UDC 517.9
E. Ö. Canfes, A. Özdeğer (Istanbul Techn. Univ., Kadir Has Univ., Istanbul, Turkey)

A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES OF A SPACE FORM BY GEODESIC MAPPING
 ХАРАКТЕРИСТИКА ТОТАЛЬНО ОМБІЛІЧНИХ ГІПЕРПОВЕРХОНЬ ПРОСТОРОВОЇ ФОРМИ ЗА ДОПОМОГОЮ ГЕОДЕЗИЧНИХ ВІДОБРАЖЕНЬ

The idea of considering the second fundamental form of a hypersurface as the first fundamental form of another hypersurface has found very useful applications in Riemannian and semi-Riemannian geometry, specially when trying to characterize extrinsic hyperspheres and ovaloids. Recently, T. Adachi and S. Maeda gave a characterization of totally umbilical hypersurfaces in a space form by circles. In this paper, we give a characterization of totally umbilical hypersurfaces of a space form by means of geodesic mapping.

Ідея використання другої фундаментальної форми гіперповерхні як першої фундаментальної форми іншої гіперповерхні знайшла дуже важливі застосування у рімановій та напіврімановій геометрії, зокрема при описі зовнішніх гіперсфер та овалоїдів. Нещодавно T. Adachi та S. Maeda навели характеристику тотально омбілічних гіперповерхонь у просторовій формі за допомогою кіл. У цій роботі ми наводимо характеристику тотально омбілічних гіперповерхонь просторової форми за допомогою геодезичних відображень.

1. Introduction. Let M_{n} and M_{n}^{\prime} be two hypersurfaces of the space form $\bar{M}_{n+1}[3-5]$ and let g, g^{\prime} and \bar{g} be the respective positive definite metric tensors. Denote by ∇, ∇^{\prime} and $\bar{\nabla}$ the corresponding connections induced by g, g^{\prime} and \bar{g}.

In this paper, we choose the first fundamental form of M_{n}^{\prime} as

$$
\begin{equation*}
g^{\prime}=e^{2 \sigma} \omega, \tag{1.1}
\end{equation*}
$$

where ω is the second fundamental form of M_{n} which is supposed to be positive definite and σ is a differentiable function defined on M_{n}.

Let $\left\{x^{i}\right\},\left\{x^{\prime i}\right\}$ and $\left\{y^{\alpha}\right\}$ be the respective coordinate systems in M_{n}, M_{n}^{\prime} and \bar{M}_{n+1} and let f be a one-to-one differentiable mapping of M_{n} upon M_{n}^{\prime} defined by

$$
\begin{equation*}
x^{\prime i}=f^{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right), \quad i=1,2, \ldots, n, \tag{1.2}
\end{equation*}
$$

in which f^{i} are smooth functions defined on M_{n} and have a non-vanishing Jacobian. Then, it is clear that the corresponding points of M_{n} and M_{n}^{\prime} are represented by the same set of coordinates and that the coordinate vectors correspond.

Let \bar{R}, R and R^{\prime} be the covariant curvature tensors of \bar{M}_{n+1}, M_{n} and M_{n}^{\prime} respectively and let \bar{K} be the Riemannian curvature of \bar{M}_{n+1}.

We then have ${ }^{1}$

$$
\begin{equation*}
\bar{R}_{\beta \gamma \delta \epsilon}=\bar{K}\left(\bar{g}_{\beta \delta} \bar{g}_{\gamma \epsilon}-\bar{g}_{\beta \epsilon} \bar{g}_{\gamma \delta}\right) . \tag{1.3}
\end{equation*}
$$

