УДК 512.53

Е. А. Бондарь, Ю. В. Жучок (Луган. нац. ун-т им. Т. Шевченко)

ПОЛУГРУППЫ СИЛЬНЫХ ЭНДОМОРФИЗМОВ БЕСКОНЕЧНЫХ ГРАФОВ И ГИПЕРГРАФОВ

We define a class of infinite undirected graphs and a class of infinite n-uniform hypergraphs and prove that the semigroup of all strong endomorphisms of graphs and hypergraphs from these classes is isomorphic to the wreath product of a transformation monoid and a small category. We establish criterial conditions for the regularity of the semigroup of strong endomorphisms of infinite n-uniform hypergraphs.

Визначено один клас нескінченних неорієнтованих графів, один клас нескінченних n-однорідних гіперграфів і доведено, що будь-яка напівгрупа всіх сильних ендоморфізмів графів і гіперграфів таких класів ізоморфна вінцевому добутку моноїда перетворень і деякої малої категорії. Знайдено критеріальні умови регулярності напівгрупи сильних ендоморфізмів нескінченних n-однорідних гіперграфів.

1. Введение. Одним из методов исследования алгебраических систем является изучение множеств отображений, связанных с исходной системой определенным образом. Так, при изучении графов и их обобщений — гиперграфов — полезными оказываются их полугруппы эндоморфизмов. Исследованию различных свойств полугрупп эндоморфизмов графов и гиперграфов посвящено достаточно большое количество работ (см. обзоры [1-3]). Вместе с тем лишь немногие работы посвящены изучению полугрупп эндоморфизмов графов и их подполугрупп с точностью до изоморфизма (см., например, [4-6]).

Понятие сильного эндоморфизма графа было введено в [7] и использовалось для различных целей. Одним из первых структурных результатов о моноидах сильных эндоморфизмов является теорема Кнауэра – Нипорте [4] о точном представлении моноида сильных эндоморфизмов конечного неориентированного графа без кратных ребер в виде сплетения группы подстановок и малой категории. При этом, как было показано в [4], для бесконечного случая данная теорема не верна. В работах [8, 9] сильные эндоморфизмы графов вместе с другими типами эндоморфизмов используются для определения таких понятий, как спектр эндоморфизма и эндотип графа, с помощью которых можно классифицировать графы. Описание графов, у которых полугруппы сильных эндоморфизмов являются регулярными моноидами, рассматривалось в [10, 11]. Отношения Грина на моноиде сильных эндоморфизмов графа и некоторые их комбинаторные свойства изучались в роботах [12, 13]. В настоящей статье мы изучаем строение моноидов сильных эндоморфизмов бесконечных графов и гиперграфов.

Опишем кратко построение статьи. Второй пункт содержит все основные понятия. В третьем пункте доказывается, что моноид всех сильных эндоморфизмов любого бесконечного неориентированного графа заданного класса может быть точно представлен как сплетение подходящего моноида преобразований и некоторой малой категории. Этот результат дополняет основной результат работы [4]. В четвертом пункте показано, что любой бесконечный поднородный гиперграф является обобщенным лексикографическим произведением некоторых гиперграфов. Доказано, что полугруппа всех сильных эндоморфизмов любого бесконечного п-

однородного гиперграфа заданного класса изоморфна сплетению моноида сильных мономорфизмов канонического фактор-гиперграфа и малой категории. В последнем пункте изучается регулярность моноида сильных эндоморфизмов бесконечных n-однородных гиперграфов.

2. Основные понятия. Пусть V — непустое множество, E — некоторое множество неупорядоченных пар элементов из V. Пара X=(V,E) называется неориентированным графом с множеством вершин V и множеством ребер E. Множество вершин и ребер графа X будем обозначать также через V(X) и E(X) соответственно. Далее под графом X будем понимать неориентированный граф (V,E) без кратных ребер. Говорят, что две вершины x и y графа X смежны, если множество $\{x,y\}$ является ребром этого графа. Множеством связности N(x) вершины $x \in X$ называется множество всех вершин графа X, смежных с вершиной x.

Определим на множестве вершин графа X отношение эквивалентности ν , положив

$$x\nu y \Leftrightarrow N(x) = N(y).$$

Через x_{ν} обозначим класс эквивалентности по ν , содержащий x. Каноническим сильным фактор-графом X/ν называется граф, множество вершин которого — фактор-множество V/ν , а множество $\{a_{\nu},b_{\nu}\}$ является ребром тогда и только тогда, когда $\{a,b\}\in E(X)$.

Если X и Y — графы, то гомоморфизмом графа X в Y называется отображение $f\colon X\to Y$, для которого из того, что $\{x,y\}\in E(X)$, следует, что $\{xf,yf\}\in E(Y)$ для любых $x,y\in X$. Если f биективно и f^{-1} тоже гомоморфизм, то f называется изоморфизмом. Гомоморфизм $f\colon X\to Y$ называется сильным гомоморфизмом, если из того, что $\{xf,yf\}\in E(Y)$, следует, что $\{x,y\}\in E(X)$ для любых $x,y\in X$. Группу всех автоморфизмов графа X обозначим $\operatorname{Aut} X$, а моноид его сильных эндоморфизмов — $\operatorname{SEnd} X$. Отметим, что композиция отображений везде в работе осуществляется слева направо.

