M. Golasiński (Univ. Warmia and Mazury, Poland),

Thiago de Melo (Inst. de Geociências e Ciências Exatas, Brazil)

EVALUATION FIBRATIONS AND PATH-COMPONENTS
 OF THE MAPPING SPACE $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ FOR $8 \leq k \leq 13$ *
 ОЦІНОЧНІ РОЗШАРУВАННЯ I КОМПОНЕНТИ ЛІНІЙНОЇ ЗВ'ЯЗНОСТІ ПРОСТОРУ ВІДОБРАЖЕНЬ $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ ПРИ $8 \leq k \leq 13$

Let $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ be the space of maps from the m-sphere \mathbb{S}^{m} into the n-sphere \mathbb{S}^{n} with $m, n \geq 1$. We estimate the number of homotopy types of path-components $M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ and fiber homotopy types of the evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ for $8 \leq k \leq 13$ and $\alpha \in \pi_{n+k}\left(\mathbb{S}^{n}\right)$ extending the results of [Mat. Stud. - 2009. - 31, № 2. P. 189-194]. Further, the number of strong homotopy types of $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ for $8 \leq k \leq 13$ is determined and some improvements of the results from [Mat. Stud. - 2009. - 31, № 2. - P. 189-194] are obtained.
Нехай $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ - простір відображень із m-сфери \mathbb{S}^{m} в n-сферу \mathbb{S}^{n} з $m, n \geq 1$. Ми оцінюємо число типів гомотопії для компонент лінійної зв'язності $M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ та типів гомотопій шарів для оціночних розшарувань $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ при $8 \leq k \leq 13$ та $\alpha \in \pi_{n+k}\left(\mathbb{S}^{n}\right)$, узагальнюючи результати 3 [Mat. Stud. - 2009. - 31, № 2. - Р. 189-194]. Крім того, визначаємо число типів сильних гомотопій $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ при $8 \leq k \leq 13$ та отримуємо деякі покращення результатів з [Mat. Stud. - 2009. - 31, № 2. - P. 189-194].

1. Introduction. Given spaces X and Y, let $M(X, Y)$ be the mapping space of all continuous maps of X into Y equipped with the compact-open topology. The space $M(X, Y)$ is generally disconnected and its path-components are in one-to-one correspondence with the set $[X, Y]$ of (free) homotopy classes of maps of X into Y.

Given $x_{0} \in X$, consider the evaluation map

$$
\omega: M(X, Y) \rightarrow Y
$$

defined by $\omega(f)=f\left(x_{0}\right)$ for $f \in M(X, Y)$. Let $M_{\alpha}(X, Y)$ be the path-component of $M(X, Y)$ which contains all maps in $\alpha \in[X, Y]$. By [13, p. 83] (Theorem III.13.1), the evaluation map $\omega_{\alpha}: M_{\alpha}(X, Y) \rightarrow Y$ obtained by restricting ω to $M_{\alpha}(X, Y)$ is a Hurewicz fibration provided X is locally compact. Then, the natural classification problems arise:
(1) divide the set of path-components of $M(X, Y)$ into homotopy types;
(2) divide the set of evaluation fibrations $\omega_{\alpha}: M_{\alpha}(X, Y) \rightarrow Y$ into fibre- and strong fibrehomotopy types for $\alpha \in[X, Y]$.

Conditions for when two path-components of $M(X, Y)$ are homotopy equivalent are presented in [16] provided that spaces X and Y are connected and countable $C W$-complexes.

Let now \mathbb{S}^{n} be the n-sphere. To study coincidences of fiberwise maps between sphere bundles over \mathbb{S}^{1}, the set of fiberwise homotopy classes of those maps has been considered in [7]. But, the set

[^0]of fiberwise maps between the trivial bundles $\mathbb{S}^{1} \times \mathbb{S}^{m}$ and $\mathbb{S}^{1} \times \mathbb{S}^{n}$ over \mathbb{S}^{1} coincides with the free loop space $\mathcal{L} M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)=M\left(\mathbb{S}^{1}, M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)\right)$.

Certainly, for the space $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ with $m, n \geq 1$, the path-components can be enumerated by the homotopy group $\pi_{m}\left(\mathbb{S}^{n}\right)$. In view of [10] (Theorem 4.1), there is a strong relation between evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ for $\alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)$ and the Whitehead product $\left[\iota_{n}, \alpha\right]$. This was used in [10] (Theorems 5.1,5.2) to tackle a complete homotopy classification of path-components of $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ for $m=n, n+1$ and compute the order of the homotopy group $\pi_{n-1}\left(M_{\alpha}\left(\mathbb{S}^{n}, \mathbb{S}^{n}\right)\right)$. Homotopy properties of various $M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ have been studied in [1, 14, 20].

The purpose of this note is to extend the results of [6] for $m=n+k$ with $8 \leq k \leq 13$.
Section 1 summarizes [10, 11] and follows [16] to connect in Theorem 1.1 these classification problems for $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ with the m-th Gottlieb group $G_{m}\left(\mathbb{S}^{n}\right)$ considered in $[8,9]$ and then studied in [5].

Section 2 makes use of [5] to take up the systematic study of the quotient sets $\pi_{n+k}\left(\mathbb{S}^{n}\right) / \pm$ $\pm G_{n+k}\left(\mathbb{S}^{n}\right)$ with $0 \leq k \leq 13$. Then, our basic results stated in Propositions 2.1-2.6 estimate the number of homotopy types of path-components of $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ and fibre-homotopy types of evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ with $0 \leq k \leq 13$. Further, the number of strong fibrehomotopy types of $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ with $0 \leq k \leq 13$ is determined. Corollary 2.1 concludes a list of evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ which are fibre-homotopy equivalent but not strong fibre-homotopy equivalent for some $0 \leq k \leq 13$.

Those results are applied in Section 3 to estimate the number of homotopy types of pathcomponents of $M\left(\mathbb{S}^{(n+1) d+k-1}, \mathbb{F} P^{n}\right)$ and (strong) fibre-homotopy types of evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{(n+1) d+k-1}, \mathbb{F} P^{n}\right) \rightarrow \mathbb{F} P^{n}$ with $0 \leq k \leq 13$ for the n-projective spaces $\mathbb{F} P^{n}$ for $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. Further, we deduce that path-components of $M\left(\mathbb{S}^{m}, \mathbb{K} P^{2}\right)$ have the same homotopy type for $m \leq 21$, where $\mathbb{K} P^{2}$ is the Cayley projective plane.

The last Section 4 makes use of $[4,18]$ to present the rational homotopy type of $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ and path-components of $M\left(\mathcal{M}(\mathbb{A}, m), \mathbb{S}^{n}\right)$ for a Moore space $\mathcal{M}(\mathbb{A}, m)$.

1. Prerequisites. Given $x_{0} \in X$ and $y_{0} \in Y$, write $M(X, Y)_{*}$ for the space of all continuous pointed maps of X into Y. This leads to the Hurewicz fibration $M(X, Y)_{*} \rightarrow M(X, Y) \xrightarrow{\omega} Y$, provided X is locally compact. Recall that on the set $[X, Y]_{*}$ of homotopy classes of pointed maps there is an action of $\pi_{1}\left(Y, y_{0}\right)$ and $[X, Y]_{*} / \pi_{1}\left(Y, y_{0}\right)=[X, Y]$ [21] (Chapter I, (1.11)).

