UDC 512.5

B. N. Türkmen, A. Pancar (Ondokuz Mayıs Univ., Samsun, Turkey)

GENERALIZATIONS OF \oplus -SUPPLEMENTED MODULES УЗАГАЛЬНЕННЯ \oplus -ДОПОВНЮВАНИХ МОДУЛІВ

We introduce \oplus -radical supplemented modules and strongly \oplus -radical supplemented modules (briefly, srs^{\oplus} -modules) as proper generalizations of \oplus -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an \oplus -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs^{\oplus} -module; (3) over a local Dedekind domain, every \oplus -radical supplemented module is a srs^{\oplus} -module. Moreover, we completely determine the structure of these modules over local Dedekind domains.

Введено поняття \oplus -радикальних доповнюваних модулів та сильно \oplus -радикальних доповнюваних модулів (скорочено srs^{\oplus} -модулів) як відповідних узагальнень \oplus -доповнюваних модулів. Доведено, що: (1) напівлокальне кільце $R \in$ досконалим зліва тоді і тільки тоді, коли кожен лівий R-модуль $\epsilon \oplus$ -радикальним доповнюваним модулем; (2) комутативне кільце $R \epsilon$ артіновим кільцем головних ідеалів тоді і тільки тоді, коли кожен лівий R-модуль ϵsrs^{\oplus} -модулем; (3) над локальною дедекіндовою областю кожен \oplus -радикальний доповнюваний модуль ϵsrs^{\oplus} -модулем. Повністю визначено структуру цих модулів над локальними дедекіндовими областями.

1. Introduction. Throughout the whole text, all rings are to be associative, unit and all modules are left unitary. Let M be such a module. We shall write $N \le M$ ($N \ll M$) if N is a submodule of M (small in M). By $\operatorname{Rad}(M)$ we denote the radical of M. Let $U, V \le M$. V is called a *supplement* of U in M if it is minimal with respect to M = U + V. V is a supplement of U in M if and only if M = U + V and $U \cap V \ll V$ (see [12]). A module M is called *supplemented* (weakly supplemented in [10]) if every submodule of M has a supplement in M, and it is called \oplus -supplemented if every submodule of M has a supplement of M. Clearly \oplus -supplemented modules are supplemented.

In [13], Zöschinger introduced a notion of modules whose radical has supplements called *radical* supplemented. The author determined in the same paper and in [15] the structure of radical supplemented modules. Motivated by this, Büyükaşık and Türkmen call a module M strongly radical suplemented (or briefly a srs-module) if every submodule containing radical has a supplement [2]. So it is natural to introduce another notion that we called \oplus -radical supplemented. A module M is called \oplus -radical supplemented if $\operatorname{Rad}(M)$ has a supplement that is a direct summand of M. We call also a module M strongly \oplus -radical supplemented (or briefly $\operatorname{srs}^{\oplus}$ -module) provided every submodule containing radical has a supplement that is a direct summand of M.

In this paper, we obtain various properties of \oplus -radical supplemented and srs^{\oplus} -modules as a proper generalization of \oplus -supplemented modules. We show that the class of srs^{\oplus} -modules and \oplus -radical supplemented modules are closed under finite direct sums. A semilocal ring R is left perfect if and only if every left R-module is \oplus -radical supplemented, and a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs^{\oplus} -module. We prove also that a non-zero projective module M with cofinite radical is \oplus -supplemented if and only if it is a srs^{\oplus} -module if and only if it is \oplus -cofinitely supplemented. Over a local Dedekind domain every \oplus -radical supplemented module is a srs^{\oplus} -module, and over a local Dedekind domain the structure of these modules is completely determined.

2. Modules over any rings. Recall that a module M is called *radical* if M has no maximal submodules, that is, $\operatorname{Rad}(M) = M$. For a module M, P(M) will indicate the sum of all radical submodules of M. if P(M) = 0, M is called *reduced*. Note that P(M) is the largest radical submodule of M.

Now we have the following simple fact, which plays a key role in our working.

Lemma 2.1. P(M) is a srs^{\oplus} -module for every *R*-module *M*.

Proof. Let M be any R-module. We know that $\operatorname{Rad}(P(M)) = P(M)$. So P(M) has trivial supplement 0 in P(M). Consequently, P(M) is a srs^{\oplus} -module.

We begin by giving some examples of module to separate \oplus -supplemented, srs^{\oplus} -module, \oplus -radical supplemented and radical supplemented.

