V. Popa, A.-M. Patriciu ("Vasile Alecsandri" Univ. Bacău, Romania)

FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS SATISFYING AN IMPLICIT RELATION OF A NEW TYPE РЕЗУЛЬТАТИ ПРО НЕРУХОМУ ТОЧКУ НА ПОВНИХ G-МЕТРИЧНИХ ПРОСТОРАХ ДЛЯ ВІДОБРАЖЕНЬ, ЩО ЗАДОВОЛЬНЯЮТЬ НЕЯВНЕ СПІВВІДНОШЕННЯ НОВОГО ТИПУ

We prove some general fixed-point theorems in complete G-metric space that generalize some recent results

Доведено загальні теореми про нерухому точку у повних G-метричних просторах, що узагальнюють деякі результати, отримані нещодавно.

1. Introduction. In [3, 4] Dhage introduced a new class of generalized metric space, named D-metric space. Mustafa and Sims [7, 8] proved that most of the claims concerning the fundamental topological structures on D-metric spaces are incorrect and introduced appropriate notion of generalized metric space, named G-metric space. In fact, Mustafa, Sims and other authors [2, 9-11] studied many fixed-point results for self mappings in G-metric spaces under certain conditions.

Quite recently [12], Mustafa et al. obtained new results for mappings in G-metric spaces.
In [13, 14], Popa initiated the study of fixed points in metric spaces for mappings satisfying an implicit relation.

Let T be a self mapping of a metric space (X, d). We denote by $\operatorname{Fix}(T)$ the set of all fixed points of T. T is said to satisfy property (P) if $\operatorname{Fix}(T)=\operatorname{Fix}\left(T^{n}\right)$ for each $n \in \mathbb{N}$. An interesting fact about mappings satisfying property (P) is that they have not nontrivial periodic points. Papers dealing with property (P) are, between others, [2, 13-15].

The purpose of this paper is to prove a general fixed-point theorem in complete G-metric space which generalize the results from [1, 10-12] for mappings satisfying a new form of implicit relation.

In the last part of this paper is proved a general theorem for mappings in G-metric space satisfying property (P), which generalize some results from [1].

2. Preliminaries.

Definition 2.1 [8]. Let X be a nonempty set and $G: X^{3} \rightarrow \mathbb{R}_{+}$be a function satisfying the following properties:
$\left(G_{1}\right) G(x, y, z)=0$ if $x=y=z$;
$\left(G_{2}\right) 0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$;
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$;
$\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables);
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).
Then the function G is called a G-metric and the pair (X, G) is called a G-metric space.
Note that if $G(x, y, z)=0$ then $x=y=z[8]$.
Lemma 2.1 [8]. $G(x, y, y) \leq 2 G(x, x, y)$ for all $x, y \in X$.
Definition 2.2 [8]. Let (X, G) be a metric space. A sequence $\left(x_{n}\right)$ in X is said to be:
a) G-convergent to $x \in X$ if for any $\varepsilon>0$ there exists $k \in \mathbb{N}$ such that $G\left(x, x_{n}, x_{m}\right)<\varepsilon$ for all $m, n \geq k ;$
b) G-Cauchy if for $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that for all $n, m, p \geq k, G\left(x_{n}, x_{m}, x_{p}\right)<\varepsilon$ that is $G\left(x_{n}, x_{m}, x_{p}\right) \rightarrow 0$ as $m, n, p \rightarrow \infty$.

A G-metric space is said to be G-complete if every G-Cauchy sequence in X is G-convergent.
Lemma 2.2 [8]. Let (X, G) be a G-metric space. Then, the following properties are equivalent:

1) $\left(x_{n}\right)$ is G-convergent to x;
2) $G\left(x, x_{n}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$;
3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.3 [8]. Let (X, G) be a G-metric space. Then the following properties are equivalent:

1) The sequence $\left(x_{n}\right)$ is G-Cauchy.
2) For every $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$ for $n, m>k$.

Definition 2.3 [8]. Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces and $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$. Then, f is said to be G-continuous at $x \in X$ iffor $\varepsilon>0$, there exists $\delta>0$ such that for all $x, y \in X$ and $G(a, x, y)<\delta$, then $G^{\prime}(f a, f x, f y)<\varepsilon . f$ is G-continuous if it is G-continuous at each $a \in X$.

