DERIVATIONS ON PSEUDOQUOTIENTS ПОХІДНІ НА ПСЕВДОЧАСТКАХ

A space of pseudoquotients, denoted by $\mathcal{B}(X, S)$, is defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X, f is an element of S, a commutative semigroup of injective maps from X to X, and $(x, f) \sim(y, g)$ if $g x=f y$. If X is a ring and elements of S are ring homomorphosms, then $\mathcal{B}(X, S)$ is a ring. We show that, under natural conditions, a derivation on X has a unique extension to a derivation on $\mathcal{B}(X, S)$. We also consider (α, β)-Jordan derivations, inner derivations, and generalized derivations.
Введено означення простору псевдочасток $\mathcal{B}(X, S)$ як класів еквівалентності пар (x, f), де x-елемент непорожньої множини X, f - елемент комутативної напівгрупи S ін'єктивних відображень із X у X та $(x, f) \sim(y, g)$, якщо $g x=f y$. Якщо X - кільце та елементи S є гомоморфізмами кільця, то $\mathcal{B}(X, S)$ є кільцем. Показано, що за природних умов похідна на X має єдине розширення до похідної на $\mathcal{B}(X, S)$. Також розглянуто (α, β)-жорданові похідні, внутрішні похідні та узагальнені похідні.

1. Introduction. Let X be a ring (or an algebra) with the unit I. An additive (or linear) map δ from X into it self is called a derivation if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $A, B \in X$. Derivations are very important both in theory and applications, and are studied by many mathematicians. An additive (or linear) map δ from a ring (or an algebra) X into itself is called a Jordan derivation if $\delta\left(A^{2}\right)=\delta(A) A+A \delta(A)$ for all $A \in X$.

Let X be any nonempty set and S be a commutative semigroup acting on X injectively. This means that every $\phi \in S$ is an injective map $\phi: X \rightarrow X$ and $(\phi \psi) x=\phi(\psi x)$ for all $\phi, \psi \in S$ and $x \in S$ and $x \in X$. For $(x, \phi),(y, \psi) \in X \times S$ we write $(x, \phi)(y, \psi)$ if $\psi x=\phi y$.

It is easy to check that is an equivalence relation in $X \times S$, finally we define
$B(X, S)=(X \mathrm{x} S) / \sim$. The equivalence class of (x, ϕ) will be denoted by $\frac{x}{\phi}$. The set of psedoquotients.

This is a slight absue of notion, but we follow here the tradition of denoting rational numbers by $\frac{p}{q}$ even through the same formal problem is present there.

Elements of X can be identified with elements of $B(X, S)$ via the embedding $\iota: X \rightarrow B(X, S)$ defined by

$$
\iota(x)=\frac{\phi x}{\phi}
$$

where ϕ is an arbitrary element of S , clearly is well defined that is, it is independent of ϕ. Action of S can be extended to $B(X, S)$ via

$$
\phi \frac{x}{\psi}=\frac{\phi x}{\psi}
$$

If $\phi \frac{x}{\psi}=i(y)$, for some $y \in X$, we will write $\phi \frac{x}{\psi} \in X$ and $\phi \frac{x}{\psi}=y$, which formally incorrect, but convenient and harmless. For instance, we have $\phi \frac{x}{\phi}=x$.

Element of S, when extended to maps on $B(X, S)$, become bijections. The action of ψ^{-1} on $B(X, S)$ can be defined as

$$
\psi^{-1} \frac{x}{\phi}=\frac{x}{\phi \psi} .
$$

Consequently, S can be extended to a commutative group of bijections acting on $B(X, S)$.
If (X, \odot) is a commutative group and S is a commutative semigroup of injective homomorphsims on X, then $B(X, S)$ is a commutative group with the operation defined as

$$
\frac{x}{\phi} \odot \frac{y}{\psi}=\frac{\psi x \odot \phi y}{\phi \psi}
$$

Similarly, if X is a vector space and S is a commutative semigroup of injective linear mapping from X into X, then $B(X, S)$ is a vector space with the operation defined as

$$
\frac{x}{\phi}+\frac{y}{\psi}=\frac{\psi x+\phi y}{\phi \psi} \quad \text { and } \quad \lambda \frac{x}{\phi}=\frac{\lambda x}{\phi} .
$$

If $\delta: X \rightarrow X$, if δ extends to a map $\hat{\delta}: B(X, S) \rightarrow B(X, S)$, it is often important to know what properties of δ are inherited by $\hat{\delta}$. In this section we consider some special situations when an extension is possible, which are important for the particular case studied in this paper .