Example 2.1. Let R be a non-local Dedekind domain with quotient field K. Consider the R-module $M = K^{(\mathbb{N})}$. Since P(M) = M, M is a srs^{\oplus} -module by Lemma 2.1. If $K^{(\mathbb{N})}$ is \oplus -supplemented, K is supplemented as a factor module of M and so, by [14], R is a local ring. This contradicts the assumption. Hence M is not \oplus -supplemented.

Note that every \oplus -supplemented with zero radical is semisimple.

Example 2.2. (1) Consider the non-Noetherian ring R which is the direct product $\prod_{i\geq 1}^{\infty} F_i$, where $F_i = F$ is any field. Clearly $\operatorname{Rad}(R) = 0$ and so the left R-module R is \oplus -radical supplemented. On the other hand, the left R-module R is not a srs^{\oplus} -module since it is not semisimple.

(2) Let $M =_{\mathbb{Z}} \mathbb{Z}$, where \mathbb{Z} is the ring of integers. It is well known that M is not semisimple and $\operatorname{Rad}(M) = 0$. Hence M is \oplus -radical supplemented, but it is not a srs^{\oplus} -module.

Example 2.3. Let $R = \mathbb{Z}$ and I be a collection of distinct maximal ideal of \mathbb{Z} . Consider the left \mathbb{Z} -module $M = \prod_{p \in I} \left(\frac{\mathbb{Z}}{p^2}\right)$. Then M is radical supplemented. However, it is not \oplus -radical supplemented (see [13]).

Now we shall show that in general srs-modules need not be a srs^{\oplus} -module. To see this, we need to the following lemma.

Lemma 2.2. Let M be a module. Suppose that Rad(M) is small in M. Then M is a srs^{\oplus} -module if and only if it is \oplus -supplemented.

Proof. (\Longrightarrow) Let N be any submodule of M. Then $\operatorname{Rad}(M) \subseteq \operatorname{Rad}(M) + N \subseteq M$. Since M is a srs^{\oplus} -module, we have $M = \operatorname{Rad}(M) + N + L$, $(\operatorname{Rad}(M) + N) \cap L \ll L$ and $M = L \oplus L'$ for two submodules $L, L' \leq M$. Since $\operatorname{Rad}(M) \ll M$, we get M = N + L and $N \cap L \ll L$. So L is a supplement of N in M such that L is a direct summand of M. Therefore M is a \oplus -supplemented module.

 (\Leftarrow) Clear.

Example 2.4 (see [9], Corollary 2.4). Let F be any field and R = F[[X, Y]], the ring of formal power series over F indeterminates X, Y. Then R is a local commutative Noetherian domain. Now suppose that $M =_R \operatorname{Rad}(R)$. So M = RX + RY. Since R is local, by [12] (42.6), M is supplemented and so it is a *srs*-module. It follows from [9] (Corollary 2.4) that M is not \oplus -supplemented. Therefore, by Lemma 2.2, M is not a srs^{\oplus} -module.

Recall from [3] that a ring R is a *left Bass ring* if every non-zero left R-module has a maximal submodule. It is known that the ring R is left Bass if and only if Rad(M) is small in M for every non-zero left R-module M. By using Lemma 2.2, we obtain the following important corollary.

Corollary 2.1. *Every* srs^{\oplus} *-module over a left Bass ring is* \oplus *-supplemented.*

A module M is called *coatomic* if every proper submodule of M is contained in a maximal submodule of M. Note that coatomic modules have a small radical and so every coatomic module is \oplus -radical supplemented.

Corollary 2.2. Let M be a coatomic module. Then M is a srs^{\oplus} -module if and only if it is \oplus -supplemented.

Proof. It follows from Lemma 2.2.

Now we shall prove that the class of srs^{\oplus} -modules and \oplus -radical supplemented modules are closed under finite direct sums.

Theorem 2.1. Let M_i , i = 1, 2, ..., n, be any finitely collection of modules and $M = M_1 \oplus \oplus M_2 \oplus ... \oplus M_n$. Then:

- (1) *M* is \oplus -radical supplemented if M_i is \oplus -radical supplemented for each $1 \le i \le n$;
- (2) *M* is a srs^{\oplus} -module if M_i is a srs^{\oplus} -module for each $1 \leq i \leq n$.

Proof. (1) The proof can be made similar to (2).

