R. Mirzaie (Imam Khomeini Int. Univ., Qazvin, Iran)

ON TYPICAL COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE ПРО ТИПОВІ КОМПАКТНІ ПІДМНОГОВИДИ ЕВКЛІДОВОГО ПРОСТОРУ

We show that typical compact submanifolds of R^{n} are nowhere differentiable with integer box dimensions.
Показано, що типові компактні підмноговиди простору R^{n} ніде не диференційовні при цілих розмірностях Мінковського

1. Introduction. A subset Y of a topological space X is called to be comeagre, if there is a countable collection $\left\{W_{i}\right\}$ of open and dense subsets of X such that $\bigcap_{i} W_{i} \subset Y$. Complement of a comeagre subset is called a meagre subset. A meagre subset can be considered as a countable union of nowhere dense subsets and they are negligible in some sense. So, we say that some property holds for typical elements of X, if it holds on a comeagre subset. Let X be a metric space and $C(X)$ be the set of all compact subsets of X. The Hausdorff metric d_{H} is defined on $C(X)$ by

$$
d_{H}(E, F)=\max \left\{\sup _{x \in E} \inf _{y \in F} d(x, y), \sup _{y \in F} \inf _{x \in E} d(x, y)\right\}
$$

We will denote by $K(X)$ the set of all connected compact subsets of X. Study of properties of typical elements of $X, C(X)$ and $K(X)$ is a classic and interesting part of mathematics. It is proved in [8] that typical elements of $C(X)$ have zero Hausdorff dimensions. A well known theorem due to Banach states that typical elements of the set of all real valued continuous functions defined on $[0,1]$ are nowhere differentiable. One can see many other interesting results in $[2,3,5,8,10,11]$. It is proved that a typical element of $K\left(R^{n}\right)$ consists of a number of slightly blurred line segments. Typical elements of the set of graphs of all curves in R^{n}, starting at a fixed point, have Hausdorff dimension 1 (see [5]). It is proved in [3] that if M is a compact differentiable manifold with boundary, imbedded in R^{n}, and S is the set of all deformations of the boundary of M, then typical elements of S are nowhere differentiable with integer box dimensions. We show in the present paper that similar results are true on a more general case, for the set of all compact topological submanifolds of R^{n}. Our main results are Theorems 3.1 and 3.2.
2. Preliminaries. The following notations will be used in the proofs:
(1) $\Omega^{n}=\left\{M: M\right.$ is a compact topological submanifold of $\left.R^{n}\right\}$.
(2) $D \Omega^{n}=\left\{M \in \Omega^{n}: M\right.$ is differentiable $\}$.
(3) $N D \Omega^{n}=\left\{M \in \Omega^{n}: M\right.$ is nowhere differentiable $\}$.
(4) $B_{\varepsilon}=\{x \in R:|x|<\varepsilon\}, B_{(\varepsilon)}^{k}=B_{\varepsilon} \times \ldots \times B_{\varepsilon}(k$ times $)$.
(5) $I=[-1,1], I^{k}=I \times I \times \ldots \times I(k$ times $)$.
(6) If $M \in D \Omega^{n}$ and U is an open subset of R^{n}, then

$$
C(M, U)=\{f: M \rightarrow U ; f \text { is countinuos }\} .
$$

(7) $D(M, U)=\{f \in C(M, U): f$ is differentible $\}$.
(8) If $M \in D \Omega^{n}$, then we will denote by $N D(M, U)$ the set of all nowhere differentiable members of $C(M, U)$.