If $\delta(f x)=f \delta(x)$ for all $x \in X$ and all $f \in S$, then we say that δ commutes with S.
The following Proposition 1.1 in [1] is use full to prove the following theorems.
Proposition 1.1. Let $\delta: X \rightarrow X$. Then

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is a well-defined extension of δ to $\hat{\delta}: B(X, S) \rightarrow B(X, S)$ if and only if δ commutes with S.
2. Derivation on pseudoquotients. In this section we study about extension of (α, β)-derivations on $B(X, S)$. And show under certain conditions it commutes with f is an injective ring homomorphisms form set S on X. Where S is a commutative semigroup of injective ring homomorphisms.
2.1. ($\alpha, \boldsymbol{\beta}$)-Derivations. Let X be a ring and let α and β be endomorphisms of X. By an (α, β)-derivation on X we mean a map $\delta: X \rightarrow X$ such that

$$
\delta(x y)=\delta(x) \beta(y)+\alpha(x) \delta(y) \quad \text { for all } \quad x, y \in X
$$

A (1,1)-derivation, where 1 is the identity map on X is called simply a derivation. That is, by a derivation we mean a map $\delta: X \rightarrow X$ such that

$$
\delta(x y)=\delta(x) y+x \delta(y) \quad \text { for all } \quad x, y \in X .
$$

Theorem 2.1. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. Let α and β be homomorphisms from X into itself that commute with S, that is, $\alpha f(x)=f \alpha(x)$ and $\beta f(x)=f \beta(x)$ for every $f \in S$ and $x \in X$. If δ is an (α, β)-derivation on X that commutes with S, then the map $\hat{\delta}: B \rightarrow B$ defined by

$$
\begin{equation*}
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f} \tag{2.1}
\end{equation*}
$$

is an extension of δ to an (α, β)-derivation on B.

Proof. Assume δ is an (α, β)-derivation on X that commutes with S. Then $\hat{\delta}$ is well-defined by Proposition 1.1 in [1]. In order to show that it is an (α, β)-derivation on B, consider $\frac{x}{f}, \frac{y}{g} \in B(X, G)$. Then

$$
\begin{aligned}
& \hat{\delta}\left(\frac{x}{f} \frac{y}{g}\right)=\frac{\delta(g x f y)}{f g}=\frac{\delta(g x) \beta(f y)+\alpha(g x) \delta(f y)}{f g}= \\
= & \frac{\delta x}{f} \frac{\beta(y)}{g}+\frac{\alpha(x)}{f} \frac{\delta y}{g}=\hat{\delta}\left(\frac{x}{f}\right) \beta\left(\frac{y}{g}\right)+\alpha\left(\frac{x}{f}\right) \hat{\delta}\left(\frac{y}{g}\right) .
\end{aligned}
$$

Theorem 2.1 is proved.
Corollary 2.1. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. If δ is a derivation on X that commutes with S, then the map $\hat{\delta}: B \rightarrow B$ defined by

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is an extension of δ to a derivation on B.
2.2. ($\alpha, \boldsymbol{\beta}$)-Jordan derivations. Let α and β be endomorphisms of X. By an (α, β)-Jordan derivation on X we mean a map $\delta: X \rightarrow X$ such that

$$
\delta\left(x^{2}\right)=\delta(x) \beta(x)+\alpha(x) \delta(x) \quad \text { for all } \quad x \in X
$$

A (1,1)-Jordan derivation, where 1 is the identity map on X is called simply a Jordan derivation. That is, by a Jordan derivation on X we mean a map $\delta: X \rightarrow X$ such that

$$
\delta\left(x^{2}\right)=\delta(x) x+x \delta(x) \quad \text { for all } \quad x \in X
$$

Theorem 2.2. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. Let α and β be homomorphisms from X into itself that commute with S, that is, $\alpha f(x)=f \alpha(x)$ and $\beta f(x)=f \beta(x)$ for every $f \in S$ and $x \in X$. If δ is an (α, β)-Jordan derivation on X that commutes with S, then the map $\hat{\delta}: B \rightarrow B$ defined by

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is an extension of δ to an (α, β)-Jordan derivation on B.
Proof. The proof is similar to the proof of Theorem 2.1.
Corollary 2.2. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. If δ is a derivation on X that commutes with S, then the map $\hat{\delta}: B \rightarrow B$ defined by

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is an extension of δ to a derivation on B.
In Theorem 2.2 and the above corollary it is necessary to assume that δ commutes with S. The next theorem describes a situation which guarantees that δ commutes with S.

