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A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES
OF A SPACE FORM BY GEODESIC MAPPING

ХАРАКТЕРИСТИКА ТОТАЛЬНО ОМБIЛIЧНИХ ГIПЕРПОВЕРХОНЬ
ПРОСТОРОВОЇ ФОРМИ ЗА ДОПОМОГОЮ ГЕОДЕЗИЧНИХ ВIДОБРАЖЕНЬ

The idea of considering the second fundamental form of a hypersurface as the first fundamental form of another hypersurface
has found very useful applications in Riemannian and semi-Riemannian geometry, specially when trying to characteri-
ze extrinsic hyperspheres and ovaloids. Recently, T. Adachi and S. Maeda gave a characterization of totally umbilical
hypersurfaces in a space form by circles. In this paper, we give a characterization of totally umbilical hypersurfaces of a
space form by means of geodesic mapping.

Iдея використання другої фундаментальної форми гiперповерхнi як першої фундаментальної форми iншої гiперпо-
верхнi знайшла дуже важливi застосування у рiмановiй та напiврiмановiй геометрiї, зокрема при описi зовнiшнiх
гiперсфер та овалоїдiв. Нещодавно T. Adachi та S. Maeda навели характеристику тотально омбiлiчних гiперпо-
верхонь у просторовiй формi за допомогою кiл. У цiй роботi ми наводимо характеристику тотально омбiлiчних
гiперповерхонь просторової форми за допомогою геодезичних вiдображень.

1. Introduction. Let Mn and M ′
n be two hypersurfaces of the space form M̄n+1 [3 – 5] and let g, g′

and ḡ be the respective positive definite metric tensors. Denote by ∇, ∇′ and ∇̄ the corresponding
connections induced by g, g′ and ḡ.

In this paper, we choose the first fundamental form of M ′
n as

g′ = e2σω, (1.1)

where ω is the second fundamental form of Mn which is supposed to be positive definite and σ is a
differentiable function defined on Mn.

Let {xi}, {x′i} and {yα} be the respective coordinate systems in Mn, M ′
n and M̄n+1 and let f

be a one-to-one differentiable mapping of Mn upon M ′
n defined by

x′i = f i(x1, x2, . . . , xn), i = 1, 2, . . . , n, (1.2)

in which f i are smooth functions defined on Mn and have a non-vanishing Jacobian. Then, it is clear
that the corresponding points of Mn and M ′

n are represented by the same set of coordinates and that
the coordinate vectors correspond.

Let R̄, R and R′ be the covariant curvature tensors of M̄n+1, Mn and M ′
n respectively and let

K̄ be the Riemannian curvature of M̄n+1.
We then have1

R̄
βγδε

= K̄(ḡ
βδ
ḡγε − ḡβε ḡγδ). (1.3)

On the other hand, under the condition (1.3) the Codazzi equations

1In the sequel, Latin indices i, j, k, . . . run from 1 to n, while the Greek indices α, β, γ will run from 1 to n+ 1.
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∇kωij −∇jωik + R̄
βγδε

Nβ ∂y
γ

∂xi
∂yδ

∂xj
∂yε

∂xk
= 0

and the Gauss equation

Rijkl = R̄
βγδε

∂yβ

∂xi
∂yγ

∂xj
∂yδ

∂xk
∂yε

∂xl
+ (ωikωjl − ωilωjk)

transform, respectively, into

∇kωij −∇jωik = 0 (1.4)

and

Rijkl = K̄(gikgjl − gilgjk) + (ωikωjl − ωilωjk) (1.5)

in which Nβ are the components of the unit normal vector field of Mn [4].
2. Relation between the connections ∇ and ∇′. It is well-known that the connection coeffi-

cients of a Riemannian space whose metric tensor is g are given by [5]

Γlij =
1

2
glh (∂igjh + ∂jgih − ∂hgij), ∂k =

∂

∂xk
. (2.1)