On the other hand, under the condition (1.3) the Codazzi equations

[^0]$$
\nabla_{k} \omega_{i j}-\nabla_{j} \omega_{i k}+\bar{R}_{\beta \gamma \delta_{\epsilon}} N^{\beta} \frac{\partial y^{\gamma}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial y^{\epsilon}}{\partial x^{k}}=0
$$
and the Gauss equation
$$
R_{i j k l}=\bar{R}_{\beta \gamma \delta \epsilon} \frac{\partial y^{\beta}}{\partial x^{i}} \frac{\partial y^{\gamma}}{\partial x^{j}} \frac{\partial y^{\delta}}{\partial x^{k}} \frac{\partial y^{\epsilon}}{\partial x^{l}}+\left(\omega_{i k} \omega_{j l}-\omega_{i l} \omega_{j k}\right)
$$
transform, respectively, into
\[

$$
\begin{equation*}
\nabla_{k} \omega_{i j}-\nabla_{j} \omega_{i k}=0 \tag{1.4}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
R_{i j k l}=\bar{K}\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)+\left(\omega_{i k} \omega_{j l}-\omega_{i l} \omega_{j k}\right) \tag{1.5}
\end{equation*}
$$

in which N^{β} are the components of the unit normal vector field of M_{n} [4].
2. Relation between the connections $\boldsymbol{\nabla}$ and ∇^{\prime}. It is well-known that the connection coefficients of a Riemannian space whose metric tensor is g are given by [5]

$$
\begin{equation*}
\Gamma_{i j}^{l}=\frac{1}{2} g^{l h}\left(\partial_{i} g_{j h}+\partial_{j} g_{i h}-\partial_{h} g_{i j}\right), \quad \partial_{k}=\frac{\partial}{\partial x^{k}} . \tag{2.1}
\end{equation*}
$$

Replacing g in (2.1) by the metric tensor g^{\prime} of M_{n}^{\prime} given by (1.1) and doing the necessary calculations we first find the connection coefficients $\Gamma_{i j}^{\prime l}$ of M_{n}^{\prime} as

$$
\begin{equation*}
\Gamma_{i j}^{\prime l}=\frac{1}{2} e^{2 \sigma} g^{\prime l k}\left(\partial_{j} \omega_{i k}+\partial_{i} \omega_{j k}-\partial_{k} \omega_{i j}\right)+\left(\partial_{j} \sigma\right) \delta_{i}^{l}+\left(\partial_{i} \sigma\right) \delta_{j}^{l}-\left(\partial_{k} \sigma\right) g^{\prime l k} g^{\prime}{ }_{i j} . \tag{2.2}
\end{equation*}
$$

On the other hand, for the covariant derivative of the second fundamental tensor ω of M_{n} we have [3, 4]

$$
\begin{equation*}
\nabla_{i} \omega_{j k}=\partial_{i} \omega_{j k}-\Gamma_{i j}^{h} \omega_{h k}-\Gamma_{i k}^{h} \omega_{j h} . \tag{2.3}
\end{equation*}
$$

Changing the indices i, j and k cyclically we obtain two more equations:

$$
\begin{align*}
& \nabla_{j} \omega_{k i}=\partial_{j} \omega_{k i}-\Gamma_{i j}^{h} \omega_{h k}-\Gamma_{k j}^{h} \omega_{i h}, \tag{2.4}\\
& \nabla_{k} \omega_{i j}=\partial_{k} \omega_{i j}-\Gamma_{k i}^{h} \omega_{h j}-\Gamma_{k j}^{h} \omega_{i h} . \tag{2.5}
\end{align*}
$$

Subtracting (2.5) from the sum of (2.3) and (2.4) and using the Codazzi equations (1.4), we obtain

$$
\begin{equation*}
\nabla_{i} \omega_{j k}=\partial_{i} \omega_{j k}+\partial_{j} \omega_{i k}-\partial_{k} \omega_{i j}-2 \omega_{h k} \Gamma_{i j}^{h} \tag{2.6}
\end{equation*}
$$

In view of (2.6), (2.2) becomes

$$
\begin{equation*}
\Gamma_{i j}^{l l}=\Gamma_{i j}^{l}+\delta_{i}^{l} \partial_{j} \sigma+\delta_{j}^{l} \partial_{i} \sigma-g^{\prime l k} g_{i j}^{\prime} \partial_{k} \sigma+\frac{1}{2} e^{2 \sigma} g^{\prime l k} \nabla_{i} \omega_{j k} . \tag{2.7}
\end{equation*}
$$