Let M be a bounded subset of R^{n}. We denote by $\operatorname{dim}(M)$ the topological dimension of M. For each number $\varepsilon>0$ put

$$
\not \sharp_{\varepsilon}(M)=\sup \{\operatorname{card}\{Z\}: Z \subset M \text { and for each } x, y \in Z,|x-y|>\varepsilon\} .
$$

The upper and lower box dimensions of M are defined by

$$
\begin{aligned}
& \overline{\operatorname{dim}}_{B}(M)=\limsup _{\varepsilon \rightarrow 0} \frac{\log \not \sharp_{\varepsilon}(M)}{-\log \varepsilon} \\
& \underline{\operatorname{dim}}_{B}(M)=\liminf _{\varepsilon \rightarrow 0} \frac{\log \not \sharp_{\varepsilon}(M)}{-\log \varepsilon}
\end{aligned}
$$

If $\overline{\operatorname{dim}}_{B}(M)=\underline{\operatorname{dim}}_{B}(M)$, then $\operatorname{dim}_{B}(M)=\lim _{\varepsilon \rightarrow 0} \frac{\log \not \sharp_{\varepsilon}(M)}{-\log \varepsilon}$ is the box dimension of M.
Notice 2.1. If M is a differentiable submanifold of R^{n} and $\operatorname{dim}(M)=m$, then
(1) $\operatorname{dim}_{B}(M)=\operatorname{dim}(M)=m$.
(2) If $g: M \rightarrow R^{n}$ is a differentiable map and $M_{g}=g(M)$, then

$$
\operatorname{dim}_{B}\left(M_{g}\right)=\operatorname{dim}\left(M_{g}\right) \in\{0,1, \ldots, m\}
$$

If M is a compact manifold, then $C\left(M, R^{n}\right)$ endowed with the following metric d is a complete metric space

$$
d(f, g)=\max _{x \in M}|f(x)-g(x)|
$$

The following theorem due to Banach is well known.
Theorem 2.1 [1]. Typical elements of $C(I, R)$ are nowhere differentiable.
It is easy to show that Banach's theorem is also true if we replace $C(I, R)$ by $C\left(I, B_{\varepsilon}\right)$.
The following lemma is a generalization of Banach's theorem.
Lemma 2.1. If M is a differentiable compact manifold and $\varepsilon>0$, then typical elements of $C\left(M, B_{\varepsilon}^{k}\right)$ with the above metric d, are nowhere differentiable.

Proof. We give the proof in the following steps.
Step 1. For each $k \in N, N D\left(I^{k}, B_{\varepsilon}\right)$ is a comeagre subset of $C\left(I^{k}, B_{\varepsilon}\right)$.
Proof. The claim is true for $k=1$ (Banach's theorem). Suppose that the claim is true for each natural number $m, m \leq k$. We show that it is true for $k+1$. Let $h \in C\left(I^{k+1}, B_{\varepsilon}\right)$ and $t \in I$. Put

$$
\begin{gathered}
h_{t}: I^{k} \rightarrow B_{\varepsilon} \\
h_{t}(x)=h(x, t)
\end{gathered}
$$

and let

$$
\Gamma=\left\{h \in C\left(I^{k+1}, B_{\varepsilon}\right): \forall t \in I, h_{t} \text { is nowhere differentiable }\right\}
$$

We show that Γ is a comeagre subset of $C\left(I^{k+1}, B_{\varepsilon}\right)$.
Consider the set $\prod_{t \in I} C\left(I^{k}, B_{\varepsilon}\right)_{t}, C\left(I^{k}, B_{\varepsilon}\right)_{t}=C\left(I^{k}, B_{\varepsilon}\right)$ and put

$$
\begin{gathered}
\sigma: C\left(I^{k+1}, B_{\varepsilon}\right) \rightarrow \prod_{t \in I} C\left(I^{k}, B_{\varepsilon}\right)_{t} \\
\sigma(h)=\prod_{t}\left(h_{t}\right) \\
W(f, k, \delta)=\left\{g \in C\left(I^{k}, B_{\varepsilon}\right): d(g, f)<\delta\right\}, \delta>0, f \in C\left(I^{k}, B_{\varepsilon}\right) .
\end{gathered}
$$

Let O be an open subset of $C\left(I^{k}, B_{\varepsilon}\right)$ and put $U=\prod_{t} O_{t}, O_{t}=O$. If $h \in C\left(I^{k+1}, B_{\varepsilon}\right)$, then the function $\alpha: I \rightarrow O$ defined by $\alpha(t)=h_{t}$ is continuous. Due to compactness of I, we can find a number $\delta>0$ such that for all $t \in I, W\left(h_{t}, k, \delta\right) \subset O$. Then $W(h, k+1, \delta) \subset \sigma^{-1}(U)$. This means that $\sigma^{-1}(U)$ is open in $C\left(I^{k+1}, B_{\varepsilon}\right)$.