Replacing g in (2.1) by the metric tensor g′ of M ′
n given by (1.1) and doing the necessary

calculations we first find the connection coefficients Γ′l
ij of M ′

n as

Γ′l
ij =

1

2
e2σg′

lk
(∂jωik + ∂iωjk − ∂kωij) + (∂jσ)δli + (∂iσ)δlj − (∂kσ)g′

lk
g′ij . (2.2)

On the other hand, for the covariant derivative of the second fundamental tensor ω of Mn we
have [3, 4]

∇iωjk = ∂iωjk − Γhijωhk − Γhikωjh. (2.3)

Changing the indices i, j and k cyclically we obtain two more equations:

∇jωki = ∂jωki − Γhijωhk − Γhkjωih, (2.4)

∇kωij = ∂kωij − Γhkiωhj − Γhkjωih. (2.5)

Subtracting (2.5) from the sum of (2.3) and (2.4) and using the Codazzi equations (1.4), we
obtain

∇iωjk = ∂iωjk + ∂jωik − ∂kωij − 2ωhkΓ
h
ij . (2.6)

In view of (2.6), (2.2) becomes

Γ′l
ij = Γlij + δli∂jσ + δlj∂iσ − g′

lk
g′ij∂kσ +

1

2
e2σg′

lk∇iωjk. (2.7)

(2.7) is the desired relation connecting the connection coefficients of Mn and M ′
n.

3. Geodesic mappings of Mn upon M ′
n. If the map f defined by (1.2) transforms every

geodesic in Mn into a geodesic in M ′
n, f is called a geodesic mapping of Mn into M ′

n.
Mn and M ′

n will be in geodesic correspondence if and only if the respective connection coeffi-
cients Γhij and Γ′h

ij of Mn and M ′
n are related by [3]

Γ′i
jk = Γijk + δijψk + δikψj , (3.1)

where ψk are the components of some 1-form which is known to be a gradient.
We first prove the following lemma which will be needed in our subsequent work.
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Lemma 3.1. Let Mn and M ′
n be hypersurfaces of the space form M̄n+1 and let the metric

tensor of M ′
n be defined by (1.1). If Mn and M ′

n are in geodesic correspondence, then the 1-form ψk
is the gradient of 2σ.

Proof. Since ∇′ is a metric connection we have

0 = ∇′
kg

′
ij = ∂kg

′
ij − g′ljΓ′l

ik − g′liΓ′l
jk

so that with the help of (1.1) and (3.1) we obtain

0 = 2ωij∂kσ +∇kωij − 2ψkωij − ψiωkj − ψjωki. (3.2)

Interchanging the indices j and k in (3.2) we find

0 = 2ωik∂jσ +∇jωik − 2ψjωik − ψiωkj − ψkωji. (3.3)

Subtracting (3.3) from (3.2) and putting

φk = ψk − 2∂kσ (3.4)

in (3.3) we conclude that

ωijφk − ωikφj = 0 (3.5)

in which the Codazzi equations (1.4) have been used.
We note that, since ψk is a gradient, it follows from (3.4) that φk is also a gradient. Multiplying

(3.5) by e2σ and using (1.1) we obtain

φkg
′
ij − φjg′ik = 0 (3.6)

or, multiplying (3.6) by g′ij and summing with respect to i and j we find for n > 1 that

φk = 0. (3.7)

Combination of (3.4) and (3.7) yields ψk = 2∂kσ.
We next prove the following theorem.
Theorem 3.1. The hypersurface Mn of a space form M̄n+1 will be totally umbilical if and

only if Mn can be geodesically mapped upon M ′
n.

Proof. Sufficiency. Let γ be a geodesic through the point p ∈Mn which is defined by xi = xi(s),
s being the arc length of γ. Then, the normal curvature, say κn, of Mn in the direction of γ, i.e., in

the direction of
dxi

ds
, is [4]

κn = ωij
dxi

ds

dxj

ds
. (3.8)

Multiplying (3.2) by
dxi

ds

dxj

ds

dxk

ds
and summing with respect to i, j, k and using (3.8) we obtain

2κn(∂kσ)
dxk

ds
+ (∇kωij)

dxk

ds

dxi

ds

dxj

ds
− 2

(
ψk
dxk

ds

)
κn −

(
ψi
dxi

ds

)
κn −

(
ψj
dxj

ds

)
κn = 0.