Lemma 2.4 [8]. Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces. Then, a function $f:(X, G) \rightarrow$ $\rightarrow\left(X^{\prime}, G^{\prime}\right)$ is G-continuous at a point $x \in X$ if and only if f is sequentially continuous, that is, whenever $\left(x_{n}\right)$ is G-convergent to x we have that $f\left(x_{n}\right)$ is G-convergent to $f x$.

Lemma 2.5 [8]. Let (X, G) be a G-metric space. Then, the function $G(x, y, z)$ is continuous in all three of its variables.

Quite recently, the following theorem is proved in [12].
Theorem 2.1. Let (X, G) be a complete G-metric space and $T: X \rightarrow X$ be a mapping which satisfies the following condition, for all $x, y \in X$

$$
\begin{gather*}
G(T x, T y, T y) \leq \max \{a G(x, y, y), b[G(x, T x, T x)+2 G(y, T y, T y)] \\
b[G(x, T y, T y)+G(y, T y, T y)+G(y, T x, T x)]\} \tag{2.1}
\end{gather*}
$$

where $a \in[0,1)$ and $b \in\left[0, \frac{1}{3}\right)$. Then T has a unique fixed point.
The purpose of this paper is to prove a general fixed point theorem in G-metric space for mappings satisfying a new type of implicit relation which generalize Theorem 2.1 and other results from [1, 2, 10-12].

3. Implicit relations.

Definition 3.1. Let \mathfrak{F}_{u} be the set of all continuous functions $F\left(t_{1}, \ldots, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ such that
$\left(F_{1}\right) F$ is nonincreasing in variables t_{5} and t_{6};
$\left(F_{2}\right)$ there exists $h \in[0,1)$ such that for each $u, v \geq 0$ and $F(u, v, v, u, u+v, 0) \leq 0$, then $u \leq h v$;
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)>0 \quad \forall t>0$.
Example 3.1. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{a t_{2}, b\left(t_{3}+2 t_{4}\right), b\left(t_{4}+t_{5}+t_{6}\right)\right\}$, where $a \in[0,1)$ and $b \in\left[0, \frac{1}{3}\right)$.
(F_{1}) Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-\max \{a v, b(v+2 u)\} \leq 0$. If $u>v$, then $u[1-\max \{a, 3 b\}] \leq 0$, a contradiction. Hence $u \leq v$, which implies $u \leq h v$, where $h=$ $=\max \{a, 3 b\}<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t(1-\max \{a, 3 b\})>0 \quad \forall t>0$.

Example 3.2. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b\left(t_{3}+2 t_{4}\right)-c\left(t_{5}+t_{6}\right)$, where $a, b, c \geq 0, a+3 b+2 c<1$ and $a+3 c<1$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-b(v+2 u)-c(u+v) \leq 0$. Then $u \leq h v$, where $h=\frac{a+b+c}{1-2 b-c}<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t[1-(a+3 c)]>0 \quad \forall t>0$.
Example 3.3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b \max \left\{t_{3}, t_{4}\right\}-c \max \left\{t_{5}, t_{6}\right\}$, where $a, b, c \geq 0$, $a+b+2 c<1$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-b \max \{u, v\}-c(u+v) \leq 0$. If $u>v$, then $u[1-(a+b+2 c)] \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h v$, where $h=\frac{a+b+c}{1-c}<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t[1-(a+2 c)]>0 \quad \forall t>0$.
Example 3.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, \ldots, t_{6}\right\}$, where $k \in\left[0, \frac{1}{2}\right)$.
(F_{1}) Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k(u+v) \leq 0$ which implies $u \leq h v$, where $h=\frac{k}{k-1}<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t(1-2 k)>0 \quad \forall t>0$.
Example 3.5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c \max \left\{t_{4}+t_{5}, 2 t_{6}\right\}$, where $a, b, c \geq 0, a+b+3 c<$ $<1, a+4 c<1$.
(F_{1}) Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-b v-c(2 u+v) \leq 0$. Then $u \leq h v$, where $h=\frac{a+b+c}{1-2 c}<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t[1-(a+4 c)]>0 \quad \forall t>0$.
Example 3.6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{2 t_{4}+t_{6}}{3}, \frac{2 t_{4}+t_{3}}{3}, \frac{t_{5}+t_{6}}{3}\right\} \leq 0$, where $k \in[0,1)$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \left\{u, v, \frac{2 u}{3}, \frac{2 u+v}{3}, \frac{u+v}{3} \leq 0\right\}$. If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h v$, where $h=k<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t(1-k)>0 \forall t>0$.
Example 3.7. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in\left[0, \frac{2}{3}\right)$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \left\{u, v, \frac{u+v}{2}\right\} \leq 0$. If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h v$, where $h=k<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t-k \max \left\{t, \frac{3 t}{2}\right\}=t\left[1-\frac{3 k}{2}\right]>0 \quad \forall t>0$.