In particular, for $\pi_{1}\left(Y, y_{0}\right)=0$ we get $[X, Y]_{*}=[X, Y]$, e.g., $\pi_{m}\left(\mathbb{S}^{n}\right)=\left[\mathbb{S}^{m}, \mathbb{S}^{n}\right]_{*}=\left[\mathbb{S}^{m}, \mathbb{S}^{n}\right]$, for $n>1$. Further, there is the Hurewicz fibration

$$
M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)_{*} \rightarrow M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \xrightarrow{\omega} \mathbb{S}^{n}
$$

A fibration $p: E \rightarrow B$ with a fibre F means a Hurewicz fibration together with a fixed homotopy equivalence $i: F \rightarrow p^{-1}\left(b_{0}\right)$ over the base point $b_{0} \in B$. Recall that for fibrations $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ a based map $f: E_{1} \rightarrow E_{2}$ is:

1) a fibre homotopy equivalence (fhe) if there exists $g: E_{2} \rightarrow E_{1}$ such that $g \circ f$ and $f \circ g$ are homotopic to the respective identities by based homotopies F and G satisfying $p_{1} \circ F\left(e_{1}, t\right)=p_{1}\left(e_{1}\right)$ and $p_{2} \circ G\left(e_{2}, t\right)=p_{2}\left(e_{2}\right)$ for $e_{1} \in E_{1}, e_{2} \in E_{2}$ and $t \in[0,1]$;
2) a strong fibre homotopy equivalence (sfhe) if it is a fibre homotopy equivalence and $i_{2}^{\prime} \circ f \circ i_{1}$ is homotopic to the identity map id_{F}, where i_{2}^{\prime} is an arbitrary homotopy inverse of i_{2}.

Let X be a connected and pointed space. The m-th Gottlieb $\operatorname{group} G_{m}(X)[8,9]$ of a space X is the subgroup of the m-th homotopy group $\pi_{m}(X)$ containing all elements which can be represented by a map $f: \mathbb{S}^{m} \rightarrow X$ such that $f \vee \mathrm{id}_{X}: \mathbb{S}^{m} \vee X \rightarrow X$ extends (up to homotopy) to a map $F: \mathbb{S}^{m} \times X \rightarrow X$. Observe that $G_{m}(X)=\pi_{m}(X)$ provided X is an H-space.

Given $\alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)$ we have deduced in [5] that $\alpha \in G_{m}\left(\mathbb{S}^{n}\right)$ if and only if the Whitehead product $\left[\iota_{n}, \alpha\right]=0$, where ι_{n} denotes the homotopy class of id \mathbb{S}^{n}. In other words, $G_{m}\left(\mathbb{S}^{n}\right)=\operatorname{ker}\left[\iota_{n},-\right]$ for the map $\left[\iota_{n},-\right]: \pi_{m}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{m+n-1}\left(\mathbb{S}^{n}\right)$ with $m \geq 1$. Write $\sharp g$ for the order of the element g in a group G. Then, by [5] (Section 2), from this interpretation of Gottlieb groups of spheres, we obtain

$$
G_{m}\left(\mathbb{S}^{n}\right)=\left(\sharp\left[\iota_{n}, \alpha\right]\right) \pi_{m}\left(\mathbb{S}^{n}\right),
$$

if $\pi_{m}\left(\mathbb{S}^{n}\right)$ is a cyclic group with a generator α. It follows that $G_{m}\left(\mathbb{S}^{n}\right)=\pi_{m}\left(\mathbb{S}^{n}\right)\left(\right.$ resp. $\left.G_{m}\left(\mathbb{S}^{n}\right)=0\right)$ provided $\sharp\left[\iota_{n}, \alpha\right]=1$ (resp. $\sharp\left[\iota_{n}, \alpha\right]=\infty$) for $\alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)$. Furthermore, because of H-structures on the spheres \mathbb{S}^{n} for $n=1,3,7$, it holds $G_{m}\left(\mathbb{S}^{n}\right)=\pi_{m}\left(\mathbb{S}^{n}\right)$ for any $m \geq 1$.

Given a group G and its subgroup $G^{\prime}<G$, write $G / \pm G^{\prime}$ for the quotient set of G by the relation \sim defined as follows: for $x, y \in G, x \sim y$ if and only if $x y \in G^{\prime}$ or $x y^{-1} \in G^{\prime}$. Observe that if $G_{i}^{\prime}<G_{i}, i=1,2$, then there is a surjection

$$
\phi:\left(G_{1} \times G_{2}\right) / \pm\left(G_{1}^{\prime} \times G_{2}^{\prime}\right) \rightarrow\left(G_{1} / \pm G_{1}^{\prime}\right) \times\left(G_{2} / \pm G_{2}^{\prime}\right)
$$

defined by $\overline{\left(g_{1}, g_{2}\right)} \mapsto\left(\overline{g_{1}}, \overline{g_{2}}\right)$, which is not injective in general, where \bar{g} states for the appropriate abstract class determined by g.

Example 1.1. (1) If $G_{1}=G_{2}=\mathbb{Z}$ and $G_{1}^{\prime}=G_{2}^{\prime}=3 \mathbb{Z}$ for the infinite cyclic group \mathbb{Z}, then $|(\mathbb{Z} \times \mathbb{Z}) / \pm(3 \mathbb{Z} \times 3 \mathbb{Z})|=5$ and $|\mathbb{Z} / \pm 3 \mathbb{Z}|^{2}=4$. Let \mathbb{Z}_{n} be the cyclic group with order n. If $G_{1}=\mathbb{Z}_{3}$, $G_{2}=\mathbb{Z}_{6}, G_{1}^{\prime}=0$ and $G_{2}^{\prime}=\mathbb{Z}_{2}$ then $\left|\left(\mathbb{Z}_{3} \times \mathbb{Z}_{6}\right) / \pm\left(0 \times \mathbb{Z}_{2}\right)\right|=5$ and $\left|\mathbb{Z}_{3} / \pm 0\right|\left|\mathbb{Z}_{4} / \pm \mathbb{Z}_{2}\right|=4$.
(2) If $G_{1}^{\prime}=G_{1}$ then the bijection holds easily.

Writing \simeq for the homotopy equivalence relation, [10] (Theorems 1,2) and [11] (Theorem 2.3) lead to:

Theorem 1.1. Let $m, n \geq 1$. Then, there are surjections:

$$
\begin{gather*}
\pi_{m}\left(\mathbb{S}^{n}\right) / \pm G_{m}\left(\mathbb{S}^{n}\right) \longrightarrow\left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) ; \alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)\right\} / \simeq, \tag{1.1}\\
\pi_{m}\left(\mathbb{S}^{n}\right) / \pm G_{m}\left(\mathbb{S}^{n}\right) \longrightarrow\left\{\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n} ; \alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)\right\} / \text { fhe } \tag{1.2}
\end{gather*}
$$

and there is a bijection

$$
\begin{equation*}
\pi_{m}\left(\mathbb{S}^{n}\right) / G_{m}\left(\mathbb{S}^{n}\right) \xrightarrow{\cong}\left\{\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n} ; \alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)\right\} / \text { sfhe. } \tag{1.3}
\end{equation*}
$$

We point out that a generalization of the results above has been stated in [16]. As a consequence, using the surjections (1.1) and (1.2), it is possible to obtain an upper bound for the number of homotopy types of path-components for the mapping space $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ and to the number of
evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$, for $\alpha \in \pi_{n+k}\left(\mathbb{S}^{n}\right)$, up to fibre-homotopy equivalence (fhe), respectively. In addition, the bijection (1.3) gives the exactly number of evaluation fibrations, up to strong fibre-homotopy equivalence (sfhe).

Remark 1.1. By [11] (Theorem 4.1) we have $M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \simeq M_{0}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ if and only if $\left[\iota_{n}, \alpha\right]=0$, if and only if $\alpha \in G_{m}\left(\mathbb{S}^{n}\right)$. Thus if $G_{m}\left(\mathbb{S}^{n}\right) \nsubseteq \pi_{m}\left(\mathbb{S}^{n}\right)$ then there are at least two path-components which are not homotopy equivalent, that is, $\left|\pi_{m}\left(\mathbb{S}^{n}\right) / \pm G_{m}\left(\mathbb{S}^{n}\right)\right| \geq 2$, and there is only one if and only if $G_{m}\left(\mathbb{S}^{n}\right)=\pi_{m}\left(\mathbb{S}^{n}\right)$.