(2.7) is the desired relation connecting the connection coefficients of M_{n} and M_{n}^{\prime}.
3. Geodesic mappings of M_{n} upon $\boldsymbol{M}_{n}^{\prime}$. If the map f defined by (1.2) transforms every geodesic in M_{n} into a geodesic in M_{n}^{\prime}, f is called a geodesic mapping of M_{n} into M_{n}^{\prime}.
M_{n} and M_{n}^{\prime} will be in geodesic correspondence if and only if the respective connection coefficients $\Gamma_{i j}^{h}$ and $\Gamma_{i j}^{\prime h}$ of M_{n} and M_{n}^{\prime} are related by [3]

$$
\begin{equation*}
\Gamma_{j k}^{\prime i}=\Gamma_{j k}^{i}+\delta_{j}^{i} \psi_{k}+\delta_{k}^{i} \psi_{j}, \tag{3.1}
\end{equation*}
$$

where ψ_{k} are the components of some 1 -form which is known to be a gradient.
We first prove the following lemma which will be needed in our subsequent work.

Lemma 3.1. Let M_{n} and M_{n}^{\prime} be hypersurfaces of the space form \bar{M}_{n+1} and let the metric tensor of M_{n}^{\prime} be defined by (1.1). If M_{n} and M_{n}^{\prime} are in geodesic correspondence, then the 1 -form ψ_{k} is the gradient of 2σ.

Proof. Since ∇^{\prime} is a metric connection we have

$$
0=\nabla_{k}^{\prime} g_{i j}^{\prime}=\partial_{k} g_{i j}^{\prime}-g_{l j}^{\prime} \Gamma_{i k}^{\prime l}-g_{l i}^{\prime} \Gamma_{j k}^{\prime l}
$$

so that with the help of (1.1) and (3.1) we obtain

$$
\begin{equation*}
0=2 \omega_{i j} \partial_{k} \sigma+\nabla_{k} \omega_{i j}-2 \psi_{k} \omega_{i j}-\psi_{i} \omega_{k j}-\psi_{j} \omega_{k i} \tag{3.2}
\end{equation*}
$$

Interchanging the indices j and k in (3.2) we find

$$
\begin{equation*}
0=2 \omega_{i k} \partial_{j} \sigma+\nabla_{j} \omega_{i k}-2 \psi_{j} \omega_{i k}-\psi_{i} \omega_{k j}-\psi_{k} \omega_{j i} \tag{3.3}
\end{equation*}
$$

Subtracting (3.3) from (3.2) and putting

$$
\begin{equation*}
\phi_{k}=\psi_{k}-2 \partial_{k} \sigma \tag{3.4}
\end{equation*}
$$

in (3.3) we conclude that

$$
\begin{equation*}
\omega_{i j} \phi_{k}-\omega_{i k} \phi_{j}=0 \tag{3.5}
\end{equation*}
$$

in which the Codazzi equations (1.4) have been used.
We note that, since ψ_{k} is a gradient, it follows from (3.4) that ϕ_{k} is also a gradient. Multiplying (3.5) by $e^{2 \sigma}$ and using (1.1) we obtain

$$
\begin{equation*}
\phi_{k} g_{i j}^{\prime}-\phi_{j} g_{i k}^{\prime}=0 \tag{3.6}
\end{equation*}
$$

or, multiplying (3.6) by $g^{\prime i j}$ and summing with respect to i and j we find for $n>1$ that

$$
\begin{equation*}
\phi_{k}=0 . \tag{3.7}
\end{equation*}
$$

Combination of (3.4) and (3.7) yields $\psi_{k}=2 \partial_{k} \sigma$.
We next prove the following theorem.
Theorem 3.1. The hypersurface M_{n} of a space form \bar{M}_{n+1} will be totally umbilical if and only if M_{n} can be geodesically mapped upon M_{n}^{\prime}.