By assumption, $N D\left(I^{k}, B_{\varepsilon}\right)$ is a comeagre subset of $C\left(I^{k}, B_{\varepsilon}\right)$. So, there is a countable collection $\left\{O_{m}: m \in N\right\}$ of open and dense subsets of $C\left(I^{k}, B_{\varepsilon}\right)$ such that

$$
\bigcap_{m \in N} O_{m} \subset N D\left(I^{k}, B_{\varepsilon}\right)
$$

Let

$$
U_{m}=\prod_{t}\left(O_{m}\right)_{t}, \quad\left(O_{m}\right)_{t}=O_{m}
$$

$\sigma^{-1}\left(U_{m}\right)$ is open in $C\left(I^{k+1}, B_{\varepsilon}\right)$ and we have $\bigcap_{m \in N} \sigma^{-1}\left(U_{m}\right) \subset \Gamma$. Also, it is not hard to show that for each $m \in N, \sigma^{-1}\left(U_{m}\right)$ is a dense subset of $C\left(I^{k+1}, B_{\varepsilon}\right)$. Now, from the fact that $\Gamma \subset$ $\subset N D\left(I^{k+1}, B_{\varepsilon}\right)$, we get the result.

Step 2. $N D\left(M, B_{\varepsilon}\right)$ is comeagre in $C\left(M, B_{\varepsilon}\right)$.
Proof. Let $k=\operatorname{dim} M$ and for each point $p \in M$ consider a chart (O, ψ) around p such that $I^{k} \subset \psi(O)$. Since M is compact then there is a finite collection of this kind of charts, say $\left\{\left(O_{1}, \psi_{1}\right), \ldots,\left(O_{l}, \psi_{l}\right)\right\}$, such that $M \subset \psi_{1}^{-1}\left(I^{k}\right) \cup \ldots \cup \psi_{l}^{-1}\left(I^{k}\right)$. Put $U_{i}=\psi_{i}^{-1}\left(I^{k}\right), 1 \leq i \leq l$, and for each $h \in C\left(M, B_{\varepsilon}\right)$ denote by h_{i} the restriction of h on U_{i}, and consider the following function:

$$
\varphi_{i}: C\left(M, B_{\varepsilon}\right) \rightarrow C\left(U_{i}, B_{\varepsilon}\right), \quad \varphi_{i}(h)=h_{i}
$$

Since $\psi\left(U_{i}\right)=I^{k}$ then we get from Step 1 , that $N D\left(U_{i}, B_{\varepsilon}\right)$ is a comeagre subset of $C\left(U_{i}, B_{\varepsilon}\right)$. So there is a countable collection $\left\{W_{m}^{i}: m \in N\right\}$ of open and dense subsets of $C\left(U_{i}, B_{\varepsilon}\right)$ such that

$$
\bigcap_{m} W_{m}^{i} \subset N D\left(U_{i}, B_{\varepsilon}\right)
$$

We show that for each $i, m \in N, \varphi_{i}^{-1}\left(W_{m}^{i}\right)$ is a dense subset of $C\left(M, B_{\varepsilon}\right)$. Suppose $h \in C\left(M, B_{\varepsilon}\right)$ and let $\delta>0$. Since W_{m}^{i} is dense in $C\left(U_{i}, B_{\varepsilon}\right)$, then there is a function $f \in W_{m}^{i}$ such that

$$
\begin{equation*}
d\left(h_{i}, f\right)<\frac{\delta}{2} \tag{2.1}
\end{equation*}
$$