Example 3.8. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-t_{1}\left(a t_{2}+b t_{3}+c t_{4}\right)-d t_{5} t_{6}$, where $a, b, c \geq 0, a+b+c<1$, $a+2 d<1$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u^{2}-u(a v+b v+c u) \leq 0$. If $u>0$, then $u-a v-b v-c u \leq 0$ which implies $u \leq h v$, where $h=\frac{a+b}{1-c}<1$. If $u=0$, then $u \leq h v$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t^{2}[1-(a+2 d)]>0 \quad \forall t>0$.
Example 3.9. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in\left[0, \frac{2}{3}\right)$.
$\left(F_{1}\right)$ Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \left\{v, \frac{u+v}{2}\right\} \leq 0$. If $u>0$, then $u(1-k) \leq 0$, a contradiction. Hence $u \leq v$ which implies $u \leq h v$, where $h=k<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t\left[1-\frac{3 k}{2}\right]>0 \quad \forall t>0$.
Example 3.10. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, \sqrt{t_{3} t_{4}}, \sqrt{t_{5} t_{6}}\right\}$, where $k \in\left[0, \frac{2}{3}\right)$.
(F_{1}) Obviously.
$\left(F_{2}\right)$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \{v, \sqrt{u v}\} \leq 0$. If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h v$, where $0 \leq h=k<1$.
$\left(F_{3}\right) F(t, t, 0,0, t, 2 t)=t(1-\sqrt{2} k)>0 \quad \forall t>0$.

4. Main results.

Theorem 4.1. Let (X, G) be a G-metric space and $T:(X, G) \rightarrow(X, G)$ be a mapping such that

$$
\begin{equation*}
F(G(T x, T y, T y), G(x, y, y), G(x, T x, T x), G(y, T y, T y), G(x, T y, T y), G(y, T x, T x)) \leq 0 \tag{4.1}
\end{equation*}
$$

for all $x, y \in X$, where F satisfies property $\left(F_{3}\right)$. Then T has at most a fixed point.
Proof. Suppose that T has two distinct fixed points u and v. Then by (4.1) we have successively

$$
F(G(T u, T v, T v), G(u, v, v), G(u, T u, T u), G(v, T v, T v), G(u, T v, T v), G(v, T u, T u)) \leq 0
$$

$$
F(G(u, v, v), G(u, v, v), 0,0, G(u, v, v), G(v, u, u)) \leq 0
$$

By Lemma 2.1 $G(v, u, u) \leq 2 G(u, v, v)$. Since F is nonincreasing in variable t_{6} we obtain

$$
F(G(u, v, v), G(u, v, v), 0,0, G(u, v, v), 2 G(u, v, v)) \leq 0
$$

a contradiction of $\left(F_{3}\right)$. Hence $u=v$.
Theorem 4.1 is proved.
Theorem 4.2. Let (X, G) be a complete G-metric space and $T:(X, G) \rightarrow(X, G)$ satisfying inequality (4.1) for all $x, y \in X$, where $F \in \mathfrak{F}_{u}$. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ be an arbitrary point in X. We define $x_{n}=T x_{n-1}, n=1,2, \ldots$ Then by (4.1) we have successively

$$
F\left(G\left(T x_{n-1}, T x_{n}, T x_{n}\right), G\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right)\right.
$$

$$
\begin{gathered}
\left.G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n-1}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n-1}, T x_{n-1}\right)\right) \leq 0, \\
F\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
\left.G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n+1}, x_{n+1}\right), 0\right) \leq 0 .
\end{gathered}
$$

