UDC 517.91

R. Mirzaie (Imam Khomeini Int. Univ., Qazvin, Iran)

ON TYPICAL COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE ПРО ТИПОВІ КОМПАКТНІ ПІДМНОГОВИДИ ЕВКЛІДОВОГО ПРОСТОРУ

We show that typical compact submanifolds of \mathbb{R}^n are nowhere differentiable with integer box dimensions.

Показано, що типові компактні підмноговиди простору \mathbb{R}^n ніде не диференційовні при цілих розмірностях Мінковського.

1. Introduction. A subset Y of a topological space X is called to be *comeagre*, if there is a countable collection $\{W_i\}$ of open and dense subsets of X such that $\bigcap_i W_i \subset Y$. Complement of a comeagre subset is called a meagre subset. A meagre subset can be considered as a countable union of nowhere dense subsets and they are negligible in some sense. So, we say that some property holds for *typical* elements of X, if it holds on a comeagre subset. Let X be a metric space and C(X) be the set of all compact subsets of X. The Hausdorff metric d_H is defined on C(X) by

$$d_H(E,F) = \max\left\{\sup_{x\in E}\inf_{y\in F} d(x,y), \sup_{y\in F}\inf_{x\in E} d(x,y)\right\}.$$

We will denote by K(X) the set of all connected compact subsets of X. Study of properties of typical elements of X, C(X) and K(X) is a classic and interesting part of mathematics. It is proved in [8] that typical elements of C(X) have zero Hausdorff dimensions. A well known theorem due to Banach states that typical elements of the set of all real valued continuous functions defined on [0,1] are nowhere differentiable. One can see many other interesting results in [2, 3, 5, 8, 10, 11]. It is proved that a typical element of $K(R^n)$ consists of a number of slightly blurred line segments. Typical elements of the set of all curves in R^n , starting at a fixed point, have Hausdorff dimension 1 (see [5]). It is proved in [3] that if M is a compact differentiable manifold with boundary, imbedded in R^n , and S is the set of all deformations of the boundary of M, then typical elements of S are nowhere differentiable with integer box dimensions. We show in the present paper that similar results are true on a more general case, for the set of all compact topological submanifolds of R^n . Our main results are Theorems 3.1 and 3.2.

2. Preliminaries. The following notations will be used in the proofs:

(1) $\Omega^n = \{M : M \text{ is a compact topological submanifold of } \mathbb{R}^n\}.$

(2) $D\Omega^n = \{ M \in \Omega^n \colon M \text{ is differentiable} \}.$

(3) $ND\Omega^n = \{M \in \Omega^n \colon M \text{ is nowhere differentiable}\}.$

(4) $B_{\varepsilon} = \{x \in \mathbb{R} : |x| < \varepsilon\}, B_{(\varepsilon)}^k = B_{\varepsilon} \times \ldots \times B_{\varepsilon} \text{ (k times).}$

- (5) $I = [-1, 1], I^k = I \times I \times \cdots \times I$ (k times).
- (6) If $M \in D\Omega^n$ and U is an open subset of \mathbb{R}^n , then

$$C(M,U) = \{f \colon M \to U; f \text{ is countinuos}\}.$$

(7) $D(M,U) = \{f \in C(M,U) : f \text{ is differentiable}\}.$

© R. MIRZAIE, 2013 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 7 (8) If $M \in D\Omega^n$, then we will denote by ND(M, U) the set of all nowhere differentiable members of C(M, U).

Let M be a bounded subset of \mathbb{R}^n . We denote by $\dim(M)$ the topological dimension of M. For each number $\varepsilon > 0$ put

$$\sharp_{\varepsilon}(M) = \sup\{ \operatorname{card} \{Z\} \colon Z \subset M \text{ and for each } x, y \in Z, |x - y| > \varepsilon \}.$$

The upper and lower box dimensions of M are defined by

$$\overline{\dim}_B(M) = \limsup_{\varepsilon \to 0} \frac{\log \sharp_\varepsilon(M)}{-\log \varepsilon},$$
$$\underline{\dim}_B(M) = \liminf_{\varepsilon \to 0} \frac{\log \sharp_\varepsilon(M)}{-\log \varepsilon}.$$

