfy property (P ) if Fix (T ) = Fix (Tn) for each n ∈ N. An interesting
fact about mappings satisfying property (P ) is that they have not nontrivial periodic points. Papers
dealing with property (P ) are, between others, [2, 13 – 15].

The purpose of this paper is to prove a general fixed-point theorem in complete G-metric space
which generalize the results from [1, 10 – 12] for mappings satisfying a new form of implicit relation.

In the last part of this paper is proved a general theorem for mappings in G-metric space satisfying
property (P ), which generalize some results from [1].

2. Preliminaries.
Definition 2.1 [8]. Let X be a nonempty set and G : X3 → R+ be a function satisfying the

following properties:
(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the function G is called a G-metric and the pair (X,G) is called a G-metric space.
Note that if G(x, y, z) = 0 then x = y = z [8].
Lemma 2.1 [8]. G(x, y, y) ≤ 2G(x, x, y) for all x, y ∈ X.
Definition 2.2 [8]. Let (X,G) be a metric space. A sequence (xn) in X is said to be:
a) G-convergent to x ∈ X if for any ε > 0 there exists k ∈ N such that G(x, xn, xm) < ε for all

m,n ≥ k;
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b) G-Cauchy if for ε > 0, there exists k ∈ N such that for all n,m, p ≥ k, G(xn, xm, xp) < ε

that is G(xn, xm, xp)→ 0 as m,n, p→∞.
A G-metric space is said to be G-complete if every G-Cauchy sequence in X is G-convergent.
Lemma 2.2 [8]. Let (X,G) be a G-metric space. Then, the following properties are equivalent:
1) (xn) is G-convergent to x;
2) G(x, xn, xn)→ 0 as n→∞;

3) G(xn, x, x)→ 0 as n→∞.
Lemma 2.3 [8]. Let (X,G) be a G-metric space. Then the following properties are equivalent:
1) The sequence (xn) is G-Cauchy.
2) For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for n,m > k.

Definition 2.3 [8]. Let (X,G) and (X ′, G′) be two G-metric spaces and f : (X,G)→ (X ′, G′).

Then, f is said to be G-continuous at x ∈ X if for ε > 0, there exists δ > 0 such that for all x, y ∈ X
and G(a, x, y) < δ, then G′(fa, fx, fy) < ε. f is G-continuous if it is G-continuous at each a ∈ X.

Lemma 2.4 [8]. Let (X,G) and (X ′, G′) be twoG-metric spaces. Then, a function f : (X,G)→
→ (X ′, G′) is G-continuous at a point x ∈ X if and only if f is sequentially continuous, that is,
whenever (xn) is G-convergent to x we have that f(xn) is G-convergent to fx.

Lemma 2.5 [8]. Let (X,G) be a G-metric space. Then, the function G(x, y, z) is continuous in
all three of its variables.

Quite recently, the following theorem is proved in [12].
Theorem 2.1. Let (X,G) be a complete G-metric space and T : X → X be a mapping which

satisfies the following condition, for all x, y ∈ X

G(Tx, Ty, Ty) ≤ max{aG(x, y, y), b[G(x, Tx, Tx) + 2G(y, Ty, Ty)],

b[G(x, Ty, Ty) +G(y, Ty, Ty) +G(y, Tx, Tx)]}, (2.1)

where a ∈ [0, 1) and b ∈
[
0,

1

3

)
. Then T has a unique fixed point.

The purpose of this paper is to prove a general fixed point theorem in G-metric space for map-
pings satisfying a new type of implicit relation which generalize Theorem 2.1 and other results from
[1, 2, 10 – 12].

3. Implicit relations.
Definition 3.1. Let Fu be the set of all continuous functions F (t1, . . . , t6) : R6

+ → R such that
(F1) F is nonincreasing in variables t5 and t6;
(F2) there exists h ∈ [0, 1) such that for each u, v ≥ 0 and F (u, v, v, u, u + v, 0) ≤ 0, then

u ≤ hv;
(F3) F (t, t, 0, 0, t, 2t) > 0 ∀t > 0.

Example 3.1. F (t1, . . . , t6) = t1−max{at2, b(t3+2t4), b(t4+ t5+ t6)}, where a ∈ [0, 1) and

b ∈
[
0,

1

3

)
.

(F1) Obviously.
(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − max{av, b(v + 2u)} ≤ 0. If u > v,

then u[1 − max{a, 3b}] ≤ 0, a contradiction. Hence u ≤ v, which implies u ≤ hv, where h =

= max{a, 3b} < 1.