We close this section with the following fact (on the relation \sim defined above) useful in the sequel. First, given reals x, y, write

$$
\chi(x, y)=\left\lceil\frac{(x-1)(y-1)}{2}\right\rceil+\left\lceil\frac{x-1}{2}\right\rceil+\left\lceil\frac{y-1}{2}\right\rceil+1,
$$

where $\lceil r\rceil=\min \{k \in \mathbb{Z} ; k \geq r\}$ for any real r.
Lemma 1.1. For positive integers $m, m^{\prime}, n, n^{\prime}$ with $m\left|n, m^{\prime}\right| n^{\prime}$ and $n, n^{\prime} \geq 1$, let $\mathbb{Z}_{m} \times$ $\times \mathbb{Z}_{m^{\prime}}<\mathbb{Z}_{n} \times \mathbb{Z}_{n^{\prime}}, m \mathbb{Z} \times \mathbb{Z}_{m^{\prime}}<\mathbb{Z} \times \mathbb{Z}_{n^{\prime}}$ and $m \mathbb{Z} \times m^{\prime} \mathbb{Z}<\mathbb{Z} \times \mathbb{Z}$ be the obvious inclusions. Then

$$
\begin{gather*}
\left|\left(\mathbb{Z}_{n} \times \mathbb{Z}_{n^{\prime}}\right) / \pm\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m^{\prime}}\right)\right|=\chi\left(\frac{n}{m}, \frac{n^{\prime}}{m^{\prime}}\right) \tag{1.4}\\
\left|\left(\mathbb{Z} \times \mathbb{Z}_{n^{\prime}}\right) / \pm\left(m \mathbb{Z} \times \mathbb{Z}_{m^{\prime}}\right)\right|=\chi\left(m, \frac{n^{\prime}}{m^{\prime}}\right) \tag{1.5}\\
\left|(\mathbb{Z} \times \mathbb{Z}) / \pm\left(m \mathbb{Z} \times m^{\prime} \mathbb{Z}\right)\right|=\chi\left(m, m^{\prime}\right) \tag{1.6}
\end{gather*}
$$

In particular, $\left|\left(\mathbb{Z}_{n} \times \mathbb{Z}_{n^{\prime}}\right) / \pm\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n^{\prime}}\right)\right|=\left|\mathbb{Z}_{n} / \pm \mathbb{Z}_{m}\right|=\chi\left(\frac{n}{m}, 1\right)$.
Proof. For any $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n^{\prime}},(a, b) \sim(c, d)$ where $1 \leq c \leq \frac{n}{m}, 1 \leq d \leq \frac{n^{\prime}}{m^{\prime}}$. Furthermore, for $c \neq \frac{n}{m}$ and $d \neq \frac{n^{\prime}}{m^{\prime}},(c, d) \sim\left(\frac{n}{m}-c, \frac{n^{\prime}}{m^{\prime}}-d\right)$ for $1 \leq d \leq \frac{n^{\prime}}{m^{\prime}}-1$ and then we have $\left\lceil\frac{1}{2}\left(\frac{n}{m}-1\right)\left(\frac{n^{\prime}}{m^{\prime}}-1\right)\right]$ nonequivalent elements. In addition, $\left(\frac{n}{m}, d\right) \sim\left(\frac{n}{m}, \frac{n^{\prime}}{m^{\prime}}-d\right)$ for $1 \leq$ $\leq d \leq \frac{n^{\prime}}{m^{\prime}}-1$ and $\left(c, \frac{n^{\prime}}{m^{\prime}}\right) \sim\left(\frac{n}{m}-c, \frac{n^{\prime}}{m^{\prime}}\right)$ for $1 \leq c \leq \frac{n}{m}-1$. So, we obtain more $\left\lceil\frac{1}{2}\left(\frac{n}{m}-1\right)\right\rceil+$ $+\left\lceil\frac{1}{2}\left(\frac{n^{\prime}}{m^{\prime}}-1\right)\right]$ nonequivalent elements. Finally, since that the trivial element is $\left(\frac{n}{m}, \frac{n^{\prime}}{m^{\prime}}\right)$, the equation (1.4) follows.

To prove (1.5) and (1.6), just replace $\frac{n}{m}$ by m and $\frac{n}{m}, \frac{n^{\prime}}{m^{\prime}}$ by m, m^{\prime} respectively.
Lemma 1.1 is proved.
2. Main results. We make use of [5] and Lemma 1.1 to estimate the cardinality

$$
\begin{equation*}
\left|\pi_{n+k}\left(\mathbb{S}^{n}\right) / \pm G_{n+k}\left(\mathbb{S}^{n}\right)\right| \tag{2.1}
\end{equation*}
$$

for $8 \leq k \leq 13$. We first recall the results from [6] for $0 \leq k \leq 7$ and make some improvements of the cardinality (2.1).

Proposition 2.1. The cardinality $\left|\pi_{n+k}\left(\mathbb{S}^{n}\right) / \pm G_{n+k}\left(\mathbb{S}^{n}\right)\right|$ for $0 \leq k \leq 7$ is, respectively: one, if $n=1,3,7$; two, if $n \neq 1,3,7$ is odd; $|\mathbb{Z}|$ if n is even;
one, if $n=1,2,6$ or $n \equiv 3(\bmod 4)$; two, otherwise;
one, if $n=1,5$ or $n \equiv 2,3(\bmod 4)$; two, otherwise;
ten, if $n=4$; one, if $n \equiv 7(\bmod 8)$ or $n=2^{i}-3$ for $i \geq 3$; two, if $n \equiv 1,3,5(\bmod 8)$ and $n \geq 9$ and $n \neq 2^{i}-3$; seven, if $n \equiv 2(\bmod 4)$ and $n \geq 6$ or $n=12$; thirteen, if $n \equiv 0(\bmod 4)$ and $n \geq 8$ and $n \neq 12$;
one, for all $n \geq 1$;
one, if $n \neq 6$; two, otherwise;
one, if $n \equiv 4,5,7(\bmod 8)$ or $n=2^{i}-5$ for $i \geq 4$; two, otherwise;
one, if $n=5,11$ or $n \equiv 15(\bmod 16)$; two, if n is odd and $n \geq 9$, unless $n=11$ and $n \equiv 15$ (mod 16); eight, if $n=4$; thirty one, if $n=6$; ninety one, if $n=8$; one hundred twenty one, if n is even and $n \geq 10$.
2.1. The case $k=8$. Making use of the Gottlieb groups $G_{n+8}\left(\mathbb{S}^{n}\right)$ computed in [5] (Proposition 6.3) we estimate $\left|\pi_{n+8}\left(\mathbb{S}^{n}\right) / \pm G_{n+8}\left(\mathbb{S}^{n}\right)\right|$.

For $n=1,2,6,10$ or $n \equiv 3(\bmod 4)$, the cardinality (2.1) is one.
For $n \equiv 0,1(\bmod 4)$ and $n \neq 8,9$, or $n \equiv 22(\bmod 32)$ and $n \geq 54, G_{n+8}\left(\mathbb{S}^{n}\right)=0$ and then (2.1) is equal to $\left|\pi_{n+8}\left(\mathbb{S}^{n}\right) / \pm 0\right|$, that is: two, if $n=4,5$, since that $\pi_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\varepsilon_{n}\right\} \cong \mathbb{Z}_{2}$; four, if $n \geq 12$, since that $\pi_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\bar{\nu}_{n}, \varepsilon_{n}\right\} \cong\left(\mathbb{Z}_{2}\right)^{2}$.