Theorem 2.3. Let X be an unital Banach algebra and let f be an injective algebra homomorphism. Let α and β be algebra homomorphisms from X into itself that commute with f, if δ is a linear mapping on X such that

$$
\begin{equation*}
\delta\left(x x^{-1}\right)=\alpha(x) \delta\left(x^{-1}\right)+\delta(x) \beta\left(x^{-1}\right) \tag{2.2}
\end{equation*}
$$

for every invertible element $x \in X$, then δ is an (α, β)-Jordan derivation on X and commutes with f.
Proof. It is known that (2.2) implies $\delta(e)=0$, where e is the identity element in X. Therefore, $\delta(f e)=0$ for any f injective homomorphism on X. In order to show that linear mapping δ is a Jordan derivation and commutes with S we have to show that $\delta f y^{2}=f \delta y^{2}$. For any T in X. Let n be a positive integer with $n>\|T\|+e$ and $y=n e+T$. We have that y and $e-y$ are invertible in X. Since $\alpha\left(f x^{-1}\right)=\alpha(f x)^{-1}=f \alpha\left(x^{-1}\right)=f \alpha\left(x^{-1}\right)$ and $\beta\left(f x^{-1}\right)=\beta(f x)^{-1}=f \beta\left(x^{-1}\right)=f \beta\left(x^{-1}\right)$ for any invertible element x in X. Then

$$
\begin{gathered}
\delta(f y)=-\alpha(f y) \delta\left(f y^{-1}\right) \beta(f y)=-\alpha(f y) \delta\left(f y^{-1} f(e-y)^{2}-f y\right) \beta(f y)= \\
=\alpha(f y) \alpha\left(f y^{-1} f(e-y)^{2}\right) \delta\left(f(e-y)^{-2} f y\right) \beta\left(y^{-1}(e-y)^{2}\right) \beta(f y)+\alpha(f y) \delta(f y) \beta(f y)= \\
=\alpha(f y) \alpha\left(f y^{-1}-2 f e+f y\right) \delta\left(f(e-y)^{-2}-f(e-y)^{-1}\right) \beta\left(f y^{-1}-2 f e+f y\right) \beta(f y)+ \\
+\alpha(f y) \delta(f y) \beta(f y)= \\
=\left(e-2 \alpha(f y)+\alpha f(y)^{2}\right) \delta\left(f(e-y)^{-2}-f(e-y)^{-1}\right)\left(e-2 \beta(f y)+\beta f\left(y^{2}\right)\right)+ \\
+\alpha(f y) \delta(f y) \beta(f y)=\alpha\left(f(e-y)^{2}\right) \delta\left(f(e-y)^{-2}\right) \beta\left(f(e-y)^{2}\right)- \\
\left.-(\alpha f(e-y))^{2}\right) \delta\left((e-y)^{-1}\right)(\beta f(e-y))^{2}+\alpha(f y) \delta(f y) \beta(f y)= \\
=-\delta\left(f(e-y)^{2}\right)+\alpha f(e-y) \delta f(e-y) \beta f(e-y)+\alpha(f y) \delta(f y) \beta(f y)= \\
=2 \delta(f y)-\delta f\left(y^{2}\right)-\delta(f y)+\alpha(f y) \delta(f y)+\delta(f y) \beta(f y)- \\
-\alpha(f y) \delta(f y) \beta(f y)+\alpha(f y) \delta(f y) \beta(f y)= \\
=\delta(f y)-\delta\left(f y^{2}\right)+\alpha(f y) \delta(f y)+\delta(f y) \beta(f y) .
\end{gathered}
$$

Hence $\delta\left(f y^{2}\right)=\delta(f y) \beta(f y)+\alpha(f y) \delta(f y)$. Since $\delta(f e)=0$ and $f y=f(n e)+f t$, we have that $\delta\left(f t^{2}\right)=\delta(f t) \beta(f t)+\alpha(f t) \delta(f t)$ for any $t \in X$. Similarly we can show for $f \delta x$.