(F3) F (t, t, 0, 0, t, 2t) = t(1−max{a, 3b}) > 0 ∀t > 0.
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Example 3.2. F (t1, . . . , t6) = t1−at2−b(t3+2t4)−c(t5+t6), where a, b, c ≥ 0, a+3b+2c < 1

and a+ 3c < 1.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − b(v + 2u) − c(u + v) ≤ 0. Then

u ≤ hv, where h =
a+ b+ c

1− 2b− c
< 1.

(F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 3c)] > 0 ∀t > 0.

Example 3.3. F (t1, . . . , t6) = t1 − at2 − bmax{t3, t4} − cmax{t5, t6}, where a, b, c ≥ 0,

a+ b+ 2c < 1.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − bmax{u, v} − c(u + v) ≤ 0. If
u > v, then u[1 − (a + b + 2c)] ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where

h =
a+ b+ c

1− c
< 1.

(F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 2c)] > 0 ∀t > 0.

Example 3.4. F (t1, . . . , t6) = t1 − kmax{t2, t3, . . . , t6}, where k ∈
[
0,

1

2

)
.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − k(u + v) ≤ 0 which implies u ≤ hv,

where h =
k

k − 1
< 1.

(F3) F (t, t, 0, 0, t, 2t) = t(1− 2k) > 0 ∀t > 0.

Example 3.5. F (t1, . . . , t6) = t1−at2−bt3−cmax{t4+t5, 2t6}, where a, b, c ≥ 0, a+b+3c <

< 1, a+ 4c < 1.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− av − bv − c(2u+ v) ≤ 0. Then u ≤ hv,

where h =
a+ b+ c

1− 2c
< 1.

(F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 4c)] > 0 ∀t > 0.

Example 3.6. F (t1, . . . , t6) = t1 − kmax

{
t2, t3, t4,

2t4 + t6
3

,
2t4 + t3

3
,
t5 + t6

3

}
≤ 0, where

k ∈ [0, 1).

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− kmax

{
u, v,

2u

3
,
2u+ v

3
,
u+ v

3
≤ 0

}
. If

u > v, then u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where h = k < 1.

(F3) F (t, t, 0, 0, t, 2t) = t(1− k) > 0 ∀t > 0.

Example 3.7. F (t1, . . . , t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
2

}
, where k ∈

[
0,

2

3

)
.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− kmax

{
u, v,

u+ v

2

}
≤ 0. If u > v, then

u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where h = k < 1.

(F3) F (t, t, 0, 0, t, 2t) = t− kmax

{
t,
3t

2

}
= t

[
1− 3k

2

]
> 0 ∀t > 0.
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Example 3.8. F (t1, . . . , t6) = t21− t1(at2+ bt3+ ct4)−dt5t6, where a, b, c ≥ 0, a+ b+ c < 1,

a+ 2d < 1.

(F1) Obviously.
(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u2 − u(av + bv + cu) ≤ 0. If u > 0, then

u− av − bv − cu ≤ 0 which implies u ≤ hv, where h =
a+ b

1− c
< 1. If u = 0, then u ≤ hv.

(F3) F (t, t, 0, 0, t, 2t) = t2[1− (a+ 2d)] > 0 ∀t > 0.

Example 3.9. F (t1, . . . , t6) = t1 − kmax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
, where k ∈

[
0,

2

3

)
.

(F1) Obviously.

(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − kmax

{
v,
u+ v

2

}
≤ 0. If u > 0, then

u(1− k) ≤ 0, a contradiction. Hence u ≤ v which implies u ≤ hv, where h = k < 1.

(F3) F (t, t, 0, 0, t, 2t) = t

[
1− 3k

2

]
> 0 ∀t > 0.

Example 3.10. F (t1, . . . , t6) = t1 − kmax
{
t2,
√
t3t4,

√
t5t6

}
, where k ∈

[
0,

2

3

)
.

(F1) Obviously.
(F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − kmax {v,

√
uv} ≤ 0. If u > v, then

u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where 0 ≤ h = k < 1.

(F3) F (t, t, 0, 0, t, 2t) = t(1−
√
2k) > 0 ∀t > 0.

4. Main results.
Theorem 4.1. Let (X,G) be a G-metric space and T : (X,G) → (X,G) be a mapping such

that

F (G(Tx, Ty, Ty), G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0

(4.1)

for all x, y ∈ X, where F satisfies property (F3). Then T has at most a fixed point.
Proof. Suppose that T has two distinct fixed points u and v. Then by (4.1) we have successively

F (G(Tu, Tv, Tv), G(u, v, v), G(u, Tu, Tu), G(v, Tv, Tv), G(u, Tv, Tv), G(v, Tu, Tu)) ≤ 0,

F (G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), G(v, u, u)) ≤ 0.