Пусть $\mathfrak G$ — класс всех бесконечных неориентированных графов X без кратных ребер, для которых при любом $\varphi \in S\mathrm{End}X$ выполняется условие

$$\forall x_{\nu} \in X/\nu \ \exists y_{\nu} \in X/\nu \colon x_{\nu}\varphi \subseteq y_{\nu}. \tag{1}$$

Определенный таким образом класс & непуст. Рассмотрим, например, бесконечный граф

$$X_1$$
 1
 2
 3
 4
 5

Пусть $k \in V(X_1)$ — фиксированное число. Тогда преобразование

$$x\varphi_k = x + k - 1$$

задает сильный эндоморфизм графа X_1 . Более того, все сильные эндоморфизмы графа X_1 исчерпываются сильными эндоморфизмами вида φ_k , $k \in V(X_1)$.

Понятно, что тождественное преобразование является сильным эндоморфизмом, который можно представить как φ_1 .

Пусть $\varphi \in S$ End X_1 и $a, b \in V(X_1)$ такие, что $a\varphi = b$. Если a = b = 1, то $\varphi = \varphi_1$.

Если b=1, а элемент $a\neq 1$, то $(a-1)\varphi=2=(a+1)\varphi$. Поскольку $\{a+1,a+2\}\in E(X_1)$, то $\{a+1,a+2\}\varphi=\{(a-1)\varphi,(a+2)\varphi\}\in E(X_1)$, откуда $\{a-1,a+2\}\in E(X_1)$, и мы приходим к противоречию.

Пусть $b \neq 1$ (a- произвольный), тогда $(a+1)\varphi$ может быть равным либо b+1, либо b-1. Предположим сначала, что $(a+1)\varphi=b-1$. В случае, когда $(a+2)\varphi=b$, получаем, что $(a+3)\varphi$ равно b-1 или b+1. В каждом из этих случаев $\{a,a+3\}\in E(X_1)$, так как φ — сильный эндоморфизм. Следовательно, $(a+2)\varphi=b-2$. Рассуждая аналогично, можно показать, что последовательность образов $a\varphi, (a+1)\varphi, (a+2)\varphi, \ldots, (a+b-1)\varphi$ убывает. Тогда $(a+b-1)\varphi=1$, где $a+b-1\neq 1$, и, как было показано выше, в этом случае получаем противоречие. Следовательно, $(a+1)\varphi=b+1$.

Рассуждая так же, получаем $(a+2)\varphi=b+2,$ $(a+3)\varphi=b+3$ и т. д. Тогда если a=1, то единственным образом получаем

$$1\varphi = b, \ 2\varphi = b+1, \ 3\varphi = b+2, \ \dots, \ n\varphi = b+n-1, \ \dots$$

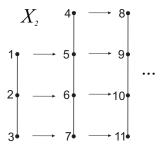
и, следовательно, $\varphi = \varphi_b$.

Кроме того, поскольку все классы эквивалентности по отношению ν одноэлементны, для любого класса $x_{\nu} \in X_1/\nu$ имеем

$$x_{\nu}\varphi_{k} = \{x\varphi_{k}\} = \{x+k-1\} = (x+k-1)_{\nu},$$

т. е. выполняется условие (1). Таким образом, $X_1 \in \mathfrak{G}$.

Заметим, что класс $\mathfrak G$ не совпадает с классом всех бесконечных неориентированных графов без кратных ребер. Например, граф X_2 (см. рисунок) не принадлежит классу $\mathfrak G$.



Действительно, пусть преобразование γ графа X_2 такое, как показано на рисунке. Нетрудно убедиться, что γ — сильный эндоморфизм, при этом в точности две вершины этого графа ν -эквивалентны и образовывают единственный двухэлементный класс $1_{\nu}=\{1,3\}$ в каноническом сильном фактор-графе X_2/ν . Однако $1\gamma=5\in 5_{\nu}$, а $3\gamma=7\in 7_{\nu}$, следовательно, для класса 1_{ν} условие (1) не выполняется.

- 3. Сильные эндоморфизмы бесконечных неориентированных графов. Обозначим через $S\mathrm{Mon}X$ полугруппу всех сильных инъективных эндоморфизмов графа X. Элементы из $S\mathrm{Mon}X$ будем называть сильными мономорфизмами. Понятно, что если граф X конечный, то $S\mathrm{Mon}X = \mathrm{Aut}X$.
- **Лемма 3.1.** Пусть X произвольный граф класса \mathfrak{G} . Преобразование φ графа X будет его сильным эндоморфизмом тогда и только тогда, когда преобразование

$$\varphi^* \colon X/\nu \to X/\nu \colon x_\nu \mapsto (x\varphi)_\nu$$

является сильным мономорфизмом фактор-графа X/ν .

Доказательство. Пусть $\varphi \in S\mathrm{End}X$, тогда φ отображает элементы из разных классов эквивалентности ν в элементы разных классов. Действительно, если $x, y \in X$ такие, что $x_{\nu} \neq y_{\nu}$, то, не нарушая общности рассуждений, можно предположить, что существует вершина $a \in N(x)$, которая не принадлежит N(y). Тогда $\{x,a\}\varphi = \{x\varphi,a\varphi\} \in E(X)$ и $\{y,a\}\varphi = \{y\varphi,a\varphi\} \notin E(X)$, следовательно, $(x\varphi)_{\nu} \neq (y\varphi)_{\nu}$. Таким образом, φ^* инъективно.

Пусть $x, y \in X$. Тогда

$$\{x_{\nu}, y_{\nu}\} \in E(X/\nu) \Leftrightarrow \{x, y\} \in E(X) \Leftrightarrow \{x\varphi, y\varphi\} \in E(X) \Leftrightarrow$$
$$\Leftrightarrow \{(x\varphi)_{\nu}, (y\varphi)_{\nu}\} = \{x_{\nu}, y_{\nu}\}\varphi^{*} \in E(X/\nu).$$

Таким образом, φ^* — сильный мономорфизм графа X/ν .