For $n \equiv 2(\bmod 8)$ and $n \geq 18, G_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\varepsilon_{n}\right\} \cong \mathbb{Z}_{2}$ and $\pi_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\bar{\nu}_{n}, \varepsilon_{n}\right\} \cong\left(\mathbb{Z}_{2}\right)^{2}$. So the cardinality (2.1) is two. But $\left[\iota_{n}, \bar{\nu}_{n}\right] \neq 0$ and then $\omega_{\bar{\nu}_{n}}$ is not fibre-homotopy equivalent to ω_{0} (which is fibre-homotopy equivalent to $\omega_{\varepsilon_{n}}$).

For $n=22$, or $n \equiv 14(\bmod 16)$, or $n \equiv 6(\bmod 32)$ and $n \geq 14, G_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\eta_{n} \sigma_{n+1}\right\} \cong$ $\cong \mathbb{Z}_{2}$ and $\pi_{n+8}\left(\mathbb{S}^{n}\right)=\left\{\bar{\nu}_{n}, \varepsilon_{n}\right\} \cong\left(\mathbb{Z}_{2}\right)^{2}$. Thus, the cardinality (2.1) is two. In view of [17] (Lemma 6.4), it holds $\eta_{n} \sigma_{n+1}=\bar{\nu}_{n}+\varepsilon_{n} \in G_{n+8}\left(\mathbb{S}^{n}\right)$ for $n \geq 9$ and the bilinearity of the Whitehead product yields $\left[\iota_{n}, \bar{\nu}_{n}\right]=-\left[\iota_{n}, \varepsilon_{n}\right]$. By [10] (Theorem 2.3), $\omega_{\bar{\nu}_{n}}$ and $\omega_{\varepsilon_{n}}$ are fibre-homotopy equivalent as well as ω_{0} and $\omega_{\bar{\nu}_{n}+\varepsilon_{n}}$.

For $n=8$, the Gottlieb group is $G_{16}\left(\mathbb{S}^{8}\right)=\left\{\left(E \sigma^{\prime}\right) \eta_{15}, \sigma_{8} \eta_{15}+\bar{\nu}_{8}+\varepsilon_{8}\right\} \cong\left(\mathbb{Z}_{2}\right)^{2}$ and the homotopy group is $\pi_{16}\left(\mathbb{S}^{8}\right)=\left\{\left(E \sigma^{\prime}\right) \eta_{15}, \sigma_{8} \eta_{15}, \bar{\nu}_{8}, \varepsilon_{8}\right\} \cong\left(\mathbb{Z}_{2}\right)^{4}$. We replace the generator $\sigma_{8} \eta_{15} \in$ $\in \pi_{16}\left(\mathbb{S}^{8}\right)$ by the sum $\sigma_{8} \eta_{15}+\bar{\nu}_{8}+\varepsilon_{8}$ and then (2.1) is four.

For $n=9, G_{17}\left(\mathbb{S}^{9}\right)=\left\{\left[\iota_{9}, \iota_{9}\right]\right\} \cong \mathbb{Z}_{2}$ and $\pi_{17}\left(\mathbb{S}^{9}\right)=\left\{\sigma_{9} \eta_{16}, \bar{\nu}_{9}, \varepsilon_{9}\right\} \cong\left(\mathbb{Z}_{2}\right)^{3}$. Although the generators for $n=9$ are different from that ones for $n=8$, but (2.1) is four as well.

We can summarize the results above and estimate the number of homotopy types of pathcomponents of the mapping space $M\left(\mathbb{S}^{n+8}, \mathbb{S}^{n}\right)$ and fibre-homotopy equivalence types of evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+8}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ for $\alpha \in \pi_{n+8}\left(\mathbb{S}^{n}\right)$.

Proposition 2.2. The cardinality $\left|\pi_{n+8}\left(\mathbb{S}^{n}\right) / \pm G_{n+8}\left(\mathbb{S}^{n}\right)\right|$ is:
one, if $n=1,2,6,10$ or $n \equiv 3(\bmod 4)$;
two, if $n=4,5,22$, or $n \equiv 2(\bmod 8)$ and $n \geq 18$, or $n \equiv 14(\bmod 16)$, or $n \equiv 6(\bmod 32)$ and $n \geq 14$;
four, if $n \equiv 0,1(\bmod 4)$ and $n \geq 8$, or $n \equiv 22(\bmod 32)$ and $n \geq 54$.
2.2. The case $\boldsymbol{k}=\mathbf{9}$. In view of [5] (Proposition 6.4), we estimate the cardinality

$$
\left|\pi_{n+9}\left(\mathbb{S}^{n}\right) / \pm G_{n+9}\left(\mathbb{S}^{n}\right)\right|
$$

For $n=1,2,6$ or $n \equiv 3(\bmod 4),\left|\pi_{n+9}\left(\mathbb{S}^{n}\right) / \pm G_{n+9}\left(\mathbb{S}^{n}\right)\right|=1$.
For $n \equiv 0(\bmod 8)$ and $n \geq 16, G_{n+9}\left(\mathbb{S}^{n}\right)=0$ and then (2.1) is

$$
\left|\pi_{n+9}\left(\mathbb{S}^{n}\right) / \pm 0\right|=\left|\left(\mathbb{Z}_{2}\right)^{3} / \pm 0\right|=8
$$

For $n \equiv 2(\bmod 4)$ and $n \geq 14$, or $n=2^{i}-7$ with $i \geq 5$, or $n \equiv 5(\bmod 8)$ and $n \not \equiv 53$ $(\bmod 64), G_{n+9}\left(\mathbb{S}^{n}\right) \cong\left(\mathbb{Z}_{2}\right)^{2}$ and $\pi_{n+9}\left(\mathbb{S}^{n}\right) \cong\left(\mathbb{Z}_{2}\right)^{3}$ and then (2.1) is t wo.

For $n \equiv 4(\bmod 8)$, or $n \equiv 53(\bmod 64)$ and $n \geq 117$, or $n \equiv 1(\bmod 8)$ and $n \geq 17$ and $n \neq 2^{i}-7, G_{n+9}\left(\mathbb{S}^{n}\right) \cong \mathbb{Z}_{2}$ and $\pi_{n+9}\left(\mathbb{S}^{n}\right) \cong\left(\mathbb{Z}_{2}\right)^{3}$. So (2.1) is four.

For $n=8, G_{17}\left(\mathbb{S}^{8}\right)=\left\{\left(E \sigma^{\prime}\right) \eta_{15}^{2}, \sigma_{8} \eta_{15}^{2}+\nu_{8}^{3}+\eta_{8} \varepsilon_{9}\right\} \cong\left(\mathbb{Z}_{2}\right)^{2}$ and $\pi_{17}\left(\mathbb{S}^{8}\right)=\left\{\left(E \sigma^{\prime}\right) \eta_{15}^{2}, \sigma_{8} \eta_{15}^{2}\right.$, $\left.\nu_{8}^{3}, \mu_{8}, \eta_{8} \varepsilon_{9}\right\} \cong\left(\mathbb{Z}_{2}\right)^{5}$. Replacing the generator $\sigma_{8} \eta_{15}^{2} \in \pi_{17}\left(\mathbb{S}^{8}\right)$ by the sum $\sigma_{8} \eta_{15}^{2}+\nu_{8}^{3}+\eta_{8} \varepsilon_{9}$, (2.1) is $\left|\left\{\nu_{8}^{3}, \mu_{8}, \eta_{8} \varepsilon_{9}\right\} / \pm 0\right|=\left|\left(\mathbb{Z}_{2}\right)^{3} / \pm 0\right|=8$.