Let $\hat{f}: M \rightarrow B_{\varepsilon}$ be a continuous extension of f on M. Since h and \hat{f} are continuous, then by (2.1), there is an open subset B of M such that $U_{i} \subset B$ and

$$
\begin{equation*}
x \in B \Rightarrow d(h(x), \quad \hat{f}(x))<\delta \tag{2.2}
\end{equation*}
$$

Now let $\eta: M \rightarrow[0,1]$ be a continuous function such that

$$
\eta(x)=1 \text { for } x \in U_{i} \text { and } \eta(x)=0 \text { for } x \in M-B .
$$

Put

$$
\begin{equation*}
\tau(x)=h(x)+\eta(x)(\hat{f}(x)-h(x)) . \tag{2.3}
\end{equation*}
$$

Then

$$
|h(x)-\tau(x)|=|\eta(x)| \hat{f}(x)-h(x) \mid<\delta .
$$

Since the image of h is compact and included in B_{ε} then for sufficiently small δ, the image of τ will be included in B_{ε}, so $\tau \in C\left(M, B_{\varepsilon}\right)$. If $x \in U_{i}$, then $\tau(x)=f(x)$, so $\varphi_{i}(\tau)=f$. Thus $\tau \in \varphi_{i}^{-1}\left(W_{m}^{i}\right)$. This means that $\varphi_{i}^{-1}\left(W_{m}^{i}\right)$ is dense in $C\left(M, B_{\varepsilon}\right)$. It is easy to show that

$$
\bigcap_{m \in N} \bigcap_{1 \leq i \leq l} \varphi_{i}^{-1}\left(W_{m}^{i}\right) \subset N D\left(M, B_{\varepsilon}\right) .
$$

Therefore, $N D\left(M, B_{\varepsilon}\right)$ is a comeagre subset of $C\left(M, B_{\varepsilon}\right)$.
Step 3. Proof of the lemma.
For each $h \in C\left(M, B_{\varepsilon}^{k}\right)$ we have $h=\left(h_{1}, \ldots, h_{k}\right)$ such that $h_{i} \in C\left(M, B_{\varepsilon}\right)$. Consider the map

$$
\begin{aligned}
& \psi: C\left(M, B_{\varepsilon}^{k}\right) \rightarrow C\left(M, B_{\varepsilon}\right) \times \ldots \times C\left(M, B_{\varepsilon}\right) \quad(k \text { times }), \\
& \psi(h)=\left(h_{1}, \ldots, k_{k}\right),
\end{aligned}
$$

ψ is a homeomorphism and

$$
\begin{equation*}
\psi^{-1}\left[N D\left(M, B_{\varepsilon}\right) \times \ldots \times N D\left(M, B_{\varepsilon}\right)\right] \subset N D\left(M, B_{\varepsilon}^{k}\right) \tag{2.4}
\end{equation*}
$$

Since by Step 2, $N D\left(M, B_{\varepsilon}\right)$ is comeagre in $C\left(M, B_{\varepsilon}\right)$, then $N D\left(M, B_{\varepsilon}\right) \times \ldots \times N D\left(M, B_{\varepsilon}\right)$ is comeagre in $C\left(M, B_{\varepsilon}\right) \times \ldots \times C\left(M, B_{\varepsilon}\right)$. Thus $\psi^{-1}\left[N D\left(M, B_{\varepsilon}\right) \times \ldots \times N D\left(M, B_{\varepsilon}\right)\right]$ must be comeagre in $C\left(M, B_{\varepsilon}^{k}\right)$. Now, we get the result by (2.4).

3. Main results.

Theorem 3.1. Typical elements of the set of compact submanifolds of R^{n} are nowhere differentiable.