Пусть теперь преобразование $\, \varphi \,$ графа X такое, что $\, \varphi^* \in S\mathrm{Mon}X/\nu.$ Тогда для любых $x,\,y \in X$

$$\{x,y\} \in E(X) \Leftrightarrow \{x_{\nu},y_{\nu}\} \in E(X/\nu) \Leftrightarrow \{x_{\nu},y_{\nu}\}\varphi^* =$$
$$= \{(x\varphi)_{\nu},(y\varphi)_{\nu}\} \in E(X/\nu) \Leftrightarrow \{x\varphi,y\varphi\} \in E(X).$$

Лемма 3.1 доказана.

Предложение 3.1. Для каждого графа X класса $\mathfrak G$ справедливо $S\mathrm{End}X/\nu=S\mathrm{Mon}X/\nu$. Доказательство. Пусть $\pi\in S\mathrm{End}X/\nu$. Зафиксируем в каждом классе $A\in X/\nu$ по представителю $\hat A$ и определим на множестве X преобразование f, положив $af=\widehat{a_{\nu}\pi}$ для всех $a\in X$. Для любых не ν -эквивалентных $x,y\in X$

$$\{x,y\} \in E(X) \Leftrightarrow \{x_{\nu}, y_{\nu}\} \in E(X/\nu) \Leftrightarrow \{x_{\nu}\pi, y_{\nu}\pi\} \in E(X/\nu) \Leftrightarrow$$
$$\Leftrightarrow \{\widehat{x_{\nu}\pi}, \widehat{y_{\nu}\pi}\} = \{x,y\}f \in E(X).$$

Если же $x\nu y$, то

$$\{x,y\} \in E(X) \Leftrightarrow \{x_{\nu}\} \in E(X/\nu) \Leftrightarrow \{x_{\nu}\pi\} \in E(X/\nu) \Leftrightarrow$$

$$\Leftrightarrow \{\widehat{x_{\nu}\pi}\} = \{x,y\}f \in E(X).$$

Таким образом, $f \in S$ EndX и по лемме 3.1 $f^* = \pi \in S$ Mon X/ν .

Предложение 3.1 доказано.

Обобщенным лексикографическим произведением $U[(Y_u)_{u\in U}]$ графа X и графов $(Y_u)_{u\in U}$ называется такой граф, у которого

$$V(U[(Y_u)_{u \in U}]) = \{(u, y_u) | u \in U, y_u \in Y_u\},\$$

а $\{(u,y_u),(v,y_v')\}$ является ребром $U[(Y_u)_{u\in U}]$ тогда и только тогда, когда $\{u,v\}\in E(U)$ или u=v и $\{y_u,y_u'\}\in E(Y_u)$.

Вполне несвязный граф, т. е. граф без ребер, называется 0-графом.

Предложение 3.2 [4]. Пусть X- произвольный неориентированный граф без кратных ребер, $U=X/\nu-$ его канонический сильный фактор-граф, $Y_u,\,u\in U-$ 0-графы такие, что $|Y_u|=|u|$ для всех $u\in U.$ Тогда

$$X \cong U[(Y_u)_{u \in U}].$$

Далее будем отождествлять вершины графа X и соответствующие им элементы из обобщенного лексикографического произведения $U[(Y_u)_{u \in U}]$.

Пусть $\mathcal C$ — малая категория, R — моноид, который действует справа на множестве $\operatorname{Ob}\mathcal C$ объектов этой категории, и $M=\bigcup_{x,y\in\operatorname{Ob}\mathcal C}\operatorname{Mor}_{\mathcal C}(x,y)$ — множество всех морфизмов категории

 \mathcal{C} . Через $\mathrm{Map}(\mathrm{Ob}\,\mathcal{C},M)$ обозначим множество всех отображений из $\mathrm{Ob}\,\mathcal{C}$ в M.

Положим

$$W = \{(r, f) | r \in R, f \in \operatorname{Map}(\operatorname{Ob} \mathcal{C}, M), xf \in \operatorname{Mor}_{\mathcal{C}}(x, xr)$$
 для всех $x \in \operatorname{Ob} \mathcal{C}\}$

и для всех $(r, f), (s, g) \in W$ определим умножение

$$(r, f)(s, g) = (rs, fg_r),$$

где $x(fg_r) = xf(xr)g$ для любого $x \in \mathrm{Ob}\,\mathcal{C}$ и xf(xr)g — композиция морфизмов xf и (xr)g в категории \mathcal{C} . Заданная таким образом операция ассоциативна. Кроме того, в полугруппе W есть единица (1,e), где $e \in \mathrm{Map}(X,M)$ такой, что $xe \in \mathrm{Mor}_{\mathcal{C}}(x,x)$ — тождественный морфизм i_x для любого объекта x из \mathcal{C} .

Моноид W с таким умножением называется сплетением моноида R с категорией \mathcal{C} и обозначается R wr \mathcal{C} . Данная конструкция является двойственной к конструкции, определенной в [4], где умножение определялось следующим образом:

$$(r, f)(s, g) = (rs, f_p g).$$

Пусть $G=U[(Y_u)_{u\in U}]$ — произвольный граф класса \mathfrak{G} . Определим малую категорию \mathcal{K}_G , положив $\mathrm{Ob}\,\mathcal{K}_G=\{Y_u\,|\,u\in U\}$ и обозначив для любых двух объектов $Y_u,\,Y_v\in\mathrm{Ob}\,\mathcal{K}_G$ через $\mathrm{Mor}_{\mathcal{K}}(Y_u,Y_v)$ множество всех отображений из Y_u в Y_v . Тогда

$$\mathrm{Mor}\mathcal{K}_G = \bigcup_{u,v \in U} \mathrm{Mor}_{\mathcal{K}_G}(Y_u, Y_v)$$

и моноид $S\mathrm{Mon}U$ естественно действует справа на $\mathrm{Ob}\,\mathcal{K}_G$:

$$Y_u\alpha = Y_{u\alpha}, \ \alpha \in S\mathrm{Mon}U.$$

Таким образом, получаем сплетение $S\operatorname{Mon} U$ wr \mathcal{K}_G моноида $S\operatorname{Mon} U$ и малой категории \mathcal{K}_G .