For $n=9$, the Gottlieb group is $G_{18}\left(\mathbb{S}^{9}\right)=\left\{\sigma_{9} \eta_{16}^{2}, \nu_{9}^{3}, \eta_{9} \varepsilon_{10}\right\} \cong\left(\mathbb{Z}_{2}\right)^{3}$ and the homotopy group is $\pi_{18}\left(\mathbb{S}^{9}\right)=\left\{\sigma_{9} \eta_{16}^{2}, \nu_{9}^{3}, \mu_{9}, \eta_{9} \varepsilon_{10}\right\} \cong\left(\mathbb{Z}_{2}\right)^{4}$. In a similar way we conclude that (2.1) is two.

Finally, for $n=10, G_{19}\left(\mathbb{S}^{10}\right)=\left\{3\left[\iota_{10}, \iota_{10}\right], \nu_{10}^{3}, \eta_{10} \varepsilon_{11}\right\} \cong 3 \mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{2}$ and $\pi_{19}\left(\mathbb{S}^{10}\right)=$ $=\left\{\Delta\left(\iota_{21}\right), \nu_{10}^{3}, \mu_{10}, \eta_{10} \varepsilon_{11}\right\} \cong \mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{3}$. So (2.1) is $\left|\left(\mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{3}\right) / \pm\left(3 \mathbb{Z} \oplus\left(\mathbb{Z}_{2}\right)^{2}\right)\right|=4$, by Lemma 1.1.

Then, we summarize the results above as follows:
Proposition 2.3. The cardinality $\left|\pi_{n+9}\left(\mathbb{S}^{n}\right) / \pm G_{n+9}\left(\mathbb{S}^{n}\right)\right|$ is:
one, if $n=1,2,6$, or $n \equiv 3(\bmod 4)$;
two, if $n=9$, or $n \equiv 2(\bmod 4)$ and $n \geq 14$, or $n=2^{i}-7$ with $i \geq 5$, or $n \equiv 5(\bmod 8)$ and $n \not \equiv 53(\bmod 64)$;
four, if $n=10$, or $n \equiv 4(\bmod 8)$, or $n \equiv 53(\bmod 64)$ and $n \geq 117$, or $n \equiv 1(\bmod 8)$ and $n \geq 17$ and $n \neq 2^{i}-7$;
eight, if $n \equiv 0(\bmod 8)$.
2.3. The cases $k=10,11$. Following the same ideas as above and making use of Lemma 1.1, we can also compute the appropriate quotient set to estimate its cardinality to state the next results:

Proposition 2.4. The cardinality $\left|\pi_{n+10}\left(\mathbb{S}^{n}\right) / \pm G_{n+10}\left(\mathbb{S}^{n}\right)\right|$ is:
one, if $n=1,2,5$, or $n \equiv 3(\bmod 4)$;
two, if $n \equiv 2(\bmod 4)$, or $n \equiv 1(\bmod 4)$ and $n \geq 9$;
four, if $n \equiv 0(\bmod 4)$.
Proposition 2.5. The cardinality $\left|\pi_{n+11}\left(\mathbb{S}^{n}\right) / \pm G_{n+11}\left(\mathbb{S}^{n}\right)\right|$ is:
one, if $n \equiv 1(\bmod 2)$ and $n \not \equiv 115(\bmod 128)$;
two, if $n \equiv 115(\bmod 128)$ and $n \geq 243$;
twenty two, two hundred fifty-four, seven hundred fifty seven, if $n=4,8,12$ respectively;
two hundred fifty-three, if $n \equiv 0(\bmod 4)$ and $n \geq 16$;
one hundred twenty-seven, if $n \equiv 2(\bmod 4)$ and $n \geq 6$.
2.4. The cases $\boldsymbol{k}=12,13$. Following [5] (Section 6), we have $G_{n+12}\left(\mathbb{S}^{n}\right)=\pi_{n+12}\left(\mathbb{S}^{n}\right)$ for $n \neq 10$ and $G_{n+13}\left(\mathbb{S}^{n}\right)=\pi_{n+13}\left(\mathbb{S}^{n}\right)$ for $n=2$ or n odd. So the cardinality (2.1) is one. For $k=12, n=10$ or $k=13, n$ even and $n \neq 2,4,14$, the cardinality (2.1) is $t w o$. For $k=13, n=4$, the cardinality (2.1) is four and for $k=13, n=14$ it is five.

In resume:
Proposition 2.6. The cardinality $\left|\pi_{n+k}\left(\mathbb{S}^{n}\right) / \pm G_{n+k}\left(\mathbb{S}^{n}\right)\right|$ is:
one, for $k=12$ and $n \neq 10$, or $k=13$ and $n=2$ or n odd;
two, for $k=12$ and $n=10$, or $k=13$ and n even, $n \neq 2,4,14$;
four, for $k=13$ and $n=4$;
five, for $k=13$ and $n=14$.
Remark 2.1. We observe that the cases $k=9, n=53$ and $k=11, n=115$ are missing because the Gottlieb groups $G_{62}\left(\mathbb{S}^{53}\right)$ and $G_{126}\left(\mathbb{S}^{115}\right)$ are unknown. On the other hand, the 2-primary component of the homotopy group $\pi_{126}\left(\mathbb{S}^{115}\right)$ is $\pi_{126}^{115}=\left\{\zeta_{115}\right\}$ [19] (Theorem 7.4) and in view of [15] (Theorem 3.1) the Kervaire invariant θ_{6} exists in the stable homotopy group π_{126}^{s} if and only if $\left[\zeta_{115}, \iota_{115}\right]=0$.

We recall that in [10] (Example 1), two fhe evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{2} \vee \mathbb{S}^{2}, \mathbb{S}^{2}\right) \rightarrow \mathbb{S}^{2}$ and $\omega_{\beta}: M_{\beta}\left(\mathbb{S}^{2} \vee \mathbb{S}^{2}, \mathbb{S}^{2}\right) \rightarrow \mathbb{S}^{2}$ for $\alpha, \beta \in\left[\mathbb{S}^{2} \vee \mathbb{S}^{2}, \mathbb{S}^{2}\right]$ not being sfhe are constructed. From the results above, we get:

Corollary 2.1. There are evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}$ for some $\alpha \in \pi_{n+k}\left(\mathbb{S}^{n}\right)$ and $0 \leq k \leq 13$ being fhe and not sfhe.

At the end of this section, we notice that:
Remark 2.2. The procedure above leads to an estimation of the number of homotopy types of path-components of $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)_{*}$ and fibre-homotopy types of evaluation fibrations $\omega_{\alpha}: M_{\alpha}\left(\mathbb{S}^{n+k}\right.$, $\left.\mathbb{S}^{n}\right)_{*} \rightarrow \mathbb{S}^{n}$ with $0 \leq k \leq 13$.
3. Applications to projective spaces.. Let \mathbb{R} and \mathbb{C} be the fields of real and complex numbers, respectively and \mathbb{H} the skew \mathbb{R}-algebra of quaternions. In this section we apply the results above to study the path-components of $M\left(\mathbb{S}^{m}, \mathbb{F} P^{n}\right)$ for $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ and $M\left(\mathbb{S}^{m}, \mathbb{K} P^{2}\right)$, where \mathbb{K} denotes the Cayley algebra.