Proof. Let M be a differentiable compact submanifold of R^{n}. If $k=n-\operatorname{dim} M$ and $p \in M$, then R^{k} can be considered as the set of all vectors perpendicular to M at p. For each $v \in R^{k}$ denote by v_{p} the corresponding vector in $T_{p} M^{\perp}$. Since M is compact then there is an $\varepsilon>0$ such that the following map ψ, is a diffeomorphism from $M \times B_{\varepsilon}^{k}$ onto an open neighborhood of M in R^{n} :

$$
\psi: M \times B_{\varepsilon}^{k} \rightarrow R^{n}, \quad \psi(p, v)=p+v_{p} .
$$

For each $g \in C\left(M, B_{\varepsilon}^{k}\right)$ let $M_{g}=\{(\psi(x, g(x)): x \in M)\}$ and put

$$
\begin{gathered}
\lambda(M)=\left\{M_{g}: g \in C\left(M, B_{\varepsilon}\right)\right\} \\
N D(\lambda(M))=\left\{M_{g} \in \lambda(M): g \text { is nowhere differentiable }\right\} .
\end{gathered}
$$

Consider the following metric d on $\lambda(M)$:

$$
d\left(M_{g}, M_{h}\right)=\sup _{x \in M}|g(x)-h(x)| .
$$

By using of Lemma 2.1, we get that typical elements of $\lambda(M)$ with the metric d are nowhere differentiable. Then it is easy to show that typical elements of $\lambda(M)$ with the Hausdorff metric are also nowhere differentiable. Now consider the following subspace of $C\left(R^{n}\right)$:

$$
\Lambda\left(R^{n}\right)=\bigcup_{M \in D \Omega^{n}} \lambda(M)
$$

We show that typical elements of $\Lambda\left(R^{n}\right)$ (with the Hausdorff metric) are nowhere differentiable.
Since for each differentiable submanifold M of R^{n}, typical elements of $\lambda(M)$ are nowhere differentiable then there is a collection $\left\{O_{(M, i)}: i \in N\right\}$ of open and dense subsets of $\lambda(M)$ such that

$$
\begin{equation*}
\bigcap_{i \in N} O_{(M, i)} \subset N D(\lambda(M)) \tag{3.1}
\end{equation*}
$$

Since $\lambda(M)$ is a subspace of Ω^{n}, for each $i \in N$ there is a countable collection $\left\{U_{(M, i, j)}: j \in N\right\}$ of open subsets of Ω^{n} such that $O_{(M, i)}=U_{(M, i, j)} \cap \lambda(M)$ and

$$
\begin{equation*}
\sup \left\{d_{H}\left(M_{g}, M_{h}\right) \in O_{(M, i)} \times U_{(M, i, j)}\right\}<\frac{1}{j} \tag{3.2}
\end{equation*}
$$

Now put

$$
\begin{equation*}
W_{(M, i, j)}=U_{(M, i, j)}-\left\{x: x \text { is a boundary point of } O_{(M, i)} \text { in } \Omega^{n}\right\} \tag{3.3}
\end{equation*}
$$

We get from (3.2) and (3.3) that

$$
\begin{equation*}
\bigcap_{j} W_{(M, i, j)}=O_{(M, i)} \tag{3.4}
\end{equation*}
$$

Let

$$
W_{i, j}=\bigcup_{M \in D \Omega^{n}} W_{(M, i, j)}
$$

If $N D\left(\Lambda R^{n}\right)=\left\{M \in \Lambda R^{n}: M\right.$ is nowhere differentiable $\}$, then by (3.1) and (3.4)

$$
\bigcap_{i, j \in N} W_{i, j} \subset N D\left(\Lambda\left(R^{n}\right)\right)
$$

Since for each $i, O_{(M, i)}$ is dense in $\lambda(M)$, then for each $i, j, W_{i, j} \cap \Lambda\left(R^{n}\right)$ is dense in $\Lambda\left(R^{n}\right)$. Also the set of differentiable submanifolds of R^{n} is dense in Ω^{n}, so $W_{i, j}$ is dense in Ω^{n}. Therefore, $N D\left(\Lambda\left(R^{n}\right)\right)$ is a comeagre subset of $\Lambda\left(R^{n}\right)$. Now we get the result from the fact that $N D\left(\Lambda\left(R^{n}\right)\right) \subset$ $\subset N D \Omega^{n}$.