Theorem 2.3 is proved.
Corollary 2.3. Let X be an unital Banach algebra and let f be an injective algebra homomorphism on X. Let α and β be algebra homomorphisms from X onto itself that commute with f. If δ is a linear mapping on X such that

$$
\delta\left(x x^{-1}\right)=\alpha(x) \delta\left(x^{-1}\right)+\delta(x) \beta\left(x^{-1}\right)
$$

for every invertible element $x \in X$, then δ is an (α, β)-Jordan derivation on X that commutes with $S=\left\{f^{n}: n=1,2,3, \ldots\right\}$ and the map $\hat{\delta}: B(X, S) \rightarrow B(X, S)$, defined by

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is an extension of δ to an (α, β)-Jordan derivation on $B(X, S)$.
2.3. Idempotent. An idempotent element of a ring is an element which is idempotent with respect to the ring's multiplication, that is, $r^{2}=r$. A ring in which all elements are idempotent is called a Boolean ring.

Lemma 2.1. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. $\frac{x}{f}$ is idempotent in $B(X, S)$ if and only if x is idempotent in X.

Proof. If $\frac{x}{f}$ is idempotent in $B(X, S)$, then

$$
\frac{x}{f}=\frac{x}{f} \frac{x}{f}=\frac{f x f x}{f^{2}}=\frac{f\left(x^{2}\right)}{f^{2}}=\frac{x^{2}}{f}
$$

Consequently, $x=x^{2}$. The proof in the other direction follows from the above.
Theorem 2.4. Let X be a commutative ring and let S be a commutative semigroup of injective ring homomorphisms and let δ be a derivation on X that commutes with S. If $\hat{\delta}$ is the extension of δ onto $B(X, S)$ as defined by (2.1) and $\frac{x}{f} \in B(X, S)$ is idempotent, then
(i) $\hat{\delta}\left(\frac{x}{f}\right)=0$,
(ii) $\hat{\delta}\left(\frac{y}{g} \frac{x}{f}\right)=\hat{\delta}\left(\frac{y}{g}\right) \frac{x}{f}$ for any $\frac{y}{g} \in B(X, S)$,
(iii) $\hat{\delta}\left(\frac{x}{f} \frac{y}{g}\right)=\frac{x}{f} \hat{\delta}\left(\frac{y}{g}\right)$ for any $\frac{y}{g} \in B(X, S)$.

Proof. For any idempotent $\frac{x}{f} \in B(X, S)$, we have

$$
\hat{\delta}\left(\frac{x}{f}\right)=\hat{\delta}\left(\frac{x}{f} \frac{x}{f}\right)=\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f}+\frac{x}{f} \hat{\delta}\left(\frac{x}{f}\right)
$$

As X is a commutative ring,

$$
=\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f}+\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f}
$$

and consequently

$$
\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f}=\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f}+\hat{\delta}\left(\frac{x}{f}\right) \frac{x}{f} .
$$

This shows that $\hat{\delta}\left(\frac{x}{f}\right)=0$.

$$
\text { (ii) } \hat{\delta}\left(\frac{y}{g} \frac{x}{f}\right)=\hat{\delta}\left(\frac{y}{g}\right) \frac{x}{f}+\frac{g}{y} \hat{\delta}\left(\frac{x}{f}\right)=\frac{g}{y} \hat{\delta}\left(\frac{x}{f}\right) \text {. }
$$

Similarly we can show $\hat{\delta}\left(\frac{x}{f} \frac{y}{g}\right)=\frac{x}{f} \hat{\delta}\left(\frac{y}{g}\right)$.
Theorem 2.4 is proved.