Пусть $(\alpha, f) \in S \operatorname{Mon} U \operatorname{wr} \mathcal{K}_G$, где $\alpha \in S \operatorname{Mon} U$, $f \in \operatorname{Map} (\operatorname{Ob} \mathcal{K}_G, \operatorname{Mor} \mathcal{K}_G)$. Тогда $Y_u f \in \operatorname{Map} (Y_u, Y_{u\alpha})$ для всех $Y_u \in \operatorname{Ob} \mathcal{K}_G$. Через f_u будем обозначать $Y_u f$, где $y_u f_u \in Y_{u\alpha}$ для всех $y_u \in Y_u$. Одним из основных результатов данной работы является следующая теорема.

Теорема 3.1. Пусть $G = U[(Y_u)_{u \in U}] - n$ роизвольный граф класса \mathfrak{G} , \mathcal{K}_G — малая категория, определенная ранее. Тогда

$$S$$
End $G \cong S$ Mon U wr \mathcal{K}_G .

Доказательство. Пусть $G \in \mathfrak{G}$ — произвольный граф, $\zeta \in S$ EndG. По лемме 3.1 преобразование $\zeta^* \in S$ Mon U. Определим отображение

$$p: \mathrm{Ob}\,\mathcal{K}_G \to \mathrm{Mor}\,\mathcal{K}_G \colon Y_u \mapsto p_u$$

где для каждого $u \in U$ имеем

$$p_u \colon Y_u \to Y_{u\zeta^*} \colon y_u \mapsto y_v, \;\;$$
если $(u, y_u)\zeta = (v, y_v).$

Таким образом, $(u, y_u)\zeta = (u\zeta^*, y_up_u)$, и корректно заданным будет отображение

$$\xi: S \operatorname{End} G \to S \operatorname{Mon} U \text{ wr } \mathcal{K}_G: \zeta \mapsto (\zeta^*, p).$$

Пусть $\varphi, \psi \in S$ EndG и $\varphi \xi = (\varphi^*, g), \psi \xi = (\psi^*, h), (\varphi \psi) \xi = ((\varphi \psi)^*, f).$ Тогда

$$(u(\varphi\psi)^*, y_u f_u) = (u, y_u)(\varphi\psi) = ((u, y_u)\varphi)\psi = (u\varphi^*, y_u g_u)\psi =$$

$$= ((u\varphi^*)\psi^*, (y_ug_u)h_{u\varphi^*}) = (u(\varphi^*\psi^*), y_u(g_uh_{u\varphi^*})).$$

Следовательно,

$$u(\varphi\psi)^* = u(\varphi^*\psi^*), \ y_u f_u = y_u(g_u h_{u\varphi^*}).$$

Итак,

$$(\varphi\psi)\xi = ((\varphi\psi)^*, f) = (\varphi^*\psi^*, qh_{\varphi^*}) = (\varphi^*, q)(\psi^*, h) = (\varphi\xi)(\psi\xi),$$

т. е. ξ — гомоморфизм.

Пусть $\varphi, \psi \in S$ EndG такие, что $\varphi \neq \psi$. Тогда $(u, y_u)\varphi \neq (u, y_u)\psi$ для некоторого $(u, y_u) \in G$. Следовательно, либо $u\varphi^* \neq u\psi^*$, либо $u\varphi^* = u\psi^*$ и $y_ug_u \neq y_uh_u$, т. е. $\varphi\xi \neq \psi\xi$ в обоих случаях.

Далее, возьмем произвольный элемент $(\gamma,q) \in S$ Mon U wr \mathcal{K}_G . Отсюда $\gamma \in S$ Mon U, $q_u \in Map(Y_u,Y_{u\gamma})$. Рассмотрим преобразование μ графа G такое, что $(u,y_u)\mu = (u\gamma,y_uq_u)$ для всех $(u,y_u) \in G$. Поскольку для любого $(v,y_v) \in G$

$$v\mu^* = ((v, y_v)\mu)_{\nu} = ((v\gamma, y_vq_v))_{\nu} = v\gamma,$$

то $\mu^* \in S\mathrm{Mon}\,U$, откуда по лемме 3.1 имеем $\mu \in S\mathrm{End}G$. При этом ясно, что $\mu \xi = (\gamma,q)$. Теорема 3.1 доказана.

Заметим, что все конечные неориентированные графы без кратных ребер также удовлетворяют условию (1). В самом деле, пусть G — конечный неориентированный граф без кратных ребер и γ — его сильный эндоморфизм. Так же, как и при доказательстве леммы 3.1, можно показать, что γ отображает элементы различных классов эквивалентности ν в элементы разных классов. Следовательно, в силу конечности G в образе любого сильного эндоморфизма этого

графа всегда будет хотя бы один представитель каждого класса эквивалентности ν . Предположим, что элементы x,y из G ν -эквивалентны, при этом $(x\gamma,y\gamma)\notin\nu$. Тогда для некоторого $z'\in G$ имеем $\{x\gamma,z'\}\in E(G)$ и $\{y\gamma,z'\}\notin E(G)$. Если $z\in z'_{\nu}\gamma^{-1}$, то $\{x,z\}\in E(G)$ и $\{y,z\}\notin E(G)$, что противоречит условию $x\nu y$.