$\operatorname{By}\left(G_{5}\right), G\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)$. Since F is nonincreasing in variable t_{5} we obtain

$$
\begin{aligned}
& F\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}, 0\right) \leq 0
\end{aligned}
$$

which implies by $\left(F_{2}\right)$ that

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq h G\left(x_{n-1}, x_{n}, x_{n}\right) .
$$

Then

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq h G\left(x_{n-1}, x_{n}, x_{n}\right) \leq \ldots \leq h^{n} G\left(x_{0}, x_{1}, x_{1}\right) .
$$

Moreover, for all $m, n \in \mathbb{N}, m>n$, we have repeated use the rectangle inequality

$$
\begin{gathered}
G\left(x_{n}, x_{m}, x_{m}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+\ldots+G\left(x_{m-1}, x_{m}, x_{m}\right) \leq \\
\leq\left(h^{n}+h^{n+1}+\ldots+h^{m-1}\right) G\left(x_{0}, x_{1}, x_{1}\right) \leq \frac{h^{n}}{1-h} G\left(x_{0}, x_{1}, x_{1}\right),
\end{gathered}
$$

which implies $\lim _{n, m \rightarrow \infty} G\left(x_{n}, x_{m}, x_{m}\right)=0$. Hence, $\left(x_{n}\right)$ is a G-Cauchy sequence. Since (X, G) is G-complete, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$.

We prove that $u=T u$. By $\left(F_{1}\right)$ we have successively

$$
\begin{aligned}
& F\left(G\left(T x_{n-1}, T u, T u\right), G\left(x_{n-1}, u, u\right), G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right),\right. \\
& \left.G(u, T u, T u), G\left(x_{n-1}, T u, T u\right), G\left(u, T x_{n-1}, T x_{n-1}\right)\right) \leq 0, \\
& F\left(G\left(x_{n}, T u, T u\right), G\left(x_{n-1}, u, u\right), G\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& \left.G(u, T u, T u), G\left(x_{n-1}, T u, T u\right), G\left(u, x_{n}, x_{n}\right)\right) \leq 0 .
\end{aligned}
$$

By continuity of F and G, letting n tend to infinity, we obtain

$$
F(G(u, T u, T u), 0,0, G(u, T u, T u), G(u, T u, T u), 0) \leq 0 .
$$

By $\left(F_{2}\right)$ we obtain $G(u, T u, T u)=0$, hence $u=T u$ and u is a fixed point of T. By Theorem $4.1 u$ is the unique fixed point of T.

Theorem 4.2 is proved.
Corollary 4.1. Theorem 2.1.
Proof. The proof follows from Theorem 4.2 and Example 3.1.

Corollary 4.2 (Theorem $2.2[11])$. Let (X, G) be a G-complete metric space and $T:(X, G) \rightarrow$ $\rightarrow(X, G)$ be a mapping satisfying the following condition:

$$
\begin{equation*}
G(T x, T y, T z) \leq \alpha G(x, y, z)+\beta[G(x, T x, T x)+G(y, T y, T y)+G(z, T z, T z)] \tag{4.2}
\end{equation*}
$$

for all $x, y, z \in X$ and $0 \leq \alpha+3 \beta<1$. Then T has a unique fixed point.
Proof. By (4.2) for $z=y$ we obtain

$$
G(T x, T y, T y) \leq \alpha G(x, y, y)+\beta[G(x, T x, T x)+2 G(y, T y, T y)]
$$

for all $x, y \in X$. By Theorem 4.2 and Example 3.2 for $\alpha=a, \beta=b$ and $c=0$ it follows that T has a unique fixed point.

Corollary 4.3 (Theorem 2.3 [11]). Let (X, G) be a G-complete metric space and $T:(X, G) \rightarrow$ $\rightarrow(X, G)$ be a mapping satisfying the condition

$$
\begin{equation*}
G(T x, T y, T z) \leq \alpha G(x, y, z)+\beta \max \{G(x, T x, T x), G(y, T y, T y), G(z, T z, T z)\} \tag{4.3}
\end{equation*}
$$

for all $x, y, z \in X$ and $0 \leq \alpha+\beta<1$. Then T has a unique fixed point.
Proof. By (4.3) for $z=y$ we obtain

$$
G(T x, T y, T y) \leq \alpha G(x, y, y)+\beta \max \{G(x, T x, T x), G(y, T y, T y)\}
$$

for all $x, y \in X$. By Theorem 4.2 and Example 3.3 for $\alpha=a, \beta=b$ and $c=0$ it follows that T has a unique fixed point.