If $\overline{\dim}_B(M) = \underline{\dim}_B(M)$, then $\dim_B(M) = \lim_{\varepsilon \to 0} \frac{\log \sharp_\varepsilon(M)}{-\log \varepsilon}$ is the box dimension of M. Notice 2.1. If M is a differentiable submanifold of \mathbb{R}^n and $\dim(M) = m$, then

(1)
$$\dim_B(M) = \dim(M) = m.$$

(2) If $g: M \to \mathbb{R}^n$ is a differentiable map and $M_q = g(M)$, then

$$\dim_B(M_q) = \dim(M_q) \in \{0, 1, \dots, m\}.$$

If M is a compact manifold, then $C(M, \mathbb{R}^n)$ endowed with the following metric d is a complete metric space

$$d(f,g) = \max_{x \in M} |f(x) - g(x)|.$$

The following theorem due to Banach is well known.

Theorem 2.1 [1]. *Typical elements of* C(I, R) *are nowhere differentiable.*

It is easy to show that Banach's theorem is also true if we replace C(I, R) by $C(I, B_{\varepsilon})$.

The following lemma is a generalization of Banach's theorem.

Lemma 2.1. If M is a differentiable compact manifold and $\varepsilon > 0$, then typical elements of $C(M, B_{\varepsilon}^k)$ with the above metric d, are nowhere differentiable.

Proof. We give the proof in the following steps.

Step 1. For each $k \in N$, $ND(I^k, B_{\varepsilon})$ is a comeagre subset of $C(I^k, B_{\varepsilon})$.

Proof. The claim is true for k = 1 (Banach's theorem). Suppose that the claim is true for each natural number $m, m \leq k$. We show that it is true for k + 1. Let $h \in C(I^{k+1}, B_{\varepsilon})$ and $t \in I$. Put

$$h_t \colon I^k \to B_{\varepsilon},$$

 $h_t(x) = h(x, t)$

and let

$$\Gamma = \{h \in C(I^{k+1}, B_{\varepsilon}) \colon \forall t \in I, h_t \text{ is nowhere differentiable} \}.$$

We show that Γ is a comeagre subset of $C(I^{k+1}, B_{\varepsilon})$.

Consider the set $\prod_{t \in I} C(I^k, B_{\varepsilon})_t$, $C(I^k, B_{\varepsilon})_t = C(I^k, B_{\varepsilon})$ and put

$$\sigma \colon C(I^{k+1}, B_{\varepsilon}) \to \prod_{t \in I} C(I^k, B_{\varepsilon})_t,$$
$$\sigma(h) = \prod_t (h_t),$$

$$W(f,k,\delta) = \{g \in C(I^k, B_{\varepsilon}) \colon d(g,f) < \delta\}, \ \delta > 0, \ f \in C(I^k, B_{\varepsilon}).$$

Let O be an open subset of $C(I^k, B_{\varepsilon})$ and put $U = \prod_t O_t$, $O_t = O$. If $h \in C(I^{k+1}, B_{\varepsilon})$, then the function $\alpha \colon I \to O$ defined by $\alpha(t) = h_t$ is continuous. Due to compactness of I, we can find a number $\delta > 0$ such that for all $t \in I$, $W(h_t, k, \delta) \subset O$. Then $W(h, k+1, \delta) \subset \sigma^{-1}(U)$. This means that $\sigma^{-1}(U)$ is open in $C(I^{k+1}, B_{\varepsilon})$.

By assumption, $ND(I^k, B_{\varepsilon})$ is a comeagre subset of $C(I^k, B_{\varepsilon})$. So, there is a countable collection $\{O_m : m \in N\}$ of open and dense subsets of $C(I^k, B_{\varepsilon})$ such that

$$\bigcap_{m\in N} O_m \subset ND(I^k, B_{\varepsilon}).$$

Let

$$U_m = \prod_t (O_m)_t, \quad (O_m)_t = O_m$$

 $\sigma^{-1}(U_m)$ is open in $C(I^{k+1}, B_{\varepsilon})$ and we have $\bigcap_{m \in N} \sigma^{-1}(U_m) \subset \Gamma$. Also, it is not hard to show that for each $m \in N$, $\sigma^{-1}(U_m)$ is a dense subset of $C(I^{k+1}, B_{\varepsilon})$. Now, from the fact that $\Gamma \subset CND(I^{k+1}, B_{\varepsilon})$, we get the result.