(3.9)
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Since ψk is a gradient, there exists a differentiable function ψ such that ψk = ∂kψ. On the other
hand, differentiating (3.8) covariantly in the direction of γ and using the Frenet’s formula [3](

∇k
dxi

ds

)
dxk

ds
= κg

1
ηi,

where κg is the geodesic curvature and
1
η is the unit principal normal vector field of γ relative to Mn,

we find that

(∇kωij)
dxk

ds

dxi

ds

dxj

ds
=
dκn
ds
− 2κgωij

1
ηi
dxj

ds
. (3.10)

Using (3.10) in (3.9) and remembering that γ is a geodesic (κg = 0) in Mn, we get[
∂κn
∂xi

+

(
2
∂σ

∂xi
− 4

∂ψ

∂xi

)
κn

]
dxi

ds
= 0,

or [
∂

∂xi
(ln |κn|+ 2σ − 4ψ)

]
dxi

ds
= 0 (3.11)

along γ.
On the other hand, by (1.1) and (3.11), we find

ds′
2

= g′ijdx
idxj = e2σωijdx

idxj = e2σωij
dxi

ds

dxj

ds
ds2 = e2σκnds

2,

from which it follows that κn > 0. From (3.1) it follows that,

lnκn + 2σ − 4ψ = const = C1 (3.12)

along γ.
By Lemma 3.1, ψ = 2σ + C2, C2 = Const and therefore (3.12) gives

κn = ce6σ, (3.13)

where c is an arbitrary positive constant.
From (3.13) it follows that the lines of curvature of Mn are indeterminate at all points of Mn.

Consequently, Mn is totally umbilical.
Necessity. Assume that Mn is a totally umbilical hypersurface of M̄n+1 which means that ωij =

=
H

n
gij where H is the mean curvature of Mn. In this case, (1.1) becomes

g′ij = ρ2gij

(
ρ2 = e2σ

H

n

)
, (3.14)

so that Mn and M ′
n are conformal.

From (1.5) it follows that

Rijkl =

(
K̄ +

H2

n2

)
(gikgjl − gilgjk)

showing that Mn has the constant curvature K̄ +
H2

n2
. So H is constant.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 4



A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES OF A SPACE FORM . . . 587

We will show that Mn can also be geodesically mapped upon M ′
n. Since Mn is conformal to

M ′
n, their connection coefficients are related by [6]

Γ′h
ij = Γhij + δhj ρi + δhi ρj − gijρh

(
ρi = ∇iρ, ρh = gthρt

)
. (3.15)

To show that this conformal mapping between Mn and M ′
n is also a geodesic mapping, according

to (3.15) and (3.1) we have to find a 1-form ψk such that

Γhij + δhj ψi + δhi ψj = Γhij + δhj ρi + δhi ρj − gijρh

or

δhj (ψi − ρi) + δhi (ψj − ρj) + gijρ
h = 0. (3.16)

Transvecting (3.16) by gij we get

gih(ψi − ρi) + gjh(ψj − ρj) + nρh = 0

or

2gih(ψi − ρi) + nρh = 0. (3.17)

Multiplying (3.17) by ghj and summing for h we obtain

2ψj + (n− 2)ρj = 0.

Then, by (3.14) we find that

ψj =

(
2− n
2
√
n

√
H

)
∂je

σ, H > 0.

With this choice of ψj the conformal mapping mentioned above becomes also a geodesic mapping.
Theorem 1.1 is proved.
In the special case where σ = 0 throughout Mn, i.e., when g′ = ω, we may mention below some

properties of Mn which is in geodesic correspondence with M ′
n.

1. From Lemma 3.1 and the relation (3.1) we conclude that any geodesic mapping of Mn upon
M ′
n is connection preserving.
2. By (3.13) it follows that Mn has constant normal curvature along each geodesic through a

point p ∈Mn.
3. The underlying geodesic mapping is a homothety.
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