Theorem 3.2. Typical elements of the set of compact submanifolds of R^{n} have integer box dimensions.

Proof. Suppose $M, N \in \Omega^{n}$ and $d_{H}(M, N)<\varepsilon$. Let $O_{1}, \ldots, O_{\sharp \varepsilon(N)}$ be balls with radius ε such that

$$
N \subset \bigcup_{i} O_{i}
$$

For each $1 \leq i \leq \not \leq \varepsilon(N)$, let $\widehat{O_{i}}$ be the ball of radius 2ε with the same center as O_{i}. Each $\widehat{O_{i}}$ can be covered by 4^{n} balls with radius ε. Thus

$$
\sharp_{\varepsilon}(M) \leq 4^{n} \sharp \varepsilon(N) .
$$

In a similar way, we can show that $\sharp_{\varepsilon}(N) \leq 4^{n} \sharp \varepsilon(M)$. Then

$$
4^{-n} \sharp_{\varepsilon}(M) \leq \sharp_{\varepsilon}(N) \leq 4^{n} \sharp_{\varepsilon}(M) .
$$

Therefore,

$$
\frac{-n \log 4+\log \not \sharp_{\varepsilon}(M)}{-\log \varepsilon} \leq \frac{\log \sharp_{\varepsilon}(N)}{-\log \varepsilon} \leq \frac{n \log 4+\log \sharp_{\varepsilon}(M)}{-\log \varepsilon} .
$$

If M is differentiable then $\operatorname{dim}_{B}(M)$ is an integer $\leq n$. Thus $\lim _{\varepsilon \rightarrow \infty} \frac{\log \not \sharp_{\varepsilon}(M)}{-\log \varepsilon}=\operatorname{dim} M \in$ $\in\{0,1, \ldots, n\}$. Then for each $k \in N$ there is an open neighborhood $U_{k, M}$ of M in Ω^{n} such that for each $N \in U_{k, M}$

$$
\operatorname{dim} M-\frac{1}{k} \leq \frac{\log \not \sharp_{\varepsilon}(N)}{-\log \varepsilon} \leq \operatorname{dim} M+\frac{1}{k} .
$$

Put $W_{k}=\bigcup_{M \in D \Omega^{n}} U_{k, M}$. Since $D \Omega^{n}$ is dense in Ω^{n} then for any $k \in N, W_{k}$ is dense in Ω^{n}. Now put

$$
W=\bigcap_{k} W_{k} .
$$

W is comeagre in Ω^{n} and for each $N \in W, \operatorname{dim}_{B} N$ is an integer number.

1. Banach S. Uberdie Baire'sche kategorie gewisser funktionenmengen // Stud. Math. - 1931. - 3. - P. 147-179.
2. Besicovitch A. S., Ursell H. D. On dimensional numbers of some curves // J. London Math. Soc. - 1937. - 12. P. 18-25.
3. Bloch W. L. Fractal boundaries are not typical // Topology Appl. - 2007. - 145. - P. 553-539.
4. Falconer K. Fractal geometry: Mathematical foundations. - New York: Wiley, 1990.
5. Gruber P. Dimension and structure of typical compact sets, continua and curves $/ / \mathrm{Mh}$. Math. - 1989. - 108. P. 149-164.
6. Mirzaie R. On images of continous functions from a compact manifold in to Euclidean space // Bull. Iran. Math. Soc. 2011. - 37. - P. 93-100.
7. Munkres J. R. Topology a first course // Appl. Century Grotfs. - 2000.
8. Ostaszewski A. Families of compact sets and their universals // Mathematica. - 1974. - 21. - P. 116-127.
9. Rudin W. Principles of mathematical analysis // MGH. - 1976.
10. Wieacker J. A. The convex hull of a typical compact set // Math. Ann. - 1998. - 282. - P. 637-644.
11. Zamfirescu T. How many sets are porous? // Proc. Amer. Math. Soc. - 1987. - 100. - P. 383-387.

Received 28.05.12, after revision -14.11 .12