Step 2. $ND(M, B_{\varepsilon})$ is comeagre in $C(M, B_{\varepsilon})$.

Proof. Let $k = \dim M$ and for each point $p \in M$ consider a chart (O, ψ) around p such that $I^k \subset \psi(O)$. Since M is compact then there is a finite collection of this kind of charts, say $\{(O_1, \psi_1), \ldots, (O_l, \psi_l)\}$, such that $M \subset \psi_1^{-1}(I^k) \cup \ldots \cup \psi_l^{-1}(I^k)$. Put $U_i = \psi_i^{-1}(I^k)$, $1 \le i \le l$, and for each $h \in C(M, B_{\varepsilon})$ denote by h_i the restriction of h on U_i , and consider the following function:

$$\varphi_i \colon C(M, B_\varepsilon) \to C(U_i, B_\varepsilon), \quad \varphi_i(h) = h_i.$$

Since $\psi(U_i) = I^k$ then we get from Step 1, that $ND(U_i, B_{\varepsilon})$ is a comeagre subset of $C(U_i, B_{\varepsilon})$. So there is a countable collection $\{W_m^i : m \in N\}$ of open and dense subsets of $C(U_i, B_{\varepsilon})$ such that

$$\bigcap_m W_m^i \subset ND(U_i, B_\varepsilon)$$

We show that for each $i, m \in N$, $\varphi_i^{-1}(W_m^i)$ is a dense subset of $C(M, B_{\varepsilon})$. Suppose $h \in C(M, B_{\varepsilon})$ and let $\delta > 0$. Since W_m^i is dense in $C(U_i, B_{\varepsilon})$, then there is a function $f \in W_m^i$ such that

$$d(h_i, f) < \frac{\delta}{2}.\tag{2.1}$$

Let $\hat{f}: M \to B_{\varepsilon}$ be a continuous extension of f on M. Since h and \hat{f} are continuous, then by (2.1), there is an open subset B of M such that $U_i \subset B$ and

$$x \in B \Rightarrow d(h(x), \quad \hat{f}(x)) < \delta.$$
 (2.2)

Now let $\eta: M \to [0,1]$ be a continuous function such that

$$\eta(x) = 1$$
 for $x \in U_i$ and $\eta(x) = 0$ for $x \in M - B$.

Put

$$\tau(x) = h(x) + \eta(x)(\hat{f}(x) - h(x)).$$
(2.3)

Then

$$|h(x) - \tau(x)| = |\eta(x)|f(x) - h(x)| < \delta.$$

Since the image of h is compact and included in B_{ε} then for sufficiently small δ , the image of τ will be included in B_{ε} , so $\tau \in C(M, B_{\varepsilon})$. If $x \in U_i$, then $\tau(x) = f(x)$, so $\varphi_i(\tau) = f$. Thus $\tau \in \varphi_i^{-1}(W_m^i)$. This means that $\varphi_i^{-1}(W_m^i)$ is dense in $C(M, B_{\varepsilon})$. It is easy to show that

$$\bigcap_{m\in N}\bigcap_{1\leq i\leq l}\varphi_i^{-1}(W_m^i)\subset ND(M,B_\varepsilon).$$

Therefore, $ND(M, B_{\varepsilon})$ is a comeagre subset of $C(M, B_{\varepsilon})$.

Step 3. Proof of the lemma.

For each $h \in C(M, B_{\varepsilon}^k)$ we have $h = (h_1, \ldots, h_k)$ such that $h_i \in C(M, B_{\varepsilon})$. Consider the map

$$\psi: C(M, B_{\varepsilon}^{k}) \to C(M, B_{\varepsilon}) \times \ldots \times C(M, B_{\varepsilon}) \quad (k \text{ times}),$$

 $\psi(h) = (h_{1}, \ldots, k_{k}),$

 ψ is a homeomorphism and

$$\psi^{-1}[ND(M, B_{\varepsilon}) \times \ldots \times ND(M, B_{\varepsilon})] \subset ND(M, B_{\varepsilon}^{k}).$$
(2.4)