By Lemma 2.1 G(v, u, u) ≤ 2G(u, v, v). Since F is nonincreasing in variable t6 we obtain

F (G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), 2G(u, v, v)) ≤ 0,

a contradiction of (F3). Hence u = v.

Theorem 4.1 is proved.
Theorem 4.2. Let (X,G) be a complete G-metric space and T : (X,G) → (X,G) satisfying

inequality (4.1) for all x, y ∈ X, where F ∈ Fu. Then T has a unique fixed point.
Proof. Let x0 ∈ X be an arbitrary point in X. We define xn = Txn−1, n = 1, 2, . . . . Then by

(4.1) we have successively

F (G(Txn−1, Txn, Txn), G(xn−1, xn, xn), G(xn−1, Txn−1, Txn−1),
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G(xn, Txn, Txn), G(xn−1, Txn, Txn), G(xn, Txn−1, Txn−1)) ≤ 0,

F (G(xn, xn+1, xn+1), G(xn−1, xn, xn), G(xn−1, xn, xn),

G(xn, xn+1, xn+1), G(xn−1, xn+1, xn+1), 0) ≤ 0.

By (G5), G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn)+G(xn, xn+1, xn+1). Since F is nonincreas-
ing in variable t5 we obtain

F (G(xn, xn+1, xn+1), G(xn−1, xn, xn), G(xn−1, xn, xn),

G(xn, xn+1, xn+1), G(xn−1, xn, xn) +G(xn, xn+1, xn+1, 0) ≤ 0

which implies by (F2) that

G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn).

Then

G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn) ≤ . . . ≤ hnG(x0, x1, x1).

Moreover, for all m,n ∈ N, m > n, we have repeated use the rectangle inequality

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + . . .+G(xm−1, xm, xm) ≤

≤ (hn + hn+1 + . . .+ hm−1)G(x0, x1, x1) ≤
hn

1− h
G(x0, x1, x1),

which implies limn,m→∞G(xn, xm, xm) = 0. Hence, (xn) is a G-Cauchy sequence. Since (X,G)

is G-complete, there exists u ∈ X such that limn→∞ xn = u.

We prove that u = Tu. By (F1) we have successively

F (G(Txn−1, Tu, Tu), G(xn−1, u, u), G(xn−1, Txn−1, Txn−1),

G(u, Tu, Tu), G(xn−1, Tu, Tu), G(u, Txn−1, Txn−1)) ≤ 0,

F (G(xn, Tu, Tu), G(xn−1, u, u), G(xn−1, xn, xn),

G(u, Tu, Tu), G(xn−1, Tu, Tu), G(u, xn, xn)) ≤ 0.

By continuity of F and G, letting n tend to infinity, we obtain

F (G(u, Tu, Tu), 0, 0, G(u, Tu, Tu), G(u, Tu, Tu), 0) ≤ 0.

By (F2) we obtain G(u, Tu, Tu) = 0, hence u = Tu and u is a fixed point of T. By Theorem
4.1 u is the unique fixed point of T.

Theorem 4.2 is proved.
Corollary 4.1. Theorem 2.1.
Proof. The proof follows from Theorem 4.2 and Example 3.1.
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Corollary 4.2 (Theorem 2.2 [11]). Let (X,G) be a G-complete metric space and T : (X,G)→
→ (X,G) be a mapping satisfying the following condition:

G(Tx, Ty, Tz) ≤ αG(x, y, z) + β[G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz)], (4.2)

for all x, y, z ∈ X and 0 ≤ α+ 3β < 1. Then T has a unique fixed point.
Proof. By (4.2) for z = y we obtain

G(Tx, Ty, Ty) ≤ αG(x, y, y) + β[G(x, Tx, Tx) + 2G(y, Ty, Ty)],

for all x, y ∈ X. By Theorem 4.2 and Example 3.2 for α = a, β = b and c = 0 it follows that T has
a unique fixed point.

Corollary 4.3 (Theorem 2.3 [11]). Let (X,G) be a G-complete metric space and T : (X,G)→
→ (X,G) be a mapping satisfying the condition

G(Tx, Ty, Tz) ≤ αG(x, y, z) + βmax{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)}, (4.3)

for all x, y, z ∈ X and 0 ≤ α+ β < 1. Then T has a unique fixed point.
Proof. By (4.3) for z = y we obtain

G(Tx, Ty, Ty) ≤ αG(x, y, y) + βmax{G(x, Tx, Tx), G(y, Ty, Ty)},

for all x, y ∈ X. By Theorem 4.2 and Example 3.3 for α = a, β = b and c = 0 it follows that T has
a unique fixed point.