Proof. Sufficiency. Let γ be a geodesic through the point $p \in M_{n}$ which is defined by $x^{i}=x^{i}(s)$, s being the arc length of γ. Then, the normal curvature, say κ_{n}, of M_{n} in the direction of γ, i.e., in the direction of $\frac{d x^{i}}{d s}$, is [4]

$$
\begin{equation*}
\kappa_{n}=\omega_{i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s} \tag{3.8}
\end{equation*}
$$

Multiplying (3.2) by $\frac{d x^{i}}{d s} \frac{d x^{j}}{d s} \frac{d x^{k}}{d s}$ and summing with respect to i, j, k and using (3.8) we obtain

$$
\begin{equation*}
2 \kappa_{n}\left(\partial_{k} \sigma\right) \frac{d x^{k}}{d s}+\left(\nabla_{k} \omega_{i j}\right) \frac{d x^{k}}{d s} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s}-2\left(\psi_{k} \frac{d x^{k}}{d s}\right) \kappa_{n}-\left(\psi_{i} \frac{d x^{i}}{d s}\right) \kappa_{n}-\left(\psi_{j} \frac{d x^{j}}{d s}\right) \kappa_{n}=0 \tag{3.9}
\end{equation*}
$$

Since ψ_{k} is a gradient, there exists a differentiable function ψ such that $\psi_{k}=\partial_{k} \psi$. On the other hand, differentiating (3.8) covariantly in the direction of γ and using the Frenet's formula [3]

$$
\left(\nabla_{k} \frac{d x^{i}}{d s}\right) \frac{d x^{k}}{d s}=\kappa_{g} \eta_{1}^{i}
$$

where κ_{g} is the geodesic curvature and η_{1} is the unit principal normal vector field of γ relative to M_{n}, we find that

$$
\begin{equation*}
\left(\nabla_{k} \omega_{i j}\right) \frac{d x^{k}}{d s} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s}=\frac{d \kappa_{n}}{d s}-2 \kappa_{g} \omega_{i j} \eta_{1}^{i} \frac{d x^{j}}{d s} \tag{3.10}
\end{equation*}
$$

Using (3.10) in (3.9) and remembering that γ is a geodesic $\left(\kappa_{g}=0\right)$ in M_{n}, we get

$$
\left[\frac{\partial \kappa_{n}}{\partial x^{i}}+\left(2 \frac{\partial \sigma}{\partial x^{i}}-4 \frac{\partial \psi}{\partial x^{i}}\right) \kappa_{n}\right] \frac{d x^{i}}{d s}=0
$$

or

$$
\begin{equation*}
\left[\frac{\partial}{\partial x^{i}}\left(\ln \left|\kappa_{n}\right|+2 \sigma-4 \psi\right)\right] \frac{d x^{i}}{d s}=0 \tag{3.11}
\end{equation*}
$$

along γ.
On the other hand, by (1.1) and (3.11), we find

$$
d s^{\prime 2}=g^{\prime}{ }_{i j} d x^{i} d x^{j}=e^{2 \sigma} \omega_{i j} d x^{i} d x^{j}=e^{2 \sigma} \omega_{i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s} d s^{2}=e^{2 \sigma} \kappa_{n} d s^{2}
$$

from which it follows that $\kappa_{n}>0$. From (3.1) it follows that,

$$
\begin{equation*}
\ln \kappa_{n}+2 \sigma-4 \psi=\mathrm{const}=\mathrm{C}_{1} \tag{3.12}
\end{equation*}
$$

along γ.
By Lemma 3.1, $\psi=2 \sigma+C_{2}, C_{2}=$ Const and therefore (3.12) gives

$$
\begin{equation*}
\kappa_{n}=c e^{6 \sigma} \tag{3.13}
\end{equation*}
$$

where c is an arbitrary positive constant.
From (3.13) it follows that the lines of curvature of M_{n} are indeterminate at all points of M_{n}. Consequently, M_{n} is totally umbilical.