Таким образом, теорема 3.1 справедлива для любых неориентированных графов без кратных ребер, удовлетворяющих условию (1). В частности, если граф G конечен, то в качестве следствия получаем следующий результат.

Теорема 3.2 [4]. Пусть $G = U[(Y_u)_{u \in U}]$ — конечный неориентированный граф без кратных ребер. Тогда

$$S$$
End $G \cong Aut U wr \mathcal{K}_G .$

4. Сильные эндоморфизмы бесконечных n-однородных гиперграфов. Для конечных n-однородных гиперграфов описание моноида сильных эндоморфизмов в терминах сплетения группы и малой категории было анонсировано в [14]. В настоящей работе получен подобный результат для бесконечных n-однородных гиперграфов, удовлетворяющих условию, аналогичному (1).

Пусть V — произвольное непустое множество, $\mathcal E$ — семейство непустых (необязательно различных) подмножеств из V. Пара $(V,\mathcal E)$ называется гиперграфом с множеством вершин V и множеством ребер $\mathcal E$.

Равные подмножества в $\mathcal E$ называются кратными ребрами. Если вершина $x\in V$ принадлежит ребру $e\in \mathcal E$, говорят, что они инцидентны. Число вершин, инцидентных данному ребру $e\in \mathcal E$, называется степенью ребра e и обозначается |e|. Степенью $\rho(v)$ вершины $v\in V$ называется число ребер, инцидентных вершине v.

Через H будем обозначать произвольный гиперграф (V,\mathcal{E}) . Множество вершин и множество ребер гиперграфа H будем обозначать также через V(H) и $\mathcal{E}(H)$ соответственно.

Пусть n — целое неотрицательное число. Если в гиперграфе H нет кратных ребер и степень любого ребра e равна n, то гиперграф H называется n-однородным гиперграфом [15]. Обозначим через C_n класс всех n-однородных гиперграфов.

Преобразование $\alpha\colon V\to V$ множества вершин гиперграфа $H\in C_n$ называется эндоморфизмом гиперграфа, если для любого $A\subseteq V$ из того, что $A\in\mathcal{E}$, следует $A\alpha\in\mathcal{E}$. Эндоморфизм $\alpha\colon V\to V$ гиперграфа $H\in C_n$ называется сильным эндоморфизмом [16], если для любого $A\subseteq V,\ |A|=n$ из того, что $A\alpha\in\mathcal{E}$, следует $A\in\mathcal{E}$. Множество всех сильных эндоморфизмов гиперграфа $H\in C_n$ относительно композиции преобразований является полугруппой, которую далее будем обозначать через $S\mathrm{End}H$.

Семейством связности $\mathcal{N}(x)$ вершины x гиперграфа $H \in C_n, n \geq 2,$ назовем семейство подмножеств $A \subseteq V$ таких, что

$$|A| = n - 1 \& A \cup \{x\} \in \mathcal{E}.$$

Лемма 4.1. Пусть H — произвольный гиперграф класса C_n и $x, y \in H$. Тогда существует сильный эндоморфизм f гиперграфа H такой, что xf = yf в том и только в том случае, когда выполняется одно из условий:

- (i) n = 0;
- (ii) $n = 1 \& \rho(x) = \rho(y)$;
- (iii) $n \geq 2 \& \mathcal{N}(x) = \mathcal{N}(y)$.

Доказательство. Пусть $f \in S$ EndH и xf = yf для некоторых $x, y \in H$. Понятно, что возможен один из случаев (i), (ii).

Пусть $n \geq 2$ и $A \subseteq X$. Тогда

$$A \in \mathcal{N}(x) \Leftrightarrow A \cup \{x\} \in \mathcal{E} \Leftrightarrow Af \cup \{xf\} = Af \cup \{yf\} \in \mathcal{E} \Leftrightarrow A \cup \{y\} \in \mathcal{E} \Leftrightarrow A \in \mathcal{N}(y).$$

Таким образом, $\mathcal{N}(x) = \mathcal{N}(y)$ и необходимость доказана.

Пусть теперь преобразование f гиперграфа $H \in C_n$ определяется правилом

$$zf = egin{cases} x, & ext{если } z = y, \ z & - ext{в остальных случаях} \end{cases}$$

для всех $z \in V$. Очевидно, $f \in SEndH$, если n = 0.

Пусть выполняется условие (ii) и $a \in V$. Равносильность $a \in \mathcal{E} \Leftrightarrow af \in \mathcal{E}$ справедлива для a = y, так как $\rho(x) = \rho(y)$, и для $a \neq y$, так как в этом случае af = a. Следовательно, $f \in S\mathrm{End}H$.

Пусть далее выполняется условие (iii) и $e \subseteq V$, |e| = n. Если $y \notin e$, то из $e \in \mathcal{E}$ следует $ef = e \in \mathcal{E}$. Если же $y \in e$, то $e = A \cup \{y\}$ и, значит, $A \in \mathcal{N}(x)$, следовательно,

$$e \in \mathcal{E} \Rightarrow ef = Af \cup \{yf\} = A \cup \{x\} \in \mathcal{E}.$$

Таким образом, f — эндоморфизм.

Пусть $ef \in \mathcal{E}$. Если $x \notin ef$, то для любого $a \in ef$ справедливо $af^{-1} = a$, поэтому $e = ef \in \mathcal{E}$. Предположим, что $x \in ef$, т.е. $ef = M \cup \{x\}$, где $M \in \mathcal{N}(x)$. Тогда либо $e = M \cup \{x\} = ef \in \mathcal{E}$, либо $e = M \cup \{y\} \in \mathcal{E}$, поскольку $\mathcal{N}(x) = \mathcal{N}(y)$. Случай, когда $e = M \cup \{x,y\}$, не рассматривается, так как |e| > n. Следовательно, $f \in S \operatorname{End} H$.