Corollary 4.4 (Theorem $2.1[10])$. Let (X, G) be a G-complete metric space and $T:(X, G) \rightarrow$ $\rightarrow(X, G)$ be a mapping satisfying the condition

$$
\begin{gather*}
G(T x, T y, T z) \leq k \max \{G(x, y, z), G(x, T x, T x), G(y, T y, T y) \\
G(y, T z, T z), G(x, T y, T y), G(y, T z, T z), G(z, T x, T x)\} \tag{4.4}
\end{gather*}
$$

for all $x, y, z \in X$, where $k \in\left[0, \frac{1}{2}\right)$. Then T has a unique fixed point.
Proof. By (4.4) for $z=y$ we obtain

$$
G(T x, T y, T y) \leq k \max \{G(x, y, y), G(x, T x, T x), G(y, T y, T y), G(x, T y, T y), G(y, T x, T x)\}
$$

By Theorem 4.2 and Example 3.4, T has a unique fixed point.
Corollary 4.5. Let (X, G) be a G-complete metric space and $T:(X, G) \rightarrow(X, G)$ be a mapping which satisfy the following inequality for all $x, y \in X$,

$$
\begin{equation*}
G(T x, T y, T y) \leq k \max \{G(y, T y, T y)+G(x, T y, T y), 2 G(y, T x, T x)\} \tag{4.5}
\end{equation*}
$$

where $k \in\left[0, \frac{1}{3}\right)$. Then T has a unique fixed point.
Proof. By Theorem 4.2 and Example 3.5 for $a=b=0$ and $c=k, T$ has a unique fixed point.
Remark 4.1. In Theorem 2.8 [10], $k \in\left[0, \frac{1}{2}\right)$.

Corollary 4.6. Let (X, G) be a G-metric space and $T:(X, G) \rightarrow(X, G)$ be a mapping satisfying the following inequality for all $x, y, z \in X$,

$$
\begin{gather*}
G(T x, T y, T z) \leq h \max \{G(x, y, z), G(x, T x, T x), G(y, T y, T y), G(z, T z, T z), \\
\left.\frac{G(y, T x, T x)+G(y, T y, T y)+G(y, T z, T z)}{3}, \frac{G(x, T x, T x)+G(y, T y, T y)+G(z, T z, T z)}{3}\right\}, \tag{4.6}
\end{gather*}
$$

where $k \in[0,1)$. Then T has a unique fixed point.
Proof. If $y=z$, by (4.6) we obtain that

$$
\begin{gathered}
G(T x, T y, T y) \leq h \max \{G(x, y, y), G(x, T x, T x), G(y, T y, T y), \\
\left.\frac{G(y, T x, T x)+2 G(y, T y, T y)}{3}, \frac{G(x, T x, T x)+2 G(y, T y, T y)}{3}\right\} \leq \\
\leq h \max \left\{G(x, y, y), G(x, T x, T x), G(y, T y, T y), \frac{G(y, T x, T x)+2 G(y, T y, T y)}{3},\right. \\
\left.\frac{G(x, T x, T x)+2 G(y, T y, T y)}{3}, \frac{G(x, T y, T y)+G(y, T x, T x)}{3}\right\},
\end{gathered}
$$

for all $x, y \in X$.
By Theorem 4.2 and Example 3.6, T has a unique fixed point.
Remark 4.2. Corollary 4.6 is a generalization of Theorem 2.6 [1], where $k \in\left[0, \frac{1}{2}\right)$.
Remark 4.3. By Theorem 4.2 and Examples $3.7-3.10$ we obtain new results.
5. Property (P) in G-metric spaces.