Denote by $\mathbb{F} P^{n}$ the n-projective space over \mathbb{F}. Put $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$, write $i_{m, n}: \mathbb{F} P^{m} \hookrightarrow \mathbb{F} P^{n}$, $m \leq n$, for the inclusion map, $\gamma_{n}=\gamma_{n, \mathbb{F}}: \mathbb{S}^{(n+1) d-1} \rightarrow \mathbb{F} P^{n}$ for the quotient map and set $i_{\mathbb{F}}=$ $=i_{1, n}: \mathbb{F} P^{1}=\mathbb{S}^{d} \hookrightarrow \mathbb{F} P^{n}$. Let $E X$ be the suspension of a space X and denote by $E: \pi_{m}(X) \rightarrow$ $\rightarrow \pi_{m+1}(E X)$ the suspension homomorphism. Next, write $\Delta=\Delta_{\mathbb{F} P}: \pi_{m}\left(\mathbb{F} P^{n}\right) \rightarrow \pi_{m-1}\left(\mathbb{S}^{d-1}\right)$ for the connecting map. By [3] (Theorem (2.1)) it holds:

$$
\Delta\left(i_{\mathbb{F} *} E\right)=\operatorname{id}_{\pi_{m-1}\left(\mathbb{S}^{d-1}\right)}
$$

and

$$
\pi_{m}\left(\mathbb{F} P^{n}\right)=\gamma_{n_{*}} \pi_{m}\left(\mathbb{S}^{d(n+1)-1}\right) \oplus i_{\mathbb{F} *} E \pi_{m-1}\left(\mathbb{S}^{d-1}\right)
$$

Hence, $\pi_{m}\left(\mathbb{R} P^{1}\right) \cong \pi_{m}\left(\mathbb{S}^{1}\right)$ and $\pi_{m}\left(\mathbb{C} P^{1}\right) \cong \pi_{m}\left(\mathbb{S}^{2}\right)$ for $m \geq 0$. Further, for $n>1$, we derive

$$
\pi_{m}\left(\mathbb{R} P^{n}\right)= \begin{cases}0, & \text { if } m=0 \\ \mathbb{Z}_{2}, & \text { if } m=1 \\ \gamma_{n_{*}} \pi_{m}\left(\mathbb{S}^{n}\right), & \text { if } m>1\end{cases}
$$

and

$$
\pi_{m}\left(\mathbb{C} P^{n}\right)= \begin{cases}0, & \text { if } m=0,1 \\ \mathbb{Z}, & \text { if } m=2 \\ \gamma_{n_{*}} \pi_{m}\left(\mathbb{S}^{2 n+1}\right), & \text { if } m>2\end{cases}
$$

The path-connected components of $M\left(\mathbb{S}^{m}, \mathbb{F} P^{n}\right)$ are in one-to-one correspondence with the set $\left[\mathbb{S}^{m}, \mathbb{F} P^{n}\right]$ of (free) homotopy classes. Because $\mathbb{C} P^{n}$ and $\mathbb{H} P^{n}$ are 1-connected, $\left[\mathbb{S}^{m}, \mathbb{R} P^{n}\right] \cong$ $\cong \pi_{m}\left(\mathbb{R} P^{n}\right) / \pi_{1}\left(\mathbb{R} P^{n}\right)$ and $\left[\mathbb{S}^{m}, \mathbb{C} P^{n}\right] \cong \pi_{m}\left(\mathbb{C} P^{n}\right),\left[\mathbb{S}^{m}, \mathbb{H} P^{n}\right] \cong \pi_{m}\left(\mathbb{H} P^{n}\right)$.

By [2] (Corollary (7.4)) and [3] ((4.1)-(4.3)), we obtain a formula:
Lemma 3.1. Let $h_{0} \alpha \in \pi_{m}\left(\mathbb{S}^{2 n-1}\right)$ be the 0 -th Hopf-Hilton invariant for $\alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)$. Then

$$
\left[\gamma_{n} \alpha, i_{\mathbb{R}}\right]= \begin{cases}0 & \text { for odd } n \\ (-1)^{m} \gamma_{n}\left(-2 \alpha+\left[\iota_{n}, \iota_{n}\right] \circ h_{0} \alpha\right) & \text { for even } n .\end{cases}
$$

Let $\tau_{\eta}(\xi) \in \pi_{m}(X)$ be the operation of $\eta \in \pi_{1}(X)$ on $\xi \in \pi_{m}(X)$. Then, in view of [21] (Chapter X, (7.6)), it holds

$$
[\xi, \eta]=(-1)^{m}\left(\tau_{\eta}(\xi)-\xi\right) .
$$

Hence, by Lemma 3.1, the action of $\pi_{1}\left(\mathbb{R} P^{n}\right)$ on $\pi_{m}\left(\mathbb{R} P^{n}\right)$ is trivial for odd n and we get $\left[\mathbb{S}^{m}, \mathbb{R} P^{n}\right] \cong \pi_{m}\left(\mathbb{R} P^{n}\right)=\gamma_{n *} \pi_{m}\left(\mathbb{S}^{n}\right)$. Further, the map $\gamma_{n}: \mathbb{S}^{(n+1) d-1} \rightarrow \mathbb{F} P^{n}$ leads to commutative diagrams of surjective maps

$$
\begin{array}{cccc}
\pi_{m}\left(\mathbb{S}^{n}\right) / \pm G_{m}\left(\mathbb{S}^{n}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) ; \alpha \in \pi_{m}\left(\mathbb{S}^{n}\right)\right\} / \simeq \\
\downarrow & & \downarrow & \\
\pi_{m}\left(\mathbb{R} P^{n}\right) / \pm \gamma_{n *} G_{m}\left(\mathbb{S}^{n}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{R} P^{n}\right) ; \alpha \in \pi_{m}\left(\mathbb{R} P^{n}\right)\right\} / \pi_{1}\left(\mathbb{R} P^{n}\right) / \simeq
\end{array}
$$

and

$$
\begin{array}{cccc}
\pi_{m}\left(\mathbb{S}^{2 n+1}\right) / \pm G_{m}\left(\mathbb{S}^{2 n+1}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{2 n+1}\right) ; \alpha \in \pi_{m}\left(\mathbb{S}^{2 n+1}\right)\right\} / \simeq \\
\downarrow & & \downarrow \\
\pi_{m}\left(\mathbb{C} P^{n}\right) / \pm \gamma_{n *} G_{m}\left(\mathbb{S}^{2 n+1}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{C} P^{n}\right) ; \alpha \in \pi_{m}\left(\mathbb{C} P^{n}\right)\right\} / \simeq
\end{array}
$$

Further, $\pi_{m}\left(\mathbb{H} P^{n}\right)=\gamma_{n *} \pi_{m}\left(\mathbb{S}^{4 n+3}\right) \oplus i_{\mathbb{H} *} E \pi_{m-1}\left(\mathbb{S}^{3}\right)$. Because $G_{m}\left(\mathbb{S}^{3}\right)=\pi_{m}\left(\mathbb{S}^{3}\right)$, the pathcomponents $M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{H} P^{n}\right)$ for $\alpha \in i_{\mathbb{H} *} E \pi_{m-1}\left(\mathbb{S}^{3}\right)$ have the same homotopy type. This yields the next commutative diagram of surjective maps

$$
\begin{array}{cccc}
\pi_{m}\left(\mathbb{S}^{4 n+3}\right) / \pm G_{m}\left(\mathbb{S}^{4 n+3}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{4 n+3}\right) ; \alpha \in \pi_{m}\left(\mathbb{S}^{4 n+3}\right)\right\} / \simeq \\
\downarrow & & \downarrow \\
\pi_{m}\left(\mathbb{H} P^{n}\right) / \pm \gamma_{n *} G_{m}\left(\mathbb{S}^{4 n+3}\right) & \longrightarrow & \left\{M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{H} P^{n}\right) ; \alpha \in \pi_{m}\left(\mathbb{H} P^{n}\right)\right\} / \simeq
\end{array}
$$

Consequently, the main result presented in Section 2 leads to estimations of $\mid\left\{M_{\alpha}\left(\mathbb{S}^{(n+1) d-1+k}\right.\right.$, $\left.\left.\mathbb{F} P^{n}\right)\right\} / \simeq \mid$ for $k \leq 13$ and $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. Then, the results [9] (Theorems 1, 2) and [10] (Theorem 2.3) lead also to:

Remark 3.1. There are estimations of fibre-homotopy types of evaluation fibrations ω_{α} : $M_{\alpha}\left(\mathbb{S}^{(n+1) d-1+k}, \mathbb{F} P^{n}\right) \rightarrow \mathbb{F} P^{n}$ and their strong fibre-homotpy types for $k \leq 13$ and $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ as well.