(2) Let M_i be a srs^{\oplus} -module for each $1 \leq i \leq n$. To prove that M is a srs^{\oplus} -module, it is sufficient by induction on n to prove this is the case when n = 2. Hence suppose n = 2. Let Ube any submodule of M with $\operatorname{Rad}(M) \subseteq U$. Then $M = M_1 + M_2 + U$ so that $M_1 + M_2 + U$ has a supplement 0 in M. Since $M = M_1 \oplus M_2$, then $\operatorname{Rad}(M_2) \subseteq U + M_1$. It follows that $\operatorname{Rad}(M_2) \subseteq M_2 \cap (U + M_1)$ has a supplement H in M_2 such that H is a direct summand of M_2 . By [5] (Lemma 1.3), H is a supplement of $M_1 + U$ in M. Moreover $\operatorname{Rad}(M_1) \subseteq U + H$. Since M_1 is a srs^{\oplus} -module, $M_1 \cap (U + H)$ has a supplement K in M_1 such that K is a direct summand of M_1 . Again applying [5] (Lemma 1.3), we have that H + K is a supplement of U in M. It is clear that H + K is a direct summand of M. Therefore M is a srs^{\oplus} -module.

Now we shall give another example of a non-radical module which is a srs^{\oplus} -module but not \oplus -supplemented.

Example 2.5. Consider the left \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}_p$, where p is a prime integer. Note that M has a unique maximal submodule, which means that $\operatorname{Rad}(M) \neq M$. According to Lemma 2.1, the left \mathbb{Z} -module \mathbb{Q} is a srs^{\oplus} -module. By Theorem 2.1 (2), M is a srs^{\oplus} -module as a direct sum of two srs^{\oplus} -modules. On the other hand, M is not \oplus -supplemented because it is not torsion.

Proposition 2.1. Let M be a non-radical module. If M is a \oplus -radical supplemented, then M contains a radical direct summand. In particular, if P(M) = 0, then $\operatorname{Rad}(M) \ll M$.

Proof. Suppose that $\operatorname{Rad}(M) \neq M$. By the hypothesis, there exist submodules V, V' of M such that $M = \operatorname{Rad}(M) + V$, $\operatorname{Rad}(V) = V \cap \operatorname{Rad}(M) \ll V$ and $M = V \oplus V'$. It follows from [12] (21.6 (5)) that $\operatorname{Rad}(M) = \operatorname{Rad}(V) \oplus \operatorname{Rad}(V')$. So $M = \operatorname{Rad}(M) + V = \operatorname{Rad}(V') \oplus V$. Therefore by modularity, $V' = \operatorname{Rad}(V') \oplus (V \cap V') = \operatorname{Rad}(V')$, that is, V' is radical.

Suppose that P(M) = 0. Then V' = 0, which shows that V = M. Hence $Rad(M) \ll M$.

Recall that a subset X of a ring R is called *right t-nilpotent* if, for every sequence x_1, x_2, \ldots of elements in X, there exists a $k \in \mathbb{N}$ with $x_1x_2 \ldots x_k = 0$. A ring R is called *left perfect* if R is semilocal and $\operatorname{Rad}(R)$ is right t-nilpotent [12] (43.9).

Theorem 2.2. Let R be any ring. Then Rad(R) is right t-nilpotent if and only if every projective left R-module is \oplus -radical supplemented.

Proof. (\Longrightarrow) Let M be any projective left R-module. By [8] (9.2.1), $\operatorname{Rad}(M) = \operatorname{Rad}(R)M$ and so, by [12] (43.5), $\operatorname{Rad}(M) \ll M$ as required.

(\Leftarrow) Let $M = R^{(\mathbb{N})}$. Again applying [8] (9.2.1), we have $\operatorname{Rad}(M) = \operatorname{Rad}(R)M$. Since M is \oplus -radical supplemented, there exist submodules V, V' of M such that $M = \operatorname{Rad}(M) + V$, $\operatorname{Rad}(V) = V \cap \operatorname{Rad}(M) \ll V$ and $V \oplus V' = M$. So V' is radical. It follows from [12] (22.3 (2)) that V' = 0, which means that V = M. Hence $\operatorname{Rad}(M)$ is small in M and, by [12] (43.5), $\operatorname{Rad}(R)$ is right *t*-nilpotent.

Corollary 2.3. A semilocal ring R is left perfect if and only if every left R-module is \oplus -radical supplemented.

Proof. It follows from Theorem 2.2 and [12] (49.9).

Note that the condition "semilocal" in the above corollary is necessary. We see, for example, the left Bass rings which are not left perfect.

Proposition 2.2. A non-zero projective srs^{\oplus} -module is \oplus -supplemented.

Proof. Let M be any non-zero projective srs^{\oplus} -module. Therefore, it is \oplus -radical supplemented. Then there exist submodules V, V' of M such that $M = \operatorname{Rad}(M) + V, \operatorname{Rad}(V) \ll V$ and $M = V \oplus V'$. So V' is radical. By [12] (22.3(2)), V' = 0. It follows that $\operatorname{Rad}(M) \ll M$. Hence M is \oplus -supplemented by Lemma 2.2.