Since by Step 2, $ND(M, B_{\varepsilon})$ is comeagre in $C(M, B_{\varepsilon})$, then $ND(M, B_{\varepsilon}) \times \ldots \times ND(M, B_{\varepsilon})$ is comeagre in $C(M, B_{\varepsilon}) \times \ldots \times C(M, B_{\varepsilon})$. Thus $\psi^{-1}[ND(M, B_{\varepsilon}) \times \ldots \times ND(M, B_{\varepsilon})]$ must be comeagre in $C(M, B_{\varepsilon}^k)$. Now, we get the result by (2.4).

3. Main results.

Theorem 3.1. Typical elements of the set of compact submanifolds of \mathbb{R}^n are nowhere differentiable.

Proof. Let M be a differentiable compact submanifold of \mathbb{R}^n . If $k = n - \dim M$ and $p \in M$, then \mathbb{R}^k can be considered as the set of all vectors perpendicular to M at p. For each $v \in \mathbb{R}^k$ denote by v_p the corresponding vector in $T_p M^{\perp}$. Since M is compact then there is an $\varepsilon > 0$ such that the following map ψ , is a diffeomorphism from $M \times B_{\varepsilon}^k$ onto an open neighborhood of M in \mathbb{R}^n :

 $\psi \colon M \times B^k_{\varepsilon} \to R^n, \quad \psi(p,v) = p + v_p.$

For each $g\in C(M,B^k_\varepsilon)$ let $M_g=\{(\psi(x,g(x))\colon x\in M)\}$ and put

$$\lambda(M) = \{ M_g \colon g \in C(M, B_{\varepsilon}) \},\$$

 $ND(\lambda(M)) = \{M_q \in \lambda(M) : g \text{ is nowhere differentiable}\}.$

Consider the following metric d on $\lambda(M)$:

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 7

1012

$$d(M_g, M_h) = \sup_{x \in M} |g(x) - h(x)|$$

By using of Lemma 2.1, we get that typical elements of $\lambda(M)$ with the metric d are nowhere differentiable. Then it is easy to show that typical elements of $\lambda(M)$ with the Hausdorff metric are also nowhere differentiable. Now consider the following subspace of $C(\mathbb{R}^n)$:

$$\Lambda(R^n) = \bigcup_{M \in D\Omega^n} \lambda(M).$$

We show that typical elements of $\Lambda(\mathbb{R}^n)$ (with the Hausdorff metric) are nowhere differentiable.

Since for each differentiable submanifold M of \mathbb{R}^n , typical elements of $\lambda(M)$ are nowhere differentiable then there is a collection $\{O_{(M,i)}: i \in N\}$ of open and dense subsets of $\lambda(M)$ such that

$$\bigcap_{i \in N} O_{(M,i)} \subset ND(\lambda(M)).$$
(3.1)

Since $\lambda(M)$ is a subspace of Ω^n , for each $i \in N$ there is a countable collection $\{U_{(M,i,j)}: j \in N\}$ of open subsets of Ω^n such that $O_{(M,i)} = U_{(M,i,j)} \bigcap \lambda(M)$ and

$$\sup \{ d_H(M_g, M_h) \in O_{(M,i)} \times U_{(M,i,j)} \} < \frac{1}{j}.$$
(3.2)

Now put

$$W_{(M,i,j)} = U_{(M,i,j)} - \{x \colon x \text{ is a boundary point of } O_{(M,i)} \text{ in } \Omega^n\}.$$
(3.3)

We get from (3.2) and (3.3) that

$$\bigcap_{j} W_{(M,i,j)} = O_{(M,i)}.$$
(3.4)

Let

$$W_{i,j} = \bigcup_{M \in D\Omega^n} W_{(M,i,j)}$$

If $ND(\Lambda R^n) = \{M \in \Lambda R^n : M \text{ is nowhere differentiable}\}$, then by (3.1) and (3.4)

$$\bigcap_{i,j\in N} W_{i,j} \subset ND(\Lambda(R^n)).$$

Since for each i, $O_{(M,i)}$ is dense in $\lambda(M)$, then for each $i, j, W_{i,j} \cap \Lambda(\mathbb{R}^n)$ is dense in $\Lambda(\mathbb{R}^n)$. Also the set of differentiable submanifolds of \mathbb{R}^n is dense in Ω^n , so $W_{i,j}$ is dense in Ω^n . Therefore, $ND(\Lambda(\mathbb{R}^n))$ is a comeagre subset of $\Lambda(\mathbb{R}^n)$. Now we get the result from the fact that $ND(\Lambda(\mathbb{R}^n)) \subset \mathbb{C} ND\Omega^n$.