Corollary 4.4 (Theorem 2.1 [10]). Let (X,G) be a G-complete metric space and T : (X,G)→
→ (X,G) be a mapping satisfying the condition

G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty),

G(y, Tz, Tz), G(x, Ty, Ty), G(y, Tz, Tz), G(z, Tx, Tx)},
(4.4)

for all x, y, z ∈ X, where k ∈
[
0,

1

2

)
. Then T has a unique fixed point.

Proof. By (4.4) for z = y we obtain

G(Tx, Ty, Ty) ≤ kmax{G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)}.

By Theorem 4.2 and Example 3.4, T has a unique fixed point.
Corollary 4.5. Let (X,G) be a G-complete metric space and T : (X,G) → (X,G) be a map-

ping which satisfy the following inequality for all x, y ∈ X,

G(Tx, Ty, Ty) ≤ kmax{G(y, Ty, Ty) +G(x, Ty, Ty), 2G(y, Tx, Tx)}, (4.5)

where k ∈
[
0,

1

3

)
. Then T has a unique fixed point.

Proof. By Theorem 4.2 and Example 3.5 for a = b = 0 and c = k, T has a unique fixed point.

Remark 4.1. In Theorem 2.8 [10], k ∈
[
0,

1

2

)
.
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Corollary 4.6. Let (X,G) be a G-metric space and T : (X,G) → (X,G) be a mapping satis-
fying the following inequality for all x, y, z ∈ X,

G(Tx, Ty, Tz) ≤ hmax

{
G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),

G(y, Tx, Tx) +G(y, Ty, Ty) +G(y, Tz, Tz)

3
,
G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz)

3

}
,

(4.6)

where k ∈ [0, 1) . Then T has a unique fixed point.
Proof. If y = z, by (4.6) we obtain that

G(Tx, Ty, Ty) ≤ hmax

{
G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty),

G(y, Tx, Tx) + 2G(y, Ty, Ty)

3
,
G(x, Tx, Tx) + 2G(y, Ty, Ty)

3

}
≤

≤ hmax

{
G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty),

G(y, Tx, Tx) + 2G(y, Ty, Ty)

3
,

G(x, Tx, Tx) + 2G(y, Ty, Ty)

3
,
G(x, Ty, Ty) +G(y, Tx, Tx)

3

}
,

for all x, y ∈ X.
By Theorem 4.2 and Example 3.6, T has a unique fixed point.

Remark 4.2. Corollary 4.6 is a generalization of Theorem 2.6 [1], where k ∈
[
0,

1

2

)
.

Remark 4.3. By Theorem 4.2 and Examples 3.7 – 3.10 we obtain new results.
5. Property (P ) in G-metric spaces.
Theorem 5.1. Under the conditions of Theorem 4.2, T has property (P ).

Proof. By Theorem 4.2, T has a fixed point. Therefore, Fix (Tn) 6= ∅ for each n ∈ N. Fix
n > 1 and assume that p ∈ Fix (Tn). We prove that p ∈ Fix (T ). Using (4.1) we have

F (G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tnp, Tnp), G(Tn−1p, Tnp, Tnp), G(Tnp, Tn+1p, Tn+1p),

G(Tn−1p, Tn+1p, Tn+1p), G(Tnp, Tnp, Tnp)) ≤ 0.

By rectangle inequality

G(Tn−1p, Tn+1p, Tn+1p) ≤ G(Tn−1p, Tnp, Tnp) +G(Tnp, Tn+1p, Tn+1p).

By (F1) we obtain

F (G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tnp, Tnp), G(Tn−1p, Tnp, Tnp), G(Tnp, Tn+1p, Tn+1p),

G(Tn−1p, Tnp, Tnp) +G(Tnp, Tn+1p, Tn+1p), 0) ≤ 0.
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By (F2) we obtain

G(Tnp, Tn+1p, Tn+1p) ≤ hG(Tn−1p, Tnp, Tnp) ≤ . . . ≤ hnG(p, Tp, Tp).

Since p ∈ Tnp, then

G(p, Tp, Tp) = G(Tnp, Tn+1p, Tn+1p).

Therefore

G(p, Tp, Tp) ≤ hnG(p, Tp, Tp)

which implies G(p, Tp, Tp) = 0, i.e., p = Tp and T has property (P ).

Theorem 5.1 is proved.
Corollary 5.1. In the condition of Corollary 4.6, T has property (P ).

Remark 5.1. Corollary 5.1 is a generalization of the results from Theorem 2.6 [1].

Corollary 5.2. In the condition of Corollary 4.4 with k ∈
[
0,

1

2

)
, instead k ∈ [0, 1), T has

property (P ).

Remark 5.2. We obtain other new results from Examples 3.1 – 3.10.
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