It is well known that a ring R is semiperfect if and only if every finitely generated free R-module is \oplus -supplemented. By Lemma 2.2, we know that every finitely generated srs^{\oplus} -module is \oplus -supplemented. Using these facts we obtain the following corollary.

Corollary 2.4. For any ring R with identity element, R is semiperfect if and only if every finitely generated free R-module is a srs^{\oplus} -module.

Proof. Let $F = R^{(I)}$ be any free *R*-module for some finite set *I*. Since *R* is semiperfect, by [9] (Theorem 2.1), the left *R*-module *R* is \oplus -supplemented and so the module is a srs^{\oplus} -module. Hence *F* is a srs^{\oplus} -module by Theorem 2.1 (2). Conversely, suppose that every finitely generated free *R*-module is a srs^{\oplus} -module. Then the left *R*-module *R* is a srs^{\oplus} -module. By Lemma 2.2, *R* is semiperfect.

Let R be any ring. R is called FGC ring if every finitely generated R-module decomposes into a direct sum of cyclic submodules. If R is a local FGC ring, then R is an almost maximal valuation ring [1] (Theorem 4.4). It is proved [6] (Proposition 1.3) that a commutative local ring R is an almost maximal valuation ring if and only if every finitely generated R-module is \oplus -supplemented. Now we have the following corollary.

Corollary 2.5. For a commutative ring R, R is a finitely product of almost maximal valuation rings if and only if every finitely generated R-module is a srs^{\oplus} -module.

Lemma 2.3. Let M be an indecomposable module. If M is a srs^{\oplus} -module, then M is radical or M is local.

Proof. Suppose that $\operatorname{Rad}(M) \neq M$. Then M contains a maximal submodule K. By the hypothesis, there exists a direct summand V of M such that M = K + V and $K \cap V \ll V$. It follows from [12] (41.1(3)) that V is local. Since M is an indecomposable module and K is a maximal submodule of M, we get V = M. Thus M is local.

Theorem 2.3. Let R be a local commutative ring and M be a uniform R-module. Then every submodule of M is a srs^{\oplus} -module if and only if M is uniserial.

Proof. (\Longrightarrow) By [11] (Lemma 6.2), it sufficies to show that every finitely generated submodule of M is local. Let N be any finitely generated submodule of M. By assumption, N is indecomposable. So, by Lemma 2.3, N is local.

(\Leftarrow) Since M is uniserial, every submodule of M is hollow by [3] (2.17). Therefore every submodule of M is a srs^{\oplus} -module.

Corollary 2.6. Let R be a local commutative ring. Suppose that every submodule of $E\left(\frac{R}{\operatorname{Rad}(R)}\right)$ is a srs^{\oplus} -module, where $E\left(\frac{R}{\operatorname{Rad}(R)}\right)$ is the injective hull of the simple module R

 $\frac{1}{\operatorname{Rad}(R)}$. Then R is a uniserial ring.

Proof. Since $E\left(\frac{R}{\text{Rad}(R)}\right)$ is uniform, the hypothesis implies that $E\left(\frac{R}{\text{Rad}(R)}\right)$ is uniserial by Theorem 2.3. It follows from [11] (Lemma 6.2) that R is a uniserial ring

It is shown [6] (Theorem 1.1) that a commutative ring R is an artinian principal ring if and only if every left R-module is \oplus -supplemented. Now we generalize this fact.

Theorem 2.4. A commutative ring R is an artinian principal ideal ring if and only if every left *R*-module is a srs^{\oplus} -module.

Proof. Suppose that every left R-module is a srs^{\oplus} -module. Then, by Lemma 2.2, the left Rmodule R is \oplus -supplemented and so R is semiperfect. By [12] (42.6), R is semilocal. It follows from Corollary 2.3 that R is left perfect. Since R is semiperfect, we can write, [12] (42.6), R = $= \operatorname{Re}_1 \oplus \operatorname{Re}_2 \oplus \ldots \oplus \operatorname{Re}_n$ such that e_i is local orthogonal idempotent for $1 \leq i \leq n$ with $n \in \mathbb{N}$. For all $1 \le i \le n$, Re_i is commutative and it is not difficult to see that every Re_i-module is a srs^{\oplus} module by assumption. Now Corollary 2.6 implies that Re_i is an uniserial ring for every $1 \leq i \leq n$. By [11] (Lemma 6.3), Re_i is a principal ideal ring, which shows that R is an artinian principal ideal ring.

Let R be a ring and M be a \oplus -radical supplemented R-module with **Proposition 2.3.** $\operatorname{Rad}(M) \neq M$. If its ring of endomorphism is quasi local, then M is local.