Theorem 3.2. Typical elements of the set of compact submanifolds of \mathbb{R}^n have integer box dimensions.

1014

Proof. Suppose $M, N \in \Omega^n$ and $d_H(M, N) < \varepsilon$. Let $O_1, \ldots, O_{\sharp_{\varepsilon}(N)}$ be balls with radius ε such that

$$N \subset \bigcup_i O_i.$$

For each $1 \le i \le \sharp_{\varepsilon}(N)$, let $\widehat{O_i}$ be the ball of radius 2ε with the same center as O_i . Each $\widehat{O_i}$ can be covered by 4^n balls with radius ε . Thus

$$\sharp_{\varepsilon}(M) \le 4^n \sharp_{\varepsilon}(N).$$

In a similar way, we can show that $\sharp_{\varepsilon}(N) \leq 4^n \sharp_{\varepsilon}(M)$. Then

$$4^{-n}\sharp_{\varepsilon}(M) \le \sharp_{\varepsilon}(N) \le 4^{n}\sharp_{\varepsilon}(M).$$

Therefore,

$$\frac{-n\log 4 + \log \sharp_{\varepsilon}(M)}{-\log \varepsilon} \le \frac{\log \sharp_{\varepsilon}(N)}{-\log \varepsilon} \le \frac{n\log 4 + \log \sharp_{\varepsilon}(M)}{-\log \varepsilon}.$$

If M is differentiable then $\dim_B(M)$ is an integer $\leq n$. Thus $\lim_{\varepsilon \to \infty} \frac{\log \sharp_{\varepsilon}(M)}{-\log \varepsilon} = \dim M \in \{0, 1, \ldots, n\}$. Then for each $k \in N$ there is an open neighborhood $U_{k,M}$ of M in Ω^n such that for each $N \in U_{k,M}$

$$\dim M - \frac{1}{k} \le \frac{\log \sharp_{\varepsilon}(N)}{-\log \varepsilon} \le \dim M + \frac{1}{k}.$$

Put $W_k = \bigcup_{M \in D\Omega^n} U_{k,M}$. Since $D\Omega^n$ is dense in Ω^n then for any $k \in N$, W_k is dense in Ω^n . Now put

$$W = \bigcap_k W_k.$$

W is comeagre in Ω^n and for each $N \in W$, dim_B N is an integer number.

- 1. Banach S. Uberdie Baire'sche kategorie gewisser funktionenmengen // Stud. Math. 1931. 3. P. 147-179.
- Besicovitch A. S., Ursell H. D. On dimensional numbers of some curves // J. London Math. Soc. 1937. 12. P. 18–25.
- 3. Bloch W. L. Fractal boundaries are not typical // Topology Appl. 2007. 145. P. 553-539.
- 4. Falconer K. Fractal geometry: Mathematical foundations. New York: Wiley, 1990.
- Gruber P. Dimension and structure of typical compact sets, continua and curves // Mh. Math. 1989. 108. -P. 149-164.
- Mirzaie R. On images of continous functions from a compact manifold in to Euclidean space // Bull. Iran. Math. Soc. 2011. – 37. – P. 93 – 100.
- 7. Munkres J. R. Topology a first course // Appl. Century Grotfs. 2000.
- 8. Ostaszewski A. Families of compact sets and their universals // Mathematica. 1974. 21. P. 116-127.
- 9. Rudin W. Principles of mathematical analysis // MGH. 1976.
- 10. Wieacker J. A. The convex hull of a typical compact set // Math. Ann. 1998. 282. P. 637-644.
- 11. Zamfirescu T. How many sets are porous? // Proc. Amer. Math. Soc. 1987. 100. P. 383-387.

Received 28.05.12, after revision -14.11.12