By induction, it is easy to show that for any idempotents $\frac{x_{1}}{f}, \frac{x_{2}}{f}, \ldots, \frac{x_{n}}{f} \in B$ and any $\frac{y}{g} \in B$,

$$
\hat{\delta}\left(\frac{x_{1}}{f} \frac{x_{2}}{f} \ldots \frac{x_{n}}{f} \frac{y}{g}\right)=\frac{x_{1}}{f} \frac{x_{2}}{f} \ldots \frac{x_{n}}{f} \hat{\delta}\left(\frac{y}{g}\right) .
$$

2.4. Inner derivations. An inner derivation on X is a map $\delta: X \rightarrow X$ such that

$$
\delta(x)=x y-y x \quad \text { for each } \quad y \in X
$$

Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. $\delta: X \rightarrow X$ is an inner derivation for each $x \in X$ and for each $f \in S$

$$
\delta(x)=x f-f x
$$

Theorem 2.5. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. If δ is a inner derivation on X, then the map $\hat{\delta}: B \rightarrow B$ defined by $\hat{\delta}\left(\frac{x}{f}\right)=$ $=\frac{2 \delta(x)}{f}-\frac{\delta(f x)}{f^{2}}$ is an extension of δ to a inner derivation on B if $x f-f x$ commutes with S for every $f \in S$.
2.5. Generalized derivation. $\delta: X \rightarrow X$ is a map on X is called a generalized derivation if there exists a derivation $d: X \rightarrow X$ such that

$$
\delta(x y)=\delta(x) y+x d(y) \quad \text { for all } \quad x, y \in X
$$

Theorem 2.6. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. If δ is a generalized derivation on X, then the map $\hat{\delta}: B \rightarrow B$ defined by

$$
\hat{\delta}\left(\frac{x}{f}\right)=\frac{\delta(x)}{f}
$$

is an extension of δ to a generalized derivation on B.
Proof. Assume that δ and d commutes with S. In order to show that it is an δ is a generalized derivation on B, consider $\frac{x}{f}, \frac{y}{g} \in B(X, G)$:

$$
\begin{aligned}
& \hat{\delta}\left(\frac{x}{f} \frac{y}{g}\right)=\frac{\delta(g x f y)}{f g}=\frac{\delta(g x)(f y)+(g x) d(f y)}{f g}= \\
& =\frac{\delta x}{f} \frac{y}{g}+\frac{x}{f} \frac{d y}{g}=\hat{\delta}\left(\frac{x}{f}\right)\left(\frac{y}{g}\right)+\alpha\left(\frac{x}{f}\right) \hat{d}\left(\frac{y}{g}\right)
\end{aligned}
$$

Theorem 2.6 is proved.
Example 2.1. Let R be a commutative ring and let δ be a derivation on R. For an element $x \in R$ we denote by M_{x} the homomorphism defined by $M_{x}(y)=x y$. Let

$$
S=\left\{M_{x}: x \in R, M_{x} \text { is injective, and } \delta(x)=0\right\}
$$

Since

$$
\delta\left(M_{x}(y)\right)=\delta(x y)=\delta(x) y+x \delta(y)=x \delta(y)=M_{x}(\delta y)
$$

for every $M_{x} \in S, \delta$ can has a unique extension to a derivation on $\mathcal{B}(R, S)$.
For a simple example we can take for R the ring of polynomials in x and y and $\delta=\frac{\partial}{\partial y}$. Then S is not trivial and, since it contains homomorphism that are not surjective, $\mathcal{B}(R, S)$ is a nontrivial extension of R.

Example 2.2. Let \mathcal{N} be a nest algebra and S be a commutative semigroup acting on \mathcal{N} generated by finite rank operators. δ is a derivation on \mathcal{N} with $\delta(\phi)=0$.

Let for any arbitrary n from \mathcal{N} and ϕ from G. From [4] every finite rank operator in \mathcal{N} represented as a sum of rank one operators. From [3] Every rank one operator in \mathcal{N} denoted as linear combination of at most four idempotents.

Hence we have $\delta(\phi n)=\phi \delta(n)+n \delta(\phi)$. Where $\delta(\phi)=0$, for every rank one operator from S.

1. Atanasiu D., Mikusiński P., Nemzer D. An algebraic approach to tempered distributions // J. Math. Anal. and Appl. 2011. - 384. - P. 307-319.
2. JianKui Li., Jiren Zhou. Characterization of Jordan derivations and Jordan homomorphisms // Linear and Multilinear Algebra. - 2011. - 52, № 2. - P. 193-204.
3. Erdos J. A. Operator of finite rank in nest algebras // London Math.Soc. - 1968. - 43. - P. 391-397.
4. Hadwin L. B. Local multiplications on algebras spanned by idempotents // Linear and Multilinear Algebras. - 1994. 37. - P. 259-263.