Лемма 4.1 доказана.

Пусть H — произвольный гиперграф класса C_n . Из леммы 4.1 следует, что на H естественно возникает бинарное отношение δ :

$$x\delta y \Leftrightarrow egin{cases}
ho(x) =
ho(y), & ext{ если } n \in \{0,1\}, \\ \mathcal{N}(x) = \mathcal{N}(y), & ext{ если } n \geq 2. \end{cases}$$

Ясно, что δ — отношение эквивалентности. Обозначим класс эквивалентности, содержащий элемент $a\in H$, через a_δ . Если $A\subseteq V$, то положим $A_\delta=\{a_\delta\mid a\in A\}$. Напомним, что если $D=\{Y_i\mid i\in I\}$ — совокупность некоторых подмножеств данного множества X, то трансверсалью семейства D называется множество всех представителей, взятых в точности по одному из каждого подмножества $Y_i, i\in I$.

Через H/δ будем обозначать гиперграф, вершины которого состоят из классов эквивалентности $x_\delta, \ x \in V$, а множество ребер $\mathcal{E}(H/\delta)$ содержит $A_\delta, \ A \subseteq V$ тогда и только тогда, когда некоторая трансверсаль семейства A_δ является ребром гиперграфа H. Полученный гиперграф назовем каноническим сильным фактор-гиперграфом гиперграфа H. Понятно, что если $A_\delta \in \mathcal{E}(H/\delta)$, то любая трансверсаль семейства A_δ является ребром гиперграфа H.

Обобщенным лексикографическим произведением $U[(Y_u)_{u\in U}]$ гиперграфа U и гиперграфов $(Y_u)_{u\in U}$ назовем такой гиперграф, у которого

$$V(U[(Y_u)_{u \in U}]) = \{(u, y_u) | u \in U, y_u \in Y_u\},\$$

а подмножество $A\subseteq V(U[(Y_u)_{u\in U}])$ будет ребром тогда и только тогда, когда выполняется одно из условий:

- (i) dom $(A) \in \mathcal{E}(U)$;
- (ii) dom $(A) = \{a\} \notin \mathcal{E}(U) \& \operatorname{im}(A) \in \mathcal{E}(Y_a).$

Предложение 4.1. Пусть H- произвольный гиперграф класса $C_n, \ \mathcal{U}=H/\delta-$ его канонический сильный фактор-гиперграф, $Y_u, \ u\in \mathcal{U}-$ 0-однородные гиперграфы такие, что $|Y_u|=|u|$ для всех $u\in \mathcal{U}$. Тогда

$$H \cong \mathcal{U}[(Y_u)_{u \in \mathcal{U}}].$$

Доказательство. Для каждого $u\in\mathcal{U}$ пусть τ_u — произвольная биекция из класса эквивалентности u на множество Y_u . Положим

$$\psi \colon H \to \mathcal{U}[(Y_u)_{u \in \mathcal{U}}] \colon x \mapsto (x_\delta, x\tau_{x_\delta}).$$

Пусть x, y — произвольные различные вершины из H. Если $(x,y) \notin \delta$, то $x_{\delta} \neq y_{\delta}$ и, следовательно, $x\psi \neq y\psi$. Если $(x,y) \in \delta$, то $x\tau_{x_{\delta}} \neq y\tau_{x_{\delta}}$ в силу биективности $\tau_{u}, u \in \mathcal{U}$, и тогда $x\psi \neq y\psi$. Поскольку τ_{u} сюръективно, то для любой пары $(u,y_{u}) \in \mathcal{U}[(Y_{u})_{u \in \mathcal{U}}]$ существует $t \in u$ такой, что $t\tau_{u} = y_{u}$, т. е. $t\psi = (u,y_{u})$.

Поскольку $Y_u, u \in \mathcal{U}-0$ -однородные гиперграфы, в лексикографическом произведении $\mathcal{U}[(Y_u)_{u\in\mathcal{U}}]$ все ребра определяются только условием (i) соответствующего определения. Тогда для всех $A\subseteq V$

$$A \in \mathcal{E}(H) \Leftrightarrow A_{\delta} \in \mathcal{E}(\mathcal{U}) \Leftrightarrow \{(x_{\delta}, x\tau_{x_{\delta}}) \mid x \in A\} = A\psi \in \mathcal{E}\left(\mathcal{U}[(Y_u)_{u \in \mathcal{U}}]\right).$$

Предложение 4.1 доказано.

Далее будем отождествлять вершины гиперграфа H и соответствующие им элементы обобщенного лексикографического произведения $\mathcal{U}[(Y_u)_{u\in\mathcal{U}}]$.

Пусть \mathfrak{C}_n — класс всех бесконечных n-однородных гиперграфов H, для которых при любом $\varphi \in S \operatorname{End} H$ выполняется условие

$$\forall x_{\delta} \in \mathcal{U} \ \exists y_{\delta} \in \mathcal{U} \colon x_{\delta} \varphi \subseteq y_{\delta}. \tag{2}$$

Ясно, что класс $\mathfrak{C}_0(\mathfrak{C}_1)$ совпадает с классом всех бесконечных 0-однородных (1-однородных) гиперграфов. В случае, когда $n \geq 2$ — натуральное, \mathfrak{C}_n является непустым собственным подклассом класса всех бесконечных n-однородных гиперграфов.