Proof. By the hypothesis, there exist submodules U, U' of M such that $M = \operatorname{Rad}(M) + U$, $\operatorname{Rad}(M) \cap U \ll U$ and $M = U \oplus U'$. By [11] (Proposition 3.11), M is an indecomposable module. So U' = 0, that is, U = M. Thus $\operatorname{Rad}(M) \ll M$. By Lemma 2.2, M is \oplus -supplemented. Let N be any proper submodule of M. It follows that M = N + T, $N \cap T \ll T$ and $M = T \oplus T'$ for some submodules $T, T' \subseteq M$. Since M is an indecomposable module, M = T. Then $N \ll M$. Therefore M is hollow. By [12] (41.4), M is local.

Example 2.6 (see [7], Example 2.3). Let R be a commutative local ring which is not a valuation ring. Let x and y be elements of R, neither of them divides the other. By taking a suitable quotient ring, we may assume that $(x) \cap (y) = 0$ and xP = yP = 0, where P is the unique maximal ideal of R. Let F be a free module with generators a_1, a_2, a_3 . Let N be the submodule generated by $xa_1 - ya_2$ and let $M = \frac{F}{N}$. By Theorem 2.1 (2), F is a srs^{\oplus} -module. Suppose that M is a srs^{\oplus} module. It is clear that M is finitely generated and it follows that $\operatorname{Rad}(M) \ll M$. By Lemma 2.2, M is \oplus -supplemented. This is a contradiction.

Now we give some properties of factor modules of srs^{\oplus} -modules. Recall from [12] that a submodule U of an R-module M is called *fully invariant* if f(U) is contained in U for every Rendomorphism f of M. Let M be an R-module and τ be a preradical for the category of R-modules. Then $\tau(M)$ is a fully invariant submodule of M. We prove the following proposition which is a modified form of [7] (Proposition 2.5).

Proposition 2.4. If M is a srs^{\oplus} -module, then $\frac{M}{U}$ is a srs^{\oplus} -module for every fully invariant submodule U of M.

Proof. Let U be any fully invariant submodule of M and let $\frac{V}{U}$ be any submodule of $\frac{M}{U}$ with $\operatorname{Rad}\left(\frac{M}{U}\right) \subseteq \frac{V}{U}$. Since $\frac{\operatorname{Rad}(M) + U}{U} \subseteq \operatorname{Rad}\left(\frac{M}{U}\right)$, we have $\operatorname{Rad}(M) \subseteq V$. By the hypothesis, we have $M = V + T, V \cap T \ll T$ and $M = T \oplus T'$ for some submodules T, T' of M. Then by [14] (Lemma 1.2(d)), $\frac{(T+U)}{U}$ is a supplement of $\frac{V}{U}$ in $\frac{M}{U}$. Since U is a fully invariant submodule of M, we have $U = (T \cap U) + (T' \cap U)$ by [7] (Lemma 2.4). Note that

$$\frac{M}{U} = \frac{(T+U)}{U} + \frac{(T'+U)}{U}$$

and

$$\frac{(T+U)}{U} \cap \frac{(T'+U)}{U} = 0,$$

i.e., $\frac{(T+U)}{U}$ is a direct summand of $\frac{M}{U}$. Hence $\frac{M}{U}$ is a srs^{\oplus} -module.

Proposition 2.5. Let M be a \oplus -radical supplemented module. Then $\frac{M}{P(M)}$ has a small radical.

Proof. Since P(M) is a fully invariant submodule of M, by Proposition 2.4, the factor module $\frac{M}{P(M)}$ is \oplus -radical supplemented. Note that $\frac{M}{P(M)}$ is reduced. It follows from Proposition 2.1 that $\frac{M}{P(M)}$ has a small radical.

Proposition 2.6. Let M be a srs^{\oplus} -module. Suppose that $\frac{M}{\operatorname{Rad}(M)}$ is projective. Then $\operatorname{Rad}(M)$ is \oplus -supplemented if and only if M is \oplus -supplemented.

Proof. (\Longrightarrow) Let $\operatorname{Rad}(M)$ be a \oplus -supplemented module. By the hypothesis, we have $M = \operatorname{Rad}(M) \oplus N$ for some submodule N of M. Since M is a srs^{\oplus} -module, by Proposition 2.4, $\frac{M}{\operatorname{Rad}(M)}$ is semisimple and so N is semisimple. Therefore N is \oplus -supplemented. By [5] (Theorem 1.4), M is \oplus -supplemented.

(\Leftarrow) Since $\operatorname{Rad}(M)$ is a fully invariant submodule of M and M is \oplus -supplemented, $\operatorname{Rad}(M)$ is \oplus -supplemented by [7] (Proposition 2.5).