Next, write $\mathbb{K} P^{2}=\mathbb{S}^{8} \cup_{\sigma_{8}} e^{16}$ for the Cayley projective plane and $i_{\mathbb{K}}: \mathbb{S}^{8} \hookrightarrow \mathbb{K} P^{2}$ for the inclusion map, where $\sigma_{8}: \mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ is the Hopf map. Then, in view of [17], it holds $\pi_{m}\left(\mathbb{K} P^{2}\right)=$ $=i_{\mathbb{K} *} E \pi_{n-1}\left(\mathbb{S}^{7}\right) \cong \pi_{m-1}\left(\mathbb{S}^{7}\right)$ for $m \leq 21$. Because $G_{m}\left(\mathbb{S}^{7}\right)=\pi_{m}\left(\mathbb{S}^{7}\right)$, all path-components of $M\left(\mathbb{S}^{m}, \mathbb{K} P^{2}\right)$ have the same homotopy type for $m \leq 21$.
4. Miscellanea on mapping spaces. Homotopy properties of various path-components $M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ have been studied in $[1,14,20]$ and then some homotopy groups $\pi_{k}\left(M_{\alpha}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)\right)$ computed. However, the rational type of $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)$ and $M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)_{*}$ has been fully described in $[4,18]$ as follows:

Theorem 4.1. (i) For n odd and any m :

$$
\begin{array}{r}
M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \cong_{\mathbb{Q}} \begin{cases}\mathbb{S}^{n} \times \mathcal{K}(\mathbb{Z}, n-m), & \text { if } n>m, \\
\coprod_{k=1}^{\infty} \mathbb{S}^{n}, & \text { if } n=m, \\
\mathbb{S}^{n}, & \text { if } n<m,\end{cases} \\
M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)_{*} \cong_{\mathbb{Q}} \begin{cases}\mathcal{K}(\mathbb{Z}, n-m), & \text { if } n>m, \\
\coprod_{k=1}^{\infty} *, & \text { if } n=m, \\
*, & \text { if } n<m .\end{cases}
\end{array}
$$

(ii) For n even and any m :

$$
M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \cong_{\mathbb{Q}} \begin{cases}Y, & \text { if } n>m, \\ \mathbb{S}^{n} \times \mathcal{K}(\mathbb{Z}, 2 n-m-1) \coprod_{k=1}^{\infty} \mathbb{S}^{2 n-1}, & \text { if } n=m, \\ \mathbb{S}^{n} \times \mathcal{K}(\mathbb{Z}, 2 n-m-1), & \text { if } n<m<2 n-1, \\ \coprod_{k=1}^{\infty} \mathbb{S}^{n}, & \text { if } m=2 n-1, \\ \mathbb{S}^{n}, & \text { if } m>2 n-1,\end{cases}
$$

where Y is given by the fibration $\mathbb{S}^{n} \times \mathcal{K}(\mathbb{Z}, n-m) \rightarrow Y \rightarrow \mathcal{K}(\mathbb{Z}, 2 n-m-1)$;

$$
M\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right)_{*} \cong_{\mathbb{Q}} \begin{cases}\mathcal{K}(\mathbb{Z}, n-m) \times \mathcal{K}(\mathbb{Z}, 2 n-m-1), & \text { if } n>m, \\ \coprod_{k=1}^{\infty} \mathcal{K}(\mathbb{Z}, 2 n-m-1), & \text { if } n=m, \\ \mathcal{K}(\mathbb{Z}, 2 n-m-1), & \text { if } n<m<2 n-1, \\ \coprod_{k=1}^{\infty} *, & \text { if } m=2 n-1, \\ *, & \text { if } m>2 n-1 .\end{cases}
$$

Now, let \mathbb{A} be an abelian group and $n \geq 1$. A space $\mathcal{M}(\mathbb{A}, n)$ such that

$$
\tilde{H}_{i}(\mathcal{M}(\mathbb{A}, n))= \begin{cases}\mathbb{A}, & \text { if } i=n \\ 0, & \text { otherwise }\end{cases}
$$

is called a Moore space of type (\mathbb{A}, n). If $\mathbb{A}=\mathbb{Z}_{k}$ is a cyclic group of order k then such space can be constructed from the n-sphere \mathbb{S}^{n} by attaching an $(n+1)$-cell e^{n+1} via a map $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ of degree k.

Proposition 4.1 ([12], Proposition 4H.2). For any $n>1$, and any abelian group \mathbb{A} and a pointed space X there are natural short exact sequences

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(\mathbb{A}, \pi_{n+1}(X)\right) \rightarrow[\mathcal{M}(\mathbb{A}, n), X]_{*} \rightarrow \operatorname{Hom}\left(\mathbb{A}, \pi_{n}(X)\right) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Notice that for $\mathbb{A}=\mathbb{Z}_{k}$, we get

$$
\operatorname{Ext}\left(\mathbb{Z}_{k}, \pi_{n+1}(X)\right) \cong \mathbb{Z}_{k} \otimes \pi_{n+1}(X) \cong \pi_{n+1}(X) / k \pi_{n+1}(X)
$$

and

$$
\operatorname{Hom}\left(\mathbb{Z}_{k}, \pi_{n}(X)\right)={ }_{k} \pi_{n}(X)=\left\{\alpha \in \pi_{n}(X) ; k \alpha=0\right\}
$$

Hence, the sequence (4.1) leads to

$$
0 \rightarrow \pi_{n+1}(X) / k \pi_{n+1}(X) \rightarrow\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), X\right]_{*} \rightarrow{ }_{k} \pi_{n}(X) \rightarrow 0
$$

which we use to compute $\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right]_{*}\left(\right.$ in fact $\left.\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right]\right)$ for some m, n.
The case $m=1$ is simple: if $n=1$ then ${ }_{k} \pi_{n}\left(\mathbb{S}^{1}\right)=0$ and $\pi_{n+1}\left(\mathbb{S}^{1}\right)=\pi_{n}\left(\mathbb{S}^{1}\right)=0$ for $n>1$. Thus, we have $\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{1}\right]_{*}=\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{1}\right]=0$.

From now on, we assume that $m>1$. So, $\pi_{1}\left(\mathbb{S}^{m}\right)=0$ and $\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right]_{*}=\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right]$.
Case 1. If $n+1<m$, then $\pi_{n}\left(\mathbb{S}^{m}\right)=\pi_{n+1}\left(\mathbb{S}^{m}\right)=0$. So, $\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right]=0$.
Case 2. If $n+1=m$, then $\pi_{n+1}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}$ and $\pi_{n}\left(\mathbb{S}^{m}\right)=0$ which imply that $\left[\mathcal{M}\left(\mathbb{Z}_{k}, n\right), \mathbb{S}^{m}\right] \cong$ $\cong \mathbb{Z}_{k}$.