Theorem 5.1. Under the conditions of Theorem $4.2, T$ has property (P).
Proof. By Theorem 4.2, T has a fixed point. Therefore, Fix $\left(T^{n}\right) \neq \varnothing$ for each $n \in \mathbb{N}$. Fix $n>1$ and assume that $p \in \operatorname{Fix}\left(T^{n}\right)$. We prove that $p \in \operatorname{Fix}(T)$. Using (4.1) we have

$$
\begin{gathered}
F\left(G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G\left(T^{n-1} p, T^{n} p, T^{n} p\right), G\left(T^{n-1} p, T^{n} p, T^{n} p\right), G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right),\right. \\
\left.G\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right), G\left(T^{n} p, T^{n} p, T^{n} p\right)\right) \leq 0 .
\end{gathered}
$$

By rectangle inequality

$$
G\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right) \leq G\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) .
$$

By $\left(F_{1}\right)$ we obtain

$$
\begin{gathered}
F\left(G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G\left(T^{n-1} p, T^{n} p, T^{n} p\right), G\left(T^{n-1} p, T^{n} p, T^{n} p\right), G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right),\right. \\
\left.G\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), 0\right) \leq 0 . \\
\text { ISSN 1027-3190. Укp. мат. жури., 2013, т. 65, № } 6
\end{gathered}
$$

By $\left(F_{2}\right)$ we obtain

$$
G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq h G\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \ldots \leq h^{n} G(p, T p, T p)
$$

Since $p \in T^{n} p$, then

$$
G(p, T p, T p)=G\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)
$$

Therefore

$$
G(p, T p, T p) \leq h^{n} G(p, T p, T p)
$$

which implies $G(p, T p, T p)=0$, i.e., $p=T p$ and T has property (P).
Theorem 5.1 is proved.
Corollary 5.1. In the condition of Corollary 4.6, T has property (P).
Remark 5.1. Corollary 5.1 is a generalization of the results from Theorem 2.6 [1].
Corollary 5.2. In the condition of Corollary 4.4 with $k \in\left[0, \frac{1}{2}\right)$, instead $k \in[0,1), T$ has property (P).

Remark 5.2. We obtain other new results from Examples 3.1-3.10.

1. Abbas M., Nazir T., Radanović S. Some periodic point results in generalized metric spaces // Appl. Math. and Comput. 2010. - 217. - P. 4094-4099.
2. Chung R., Kasian T., Rasie A., Rhoades B. E. Property (P) in G-metric spaces // Fixed Point Theory and Appl. 2010. - Art. ID 401684. - 12 p.
3. Dhage B. C. Generalized metric spaces and mappings with fixed point // Bull. Calcutta Math. Soc. - 1992. - 84. P. 329-336.
4. Dhage B. C. Generalized metric spaces and topological structures I // An. şti. Univ. Iaşi. Ser. mat. - 2000. - 46, № 1. P. 3-24.
5. Jeong G. S. More maps for which $F(T)=F\left(T^{n}\right) / /$ Demonstr. math. - 2007. - 40, № 3. - P. 671-680.
6. Jeong G. S., Rhoades B. E. Maps for which $F(T)=F\left(T^{n}\right) / /$ Fixed Point Theory and Appl. - Nova Sci. Publ., 2007. - 6.
7. Mustafa Z., Sims B. Some remarks concerning D-metric spaces // Int. Conf. Fixed Point. Theory and Appl. - 2004. P. 184-198.
8. Mustafa Z., Sims B. A new approach to generalized metric spaces // J. Nonlinear Convex Analysis. - 2006. - 7. P. 289-297.
9. Mustafa Z., Obiedat H., Awawdeh F. Some fixed point theorems for mappings on G-complete metric spaces // Fixed Point Theory and Appl. - 2008. - Article ID 189870. - 10 p.
10. Mustafa Z., Sims B. Fixed point theorems for contractive mappings in complete G-metric spaces // Fixed Point Theory and Appl. - 2009. - Article ID 917175. - 10 p.
11. Mustafa Z., Obiedat H. A fixed point theorem of Reich in G-metric spaces // Cubo A. Math. J. - 2010. - 12. P. 83-93.
12. Mustafa Z., Khandagji M., Shatanawi W. Fixed point results on complete G-metric spaces // Stud. Sci. Math. hung. 2011. - 48, № 3. - P. 304-319.
13. Popa V. Fixed point theorems for implicit contractive mappings // Stud. cerc. St. Ser. Mat. Univ. Bacău. - 1997. - 7. P. 129-133.
14. Popa V. Some fixed point theorems for compatible mappings satisfying implicit relations // Demonstr. math. - 1999. 32. - P. 157-163.
15. Rhoades B. E., Abbas M. Maps satisfying contractive conditions of integral type for which $F(T)=F\left(T^{n}\right) / /$ Int. Pure and Appl. Math. - 2008. - 45, № 2. - P. 225-231.