A submodule N of M is said to be *cofinite* if $\frac{M}{N}$ is finitely generated.

Proposition 2.7. Let M be a srs^{\oplus} -module. Suppose that a cofinite fully invariant submodule K of M is a direct summand of M. Then K is a srs^{\oplus} -module.

Proof. Let U be any submodule of K with $\operatorname{Rad}(K) \subseteq N$. By the hypothesis, we have $M = K \oplus L$ for some finitely generated submodule L of M. Then $\operatorname{Rad}(L) \ll L$. Clearly $\operatorname{Rad}(M) \subseteq \subseteq U + \operatorname{Rad}(L)$. And so there exist submodules V, V' of M such that $M = U + \operatorname{Rad}(L) + V$, $(U + \operatorname{Rad}(L)) \cap V \ll V$ and $M = V \oplus V'$. Since $\operatorname{Rad}(L) \ll L$, we have M = U + V, $U \cap V \ll V$ and $M = V \oplus V'$. It follows that $K = U + (K \cap V)$ and $U \cap (K \cap V) \ll M$. Since K is a fully invariant submodule of M, then $K = (K \cap V) \oplus (K \cap V')$. Note that $U \cap (K \cap V) \ll K \cap V$. Therefore K is a srs^{\oplus} -module.

Corollary 2.7. Let M be a srs^{\oplus} -module and let $\tau(M)$ be a cofinite direct summand of M, then $\tau(M)$ is a srs^{\oplus} -module.

Lemma 2.4. Let M be an R-module and $\operatorname{Rad}(M) \subseteq N$. If N is a direct summand of M, then $\operatorname{Rad}(M) = \operatorname{Rad}(N)$. In particular, if $\operatorname{Rad}(M)$ is a direct summand of M, $\operatorname{Rad}(M) = P(M)$.

Proof. By the hypothesis, we have $M = N \oplus N'$ for some submodule N' of M. Then $\operatorname{Rad}(M) = \operatorname{Rad}(N) \oplus \operatorname{Rad}(N')$ by [8] (9.1.5). Since $\operatorname{Rad}(M) \subseteq N$, $\operatorname{Rad}(M) = \operatorname{Rad}(N) \oplus (N \cap \operatorname{Rad}(N'))$. Note that $N \cap \operatorname{Rad}(N') \subseteq N \cap N' = 0$. Hence $\operatorname{Rad}(M) = \operatorname{Rad}(N)$. Now we take $N = \operatorname{Rad}(M)$ under the similar condition. So $M = \operatorname{Rad}(M) \oplus X$ for some submodule X of M. It follows that $\operatorname{Rad}(M) = \operatorname{Rad}(\operatorname{Rad}(M)) \oplus \operatorname{Rad}(X)$. Since $\operatorname{Rad}(M) \cap X = 0$, we have $\operatorname{Rad}(X) = 0$ and so $\operatorname{Rad}(M) = \operatorname{Rad}(\operatorname{Rad}(M))$, i.e., $\operatorname{Rad}(M)$ is radical. Consequently, $\operatorname{Rad}(M) = P(M)$.

Let R be a ring and let M be an R-module. We consider the following condition.

 (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

Proposition 2.8. Let M be a srs^{\oplus} -module with (D_3) and let N be a submodule with $Rad(M) \subseteq \subseteq N$. If N is a direct summand of M, N is a srs^{\oplus} -module.

Proof. Let U be a submodule of N such that $\operatorname{Rad}(N) \subseteq U$. By Lemma 2.4, $\operatorname{Rad}(M) = \operatorname{Rad}(N)$. Since M is a srs^{\oplus} -module, there exist submodules V, V' of M such that M = U + V, $U \cap V \ll V$ and $M = V \oplus V'$. Then $N = U + (N \cap V)$. Since M satisfies $(D_3), N \cap V$ is a direct summand of M. Then there exists a submodule X of M such that $M = (N \cap V) \oplus X$. It follows that $U \cap (N \cap V) \ll N \cap V$ and $N = (N \cap V) \oplus (N \cap X)$. Therefore N is a srs^{\oplus} -module.

Corollary 2.8. Let M be a UC-extending module. If M is a srs^{\oplus} -module, then every direct summand of M containing Rad(M) is a srs^{\oplus} -module.

Recall that an *R*-module *M* has summand sum property (SSP) if the sum of two direct summands of *M* is again a direct summand of *M*. In [4], a module *M* is called \oplus -cofinitely supplemented if every cofinite submodule of *M* has a supplement that is a direct summand of *M*. It is well known [4] (Theorem 2.3) that a module *M* with (SSP) is \oplus -cofinitely supplemented if and only if every maximal submodule of *M* has a supplement that is a direct summand of *M*. We don't know whether srs^{\oplus} -modules are \oplus -cofinitely supplemented, but we have the following fact.