Case 3. If $n+1>m$, then $n=m+l-1$, for some $l>0$. Now we study the short exact sequences below for $l>0$

$$
\begin{equation*}
0 \rightarrow \pi_{m+l}\left(\mathbb{S}^{m}\right) / k \pi_{m+l}\left(\mathbb{S}^{m}\right) \rightarrow\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+l-1\right), \mathbb{S}^{m}\right] \rightarrow_{k} \pi_{m+l-1}\left(\mathbb{S}^{m}\right) \rightarrow 0 \tag{4.2}
\end{equation*}
$$

First, if $l=1$, then ${ }_{k} \pi_{m+l-1}\left(\mathbb{S}^{m}\right)=0$ and we have to consider the cases $m=2$ and $m>2$ separately, since $\pi_{3}\left(\mathbb{S}^{2}\right) \cong \mathbb{Z}$ and $\pi_{m+1}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}_{2}$, respectively. More precisely,

$$
\left[\mathcal{M}\left(\mathbb{Z}_{k}, m\right), \mathbb{S}^{m}\right] \cong \pi_{m+1}\left(\mathbb{S}^{m}\right) / k \pi_{m+1}\left(\mathbb{S}^{m}\right) \cong \begin{cases}\mathbb{Z}_{k}, & \text { if } m=2 \\ \mathbb{Z}_{2}, & \text { if } m>2 \text { and } k \text { is even } \\ 0, & \text { if } m>2 \text { and } k \text { is odd }\end{cases}
$$

Next, if $l=2$, then $\pi_{m+l}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}_{2}$ and $\pi_{m+l-1}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}$ for $m=2$ and $\pi_{m+l-1}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}_{2}$ for $m>2$. If $m=2$, then the sequence (4.2) yields

$$
\left[\mathcal{M}\left(\mathbb{Z}_{k}, 3\right), \mathbb{S}^{2}\right] \cong \mathbb{Z}_{2} / k \mathbb{Z}_{2} \cong \begin{cases}\mathbb{Z}_{2}, & \text { if } k \text { is even } \\ 0, & \text { if } k \text { is odd }\end{cases}
$$

If $m>2$, then (4.2) becomes $0 \rightarrow \mathbb{Z}_{2} / k \mathbb{Z}_{2} \rightarrow\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+1\right), \mathbb{S}^{m}\right] \rightarrow{ }_{k} \mathbb{Z}_{2} \rightarrow 0$ and if k is odd, then $\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+1\right), \mathbb{S}^{m}\right]=0$, while if k is even, then $0 \rightarrow \mathbb{Z}_{2} \rightarrow\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+1\right), \mathbb{S}^{m}\right] \rightarrow \mathbb{Z}_{2} \rightarrow 0$. So, we get $\left|\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+1\right), \mathbb{S}^{m}\right]\right|=4$.

Further, if $l=3$, then

$$
\pi_{m+3}\left(\mathbb{S}^{m}\right) \cong \begin{cases}\mathbb{Z}_{2}, & \text { if } m=2 \\ \mathbb{Z}_{12}, & \text { if } m=3 \\ \mathbb{Z} \oplus \mathbb{Z}_{12}, & \text { if } m=4 \\ \mathbb{Z}_{24}, & \text { if } m \geq 5\end{cases}
$$

and $\pi_{m+2}\left(\mathbb{S}^{m}\right) \cong \mathbb{Z}_{2}$. Since ${ }_{k} \mathbb{Z}_{2}=0$ for any odd k, we obtain

$$
\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+2\right), \mathbb{S}^{m}\right] \cong \begin{cases}0, & \text { if } m=2 \\ \mathbb{Z}_{4}, & \text { if } m=3 \text { and } 3 \mid k \\ 0, & \text { if } m=3 \text { and } 3 \nmid k \\ \left(\mathbb{Z} \oplus \mathbb{Z}_{12}\right) / k\left(\mathbb{Z} \oplus \mathbb{Z}_{12}\right), & \text { if } m=4 \\ \mathbb{Z}_{24} / k \mathbb{Z}_{24}, & \text { if } m \geq 5\end{cases}
$$

If k is even, then ${ }_{k} \mathbb{Z}_{2}=\mathbb{Z}_{2}$ and in view of (4.2) we get

$$
0 \rightarrow \pi_{m+3}\left(\mathbb{S}^{m}\right) / k \pi_{m+3}\left(\mathbb{S}^{m}\right) \rightarrow\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+2\right), \mathbb{S}^{m}\right] \rightarrow \mathbb{Z}_{2} \rightarrow 0
$$

which leads to the value of $\left|\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+2\right), \mathbb{S}^{m}\right]\right|$. Following the procedure above and using the homotopy groups $\pi_{m+l}\left(\mathbb{S}^{m}\right)$ (see, e.g., [19]), it is possible to determine $\left|\left[\mathcal{M}\left(\mathbb{Z}_{k}, m+l\right), \mathbb{S}^{m}\right]\right|$ for other values of $l>3$ as well.

Acknowledgements. This paper was started during the visit of the second author to the Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń (Poland), December 2010-March 2011. He would like to thank that Faculty for its hospitality during his stay. This visit was supported by PROPG, UNESP-Univ Estadual Paulista (Brazil).

1. Abe M. Über die stetigen Abbildungen der n-Sphäre in einen metrischen Raum // Jap. J. Math. - 1940. - 16. S. 169-176.
2. Barcus W. D., Barratt M. G. On the homotopy classification of the extensions of a fixed map // Trans. Amer. Math. Soc. - 1958. - 88. - P. 57-74.
3. Barratt M. G., James I. M., Stein N. Whitehead products and projective spaces // J. Math. and Mech. - 1960. - 9. P. 813-819.
4. Buijs U., Murillo A. Basic constructions in rational homotopy of function spaces // Ann. Inst. Fourier (Grenoble). 2006. - 56, № 3. - P. 815-838.
5. Golasiński M., Mukai J. Gottlieb groups of spheres // Topology. - 2008. - 47, № 6. - P. 399-430.
6. Golasiński M. Evaluation fibrations and path-components of the map space $M\left(\mathbb{S}^{n+k}, \mathbb{S}^{n}\right)$ for $0 \leq k \leq 7 / /$ Mat. Stud. - 2009. - 31, № 2. - P. 189-194.
7. Gonçalves D., Koschorke U., Libardi A., Neto O. M. Coincidences of fiberwise maps between sphere bundles over the circle // Proc. Edinburgh Math. Soc. (to appear).
8. Gottlieb D. A certain subgroup of the fundamental group // Amer. J. Math. - 1965. - 87. - P. 840-856.
9. Gottlieb D. Evaluation subgroups of homotopy groups // Amer. J. Math. - 1969. - 91. - P. 729-756.
10. Hansen V. L. Equivalence of evaluation fibrations // Invent. math. - 1974. - 23. - P. 163-171.
11. Hansen V. L. The homotopy problem for the components in the space of maps of the n-sphere // Quart. J. Math. 1974. - 25. - P. 313-321.
12. Hatcher A. Algebraic topology. - Cambridge: Cambridge Univ. Press, 2002.
13. Hu S. T. Homotopy theory // Pure and Appl. Math. - New York; London: Acad. Press, 1959. - Vol. 8.
14. Koh S. S. Note on the homotopy properties of the components of the mapping space $X^{S^{p}} / /$ Proc. Amer. Math. Soc. 1960. - 11. - P. 896-904.
15. Lam K. Y., Randall D. Block bundle obstruction to Kervaire invariant one // Contemp. Math. - 2006. - 407. P. 163-171.
16. Lupton G., Smith S. B. Criteria for components of a function space to be homotopy equivalent // Math. Proc. Cambridge Phil. Soc. - 2008. - 145, № 1. - P. 95-106.
17. Mimura M. The homotopy groups of Lie groups of low rank // J. Math. Kyoto Univ. - 1967. - 6. - P. 131 - 176.
18. Murillo A. Rational homotopy type of free and pointed mapping spaces between spheres // Brazilian-Polish Topology Workshop. - Toruń, Warsaw, 2012.
19. Toda H. Composition methods in homotopy groups of spheres // Ann. Math. Stud. - Princeton, N.J.: Princeton Univ. Press, 1962. - 49.
20. Whitehead G. W. On products in homotopy groups // Ann. Math. - 1946. - 47, № 2. - P. 460-475.
21. Whitehead G. W. Elements of homotopy theory // Grad. Texts Math. - 1978. - 61.

[^0]: * The second author was partially supported by: PROPG-UNESP and FAPESP 2012/07301-3.