Лемма 4.2. Пусть $H = \mathcal{U}[(Y_u)_{u \in \mathcal{U}}]$ — произвольный гиперграф класса \mathfrak{C}_n . Преобразование φ гиперграфа H будет его сильным эндоморфизмом тогда и только тогда, когда преобразование

$$\varphi^* : \mathcal{U} \to \mathcal{U} : x_\delta \mapsto (x\varphi)_\delta$$

является сильным инъективным эндоморфизмом гиперграфа U.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6

Доказательство аналогично доказательству леммы 3.1.

Множество всех сильных инъективных эндоморфизмов гиперграфа H образует относительно композиции преобразований полугрупппу, которую обозначим через $S \, \mathrm{Mon} \, H$. Элементы из $S \mathrm{Mon} \, H$ будем называть сильными мономорфизмами.

Предложение 4.2. Для каждого гиперграфа H класса \mathfrak{C}_n справедливо равенство

$$S \operatorname{End} \mathcal{U} = S \operatorname{Mon} \mathcal{U}.$$

Доказательство. Пусть $H \in \mathfrak{C}_n$. Канонический сильный фактор-гиперграф 0-однородного гиперграфа является одноэлементным 0-однородным гиперграфом, следовательно, при n=0 имеем $S\operatorname{End}\mathcal{U}=S\operatorname{Mon}\mathcal{U}$. Для случая $n\geq 1$ доказательство аналогично доказательству предложения 3.1.

Предложение 4.2 доказано.

Пусть $H = \mathcal{U}[(Y_u)_{u \in \mathcal{U}}]$ — произвольный гиперграф класса \mathfrak{C}_n . Определим малую категорию \mathcal{K}_H , положив $\mathrm{Ob}\mathcal{K}_H = \{Y_u | u \in \mathcal{U}\}$, $\mathrm{Mor}\mathcal{K}_H = \bigcup_{u,v \in \mathcal{U}} \mathrm{Mor}\mathcal{K}_H(Y_u,Y_v)$, где $\mathrm{Mor}\mathcal{K}_H(Y_u,Y_v)$ — множество отображений из Y_u в Y_v . Моноид $\mathrm{Mon}\,\mathcal{U}$ при этом естественно действует справа на множестве объектов этой категории.

Теорема 4.1. Пусть $H = \mathcal{U}[(Y_u)_{u \in \mathcal{U}}] - n$ роизвольный гиперграф класса \mathfrak{C}_n , $\mathcal{K}_H -$ малая категория, определенная ранее. Тогда

$$S \operatorname{End} H \cong S \operatorname{Mon} \mathcal{U} \operatorname{wr} \mathcal{K}_H.$$

Доказательство. Пусть φ — произвольный сильный эндоморфизм гиперграфа $H \in \mathfrak{C}_n$. По лемме 4.2 $\varphi^* \in S \, \mathrm{Mon} \, \mathcal{U}$. Для каждого $u \in \mathcal{U}$ определим отображение f_u множества Y_u в $Y_{u\varphi^*}$, положив $y_u f_u = y_v$, если $(u, y_u) \varphi = (v, y_v)$. Тогда корректно определенным будет отображение

$$f: \operatorname{Ob} \mathcal{K}_H \to \operatorname{Mor} \mathcal{K}_H: Y_u \mapsto f_u$$
.

Аналогично доказательству теоремы 3.1 можно показать, что отображение

$$\xi \colon S \operatorname{End} H \to S \operatorname{Mon} \mathcal{U} \text{ wr } \mathcal{K}_H \colon \varphi \mapsto (\varphi^*, f)$$

является изоморфизмом.

Теорема 4.1 доказана.

Заметим, что, как и в случае конечных графов (см. пункт 3), аналогичным образом можно показать, что конечные n-однородные гиперграфы удовлетворяют условию (2). Следовательно, теорема 4.1 справедлива для любых n-однородных гиперграфов, удовлетворяющих условию (2).

5. Регулярность S**End**H**.** Условия регулярности моноида сильных эндоморфизмов для конечных неориентированных графов изучались в [4, 10]. В [11] было доказано, что полугруппа сильных эндоморфизмов произвольного графа регулярна тогда и только тогда, когда сильный фактор-граф U является S-неразложимым или, что эквивалентно, когда U не содержит ни одного изоморфного себе собственного подграфа. В этом пункте мы, использовав теорему 4.1, исследуем регулярность моноида сильных эндоморфизмов гиперграфов класса \mathfrak{C}_n .

Напомним, что моноид M называется регулярным, если для любого $a \in M$ существует $b \in M$ такой, что a = aba.

Теорема 5.1. Пусть $H = \mathcal{U}[(Y_u)_{u \in \mathcal{U}}]$ — произвольный гиперграф класса \mathfrak{C}_n . Моноид $S\mathrm{End}H$ регулярен тогда и только тогда, когда гиперграф \mathcal{U} не содержит собственных подгиперграфов, изоморфных \mathcal{U} .

Доказательство. Пусть моноид $S\mathrm{End}H$ регулярен и $\varphi,\psi\in S\mathrm{End}H$ такие, что $\varphi=\varphi\psi\varphi$. Согласно теореме 4.1 $\varphi=(\varphi^*,f),\,\psi=(\psi^*,g)$. Тогда, так как $\varphi^*=\varphi^*\psi^*\varphi^*$, имеем

$$a\psi^* = a\varphi^{*-1}$$
 для всех $a \in \text{Im}\varphi^*$,

и, следовательно, $(\operatorname{Im}\varphi^*)\psi^* = \mathcal{U}$. Таким образом, если $v \in \mathcal{U} \setminus \operatorname{Im}\varphi^* \neq \emptyset$, то каким бы ни был образ $v\psi^*$, найдется $m \in \operatorname{Im}\varphi^*$, $m \neq v$, такой, что $m\psi^* = v\psi^*$, что противоречит инъективности ψ^* . Следовательно, $\operatorname{Im}\varphi^* = \mathcal{U}$. Таким образом, $S\operatorname{Mon}\mathcal{U} = \operatorname{Aut}\mathcal{U}$, и, значит, гиперграф \mathcal{U} не содержит собственных подгиперграфов, изоморфных \mathcal{U} .