Theorem 2.5. Let M be a srs^{\oplus} -module with (SSP). Then M is \oplus -cofinitely supplemented.

Proof. Let U be any maximal submodule of M. Then $Rad(M) \subseteq U$. By the hypothesis, U has a supplement that is a direct summand of M. By [4] (Theorem 2.3), M is \oplus -cofinitely supplemented.

The following example shows that a \oplus -cofinitely supplemented module is not a srs^{\oplus} -module.

Example 2.7. Consider that the ring \mathbb{Z}_p consisting all rational numbers of the form $\frac{a}{b}$, where $p \nmid b$. Then \mathbb{Z}_p is a local ring, which is not left perfect. So, by [4] (Theorem 2.9), every left free

 \mathbb{Z}_p -module is \oplus -cofinitely supplemented. Since \mathbb{Z}_p is not left perfect, there exists an infinite index set I such that $\mathbb{Z}_p^{(I)}$ is not \oplus -supplemented. By Proposition 2.2, $\mathbb{Z}_p^{(I)}$ is not a srs^{\oplus} -module.

Proposition 2.9. Let M be a module and Rad(M) be cofinite. If M is \oplus -cofinitely supplemented, then M is a srs^{\oplus} -module.

Proof. Let N be any submodule of M with $\operatorname{Rad}(M) \subseteq N$. Note that

$$\frac{\left(\frac{M}{\operatorname{Rad}(M)}\right)}{\left(\frac{N}{\operatorname{Rad}(M)}\right)} \cong \frac{M}{N}.$$

Since $\frac{M}{\operatorname{Rad}(M)}$ is finitely generated, N is a cofinite submodule of M. By the hypothesis, N has a supplement that is a direct summand of M. Therefore M is a srs^{\oplus} -module.

Theorem 2.6. Let *M* be a non-zero projective module with cofinite radical. Then the following statements are equivalent:

(1) *M* is a \oplus -supplemented module;

(2) *M* is a \oplus -cofinitely supplemented module;

(3) *M* is a srs^{\oplus} -module.

Proof. (1) \Rightarrow (2) Obvious.

 $(2) \Rightarrow (3)$ This implication follows from Proposition 2.9.

(3) \Rightarrow (1) By Proposition 2.2.

3. Modules over Dedekind domains. Throughout this section R will denote a Dedekind domain unless otherwise specified.

Proposition 3.1. Let M be an R-module. Then M is \oplus -radical supplemented if and only if $\frac{M}{P(M)}$ has a small radical.

Proof. (\Longrightarrow) By Proposition 2.5.

(\Leftarrow) Since R is Dedekind domain, P(M) is injective and so there exists a submodule N of M such that $M = P(M) \oplus N$. By the hypothesis, N is \oplus -radical supplemented. Thus, by Lemma 2.1 and Theorem 2.1 (1), M is \oplus -radical supplemented.

Note that from [14] (Lemma 2.1), over a local Dedekind domain module with small radical is coatomic. By using this fact and Proposition 3.1, we obtain the following corollary.

Corollary 3.1. Let R be a local Dedekind domain and M be a module over such a ring R. Then M is \oplus -radical supplemented if and only if $\frac{M}{P(M)}$ is coatomic.

Proposition 3.2. Let M be an R-module. Then M is srs^{\oplus} if and only if $\frac{M}{P(M)}$ is a srs^{\oplus} -module.

Proof. We know that P(M) is a fully invariant submodule of M. So, by Proposition 2.4, $\frac{M}{P(M)}$ is a srs^{\oplus} -module. Conversely, suppose that $\frac{M}{P(M)}$ is a srs^{\oplus} -module. Since R is a Dedekind domain, we have $M = P(M) \oplus N$ for some submodule N of M. By the hypothesis, N is a srs^{\oplus} -module. Hence M is a srs^{\oplus} -module by Theorem 2.1 (2) and Lemma 2.1.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 4

Corollary 3.2. Let R be a local Dedekind domain and M be an R-module. Then M is \oplus -radical supplemented if and only if it is a srs^{\oplus} -module.

Proof. Suppose that M is \oplus -radical supplemented. By Corollary 3.1, $\frac{M}{P(M)}$ is coatomic and so, by [14] (Lemma 2.1) $\frac{M}{P(M)}$ is \oplus -supplemented, which shows that $\frac{M}{P(M)}$ is a srs^{\oplus} -module. By Proposition 3.2, M is a srs^{\oplus} -module.

Theorem 3.1. Let R be a local Dedekind domain and M be an R-module. Then the following statements are equivalent:

- (1) M is \oplus -radical supplemented;
- (2) *M* is a srs^{\oplus} -module;

(3) $M \cong K^{(I)} \oplus \left(\frac{K}{R}\right)^{(J)} \oplus R^{(n)} \oplus N$, where K is the quotient field of R, I and J denote any index sets, n is a non-negative integer and N is a bounded R-module.

Proof. (1) \iff (2) It is clear from Corollary 3.2.

(3) \Longrightarrow (2) The module $K^{(I)} \oplus \left(\frac{K}{R}\right)^{(J)}$ is radical and so, by Lemma 2.1, $K^{(I)} \oplus \left(\frac{K}{R}\right)^{(J)}$ is a srs^{\oplus} -module. By [14] (Lemma 2.1), $R^{(n)} \oplus N$ is \oplus -supplemented. Hence the direct sum $K^{(I)} \oplus$ $\oplus \left(\frac{K}{R}\right)^{(J)} \oplus R^{(n)} \oplus N$ is a srs^{\oplus} -module by Theorem 2.1 (2).

(K) $(2) \Longrightarrow (3) \text{ By Corollary 3.1, } \frac{M}{P(M)} \text{ is coatomic. Then by [14] (Lemma 2.1), we have } \frac{M}{P(M)} \cong$ $\cong R^{(n)} \oplus N, \text{ where } n \text{ is non-negative integer and } N \text{ is bounded. Since } P(M) \text{ is radical, } P(M) \cong$ $\cong K^{(I)} \oplus \left(\frac{K}{R}\right)^{(J)} \text{ for some index sets } I \text{ and } J. \text{ Thus } M \cong K^{(I)} \oplus \left(\frac{K}{R}\right)^{(J)} \oplus R^{(n)} \oplus N.$

We know that every \oplus -radical supplemented module is radical supplemented. In Example 2.3, we showed that a radical supplemented module need not be \oplus -radical supplemented. Now we shall prove that the converse of this fact is true for torsion modules over local Dedekind domains.

Proposition 3.3. Let R be a local Dedekind domain and M be a torsion R-module. Then Mis radical supplemented if and only if it is \oplus -radical supplemented.

Proof. Suppose that M is radical supplemented. By [13] (Proposition 3.1), $\frac{M}{P(M)}$ is bounded since M is torsion. Hence M is \oplus -radical supplemented by Theorem 2.1 (1).

- 1. Brandal W. Commutative rings whose finitely generated modules decompose. Springer-Verlag, 1979.
- 2. Büyükaşık E., Türkmen E. Strongly radical supplemented modules // Ukr. Math. J. 2011. 63, № 8. P. 1306 1313.
- Clark J., Lomp C., Vajana N., Wisbauer R. Lifting modules supplements and projectivity in module theory // Front. 3. Math. - 2006.
- *Çalışıcı H., Pancar A.* ⊕-Cofinitely supplemented modules // Chechoslovak Math. J. 2004. 54(129). P. 1083 -4. 1088.
- 5. Harmanci A., Keskin D., Smith P. F. On ⊕-supplemented modules // Acta math. hungar. 1999. 83, № 1-2. -P. 161-169.
- 6. Idelhadj A., Tribak R. Modules for which every submodule has a supplement that is a direct summand // Arab. J. Sci. and Eng. – 2000. – 25, № 2. – P. 179–189.
- Idelhadj A., Tribak R. On some properties of ⊕-supplemented modules // Int. J. Math. Sci. 2003. 69. P. 4373 -7. 4387.
- 8 Kasch F. Modules and rings. - Acad. Press Inc., 1982.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 4

- 9. Keskin D., Smith P. F., Xue W. Rings whose modules are ⊕-supplemented // J. Algebra. 1999. 218. P. 470 487.
- 10. Mohamed S. H., Müller B. J. Continuous and discrete modules // London Math. Soc. Lect. Note Ser. 1990. 147.
- 11. Sharpe D. W., Vamos P. Injective modules // Lect. Pure Math. 1972.
- 12. Wisbauer R. Foundations of modules and rings. Gordon and Breach, 1991.
- 13. Zöschinger H. Moduln, die in jeder erweiterung ein komplement haben // Math. scand. 1974. 35. P. 267-287.
- 14. Zöschinger H. Komplementierte moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42-56.
- Zöschinger H. Basis-untermoduln und quasi-kotorsions-moduln ber diskreten bewertungsringen // Bayer. Akad. Wiss. Math.-Natur. Kl. – 1976. – 2. – S. 9–16.

Received 31.07.11