Наоборот, если $\mathcal U$ не содержит собственных подгиперграфов, изоморфных $\mathcal U$, то все элементы из $S \operatorname{Mon} \mathcal U$ сюрьективны и тогда полугруппа $S \operatorname{Mon} \mathcal U$ совпадает с $\operatorname{Aut} \mathcal U$. Следовательно, для любого φ можно построить $\psi = (\varphi^{*-1}, g)$, где

$$g_v \in \mathrm{Map}(Y_v, Y_{v\varphi^{*-1}}), \qquad y_v g_v \in \begin{cases} y_v (f_{v\varphi^{*-1}})^{-1}, & \text{если } y_v \in \mathrm{Im} f_{v\varphi^{*-1}}, \\ Y_{v\varphi^{*-1}} & -\text{в остальных случаях.} \end{cases}$$
 (3)

Для любой пары $(u, y_u) \in \mathcal{U}[(Y_u)_{u \in \mathcal{U}}]$ имеем

$$(u, y_u)\varphi\psi\varphi = (u\varphi^*\varphi^{*-1}\varphi^*, y_uf_ug_{u\varphi^*}f_{u\varphi^*\varphi^{*-1}}) = (u\varphi^*, y_uf_ug_{u\varphi^*}f_u).$$

Положим $y_u f_u = y_{u'} \in Y_{u\varphi^*=u'}$, т. е. $y_{u'} \in Im f_{u'\varphi^{*-1}}$. Тогда согласно (3)

$$y_{u'}g_{u'} \in y_{u'}(f_{u'\varphi^{*-1}})^{-1} = y_{u'}(f_u)^{-1}.$$

Кроме того, для любого $b \in \operatorname{Im} f_u \subseteq Y_{u'}$ и такого $a \in Y_u$, что $b = af_u$, справедливо $bf_u^{-1}f_u = af_u = b$, поэтому

$$y_{u'}g_{u'}f_u \in y_{u'}f_u^{-1}f_u = \{y_{u'}\} = \{y_uf_u\},$$

$$y_u f_u q_{u\varphi^*} f_u = y_{u'} q_{u'} f_u = y_u f_u.$$

Таким образом, $(u, y_u)\varphi\psi\varphi = (u\varphi^*, y_uf_ug_{u\varphi^*}f_u) = (u\varphi^*, y_uf_u) = (u, y_u)\varphi$ и, следовательно, $S\mathrm{End}H-$ регулярный моноид.

Теорема 5.1 доказана.

- 1. Molchanov V.A. Semigroups of mappings on graphs // Semigroup Forum. 1983. 27. P. 155-199.
- 2. Fan S.H. Generalized symmetry of graphs // Electron. Notes Discrete Math. 2005. 23. P. 51 60.
- 3. *Kelarev A., Ryan J., Yearwood J.* Cayley graphs as classifiers for data mining: The influence of asymmetries // Discrete Math. − 2009. − **309**, № 17. − P. 5360 − 5369.
- 4. *Knauer U., Nieporte M.* Endomorphisms of graphs I. The monoid of strong endomorphisms // Arch. Math. 1989. **52**. P. 607 614.
- Жучок Ю. В. Ендоморфізми відношень еквівалентності // Вісн. Київ. ун-ту. Фіз.-мат. науки. 2007. 3. С. 22 – 26.
- 6. Жучок Ю. В. Полугруппы эндоморфизмов 2-нильпотентных бинарных отношений // Фундам. и прикл. математика. -2008. -14, № 6. C. 75-83.

- 7. *Čulík K.* Zur Theorie der Graphen // Časopis Pěst. Mat. 1958. **83**. P. 133 155.
- 8. Böttcher M., Knauer U. Endomorphism spectra of graphs // Discrete Math. 1992. 109. P. 45 57.
- 9. Böttcher M., Knauer U. Postscript: Endomorphism spectra of graphs // Discrete Math. 2003. 270. P. 329 331.
- 10. Wilkeit E. Graphs with a regular endomorphism monoid // Arch. Math. 1996. 66. P. 344 352.
- 11. Fan S. H. Graphs whose strong endomorphism monoids are regular // Arch. Math. 1999. 73. P. 419 421.
- 12. Li W.-M. Green's relations on the strong endomorphism monoid of a graph // Semigroup Forum. 1993. 47. P. 209 214.
- 13. Li W.-M. The monoid of strong endomorphisms of a graph // Semigroup Forum. 1994. 49. P. 143 149.
- 14. *Bondar E*. The monoid of strong endomorphisms of hypergraphs // 8-ма міжнар. алгебр. конф. в Україні: збірник тез (англ. мовою) (Луганськ, 5 12 липня 2011 р.). Луганськ: Луган. нац. ун-т ім. Т. Шевченка, 2011. С. 248 250.
- 15. *Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И.* Лекции по теории графов. М.: Наука, 1990. 384 с.
- 16. Решетников A. B. Об определениях гомоморфизма гиперграфов // Материалы X междунар. сем. "Дискретная математика и ее приложения" (Москва, 1-6 февр. 2010 г.). М.: Изд-во Моск. гос. ун-та, 2010. С. 325-328.

Получено 02.02.12