Necessity. Assume that M_{n} is a totally umbilical hypersurface of \bar{M}_{n+1} which means that $\omega_{i j}=$ $=\frac{H}{n} g_{i j}$ where H is the mean curvature of M_{n}. In this case, (1.1) becomes

$$
\begin{equation*}
g_{i j}^{\prime}=\rho^{2} g_{i j} \quad\left(\rho^{2}=e^{2 \sigma} \frac{H}{n}\right) \tag{3.14}
\end{equation*}
$$

so that M_{n} and M_{n}^{\prime} are conformal.
From (1.5) it follows that

$$
R_{i j k l}=\left(\bar{K}+\frac{H^{2}}{n^{2}}\right)\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)
$$

showing that M_{n} has the constant curvature $\bar{K}+\frac{H^{2}}{n^{2}}$. So H is constant.

We will show that M_{n} can also be geodesically mapped upon M_{n}^{\prime}. Since M_{n} is conformal to M_{n}^{\prime}, their connection coefficients are related by [6]

$$
\begin{equation*}
\Gamma^{\prime}{ }_{i j}^{h}=\Gamma_{i j}^{h}+\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{j}-g_{i j} \rho^{h} \quad\left(\rho_{i}=\nabla_{i} \rho, \rho^{h}=g^{t h} \rho_{t}\right) . \tag{3.15}
\end{equation*}
$$

To show that this conformal mapping between M_{n} and M_{n}^{\prime} is also a geodesic mapping, according to (3.15) and (3.1) we have to find a 1 -form ψ_{k} such that

$$
\Gamma_{i j}^{h}+\delta_{j}^{h} \psi_{i}+\delta_{i}^{h} \psi_{j}=\Gamma_{i j}^{h}+\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{j}-g_{i j} \rho^{h}
$$

or

$$
\begin{equation*}
\delta_{j}^{h}\left(\psi_{i}-\rho_{i}\right)+\delta_{i}^{h}\left(\psi_{j}-\rho_{j}\right)+g_{i j} \rho^{h}=0 . \tag{3.16}
\end{equation*}
$$

Transvecting (3.16) by $g^{i j}$ we get

$$
g^{i h}\left(\psi_{i}-\rho_{i}\right)+g^{j h}\left(\psi_{j}-\rho_{j}\right)+n \rho^{h}=0
$$

or

$$
\begin{equation*}
2 g^{i h}\left(\psi_{i}-\rho_{i}\right)+n \rho^{h}=0 . \tag{3.17}
\end{equation*}
$$

Multiplying (3.17) by $g_{h j}$ and summing for h we obtain

$$
2 \psi_{j}+(n-2) \rho_{j}=0
$$

Then, by (3.14) we find that

$$
\psi_{j}=\left(\frac{2-n}{2 \sqrt{n}} \sqrt{H}\right) \partial_{j} e^{\sigma}, \quad H>0 .
$$

With this choice of ψ_{j} the conformal mapping mentioned above becomes also a geodesic mapping.
Theorem 1.1 is proved.
In the special case where $\sigma=0$ throughout M_{n}, i.e., when $g^{\prime}=\omega$, we may mention below some properties of M_{n} which is in geodesic correspondence with M_{n}^{\prime}.

1. From Lemma 3.1 and the relation (3.1) we conclude that any geodesic mapping of M_{n} upon M_{n}^{\prime} is connection preserving.
2. By (3.13) it follows that M_{n} has constant normal curvature along each geodesic through a point $p \in M_{n}$.
3. The underlying geodesic mapping is a homothety.
4. Verpoort S. The geometry of the second fundamental form: curvature properties and variational aspects: Ph. D Thesis. - Katholieke Univ. Leuven, 2008.
5. Adachi T., Maeda S. Characterization of totally umbilic hypersurfaces in a space form by circles // Czechoslovak Math. J. - 2005. - 55, № 1. - P. 203-207.
6. Gerretsen J. Lectures on tensor calculus and differential geometry. - Groningen: P. Noordhoff, 1962.
7. Weatherburn C. E. An Introduction to Riemannian geometry and the tensor calculus. - Cambridge Univ. Press, 1966.
8. Yano K., Kon M. Structures on manifolds. - Worldsci., 1984.
9. Chen B. Y. Geometry of submanifolds. - New York: Marcel Dekker Inc., 1973.

[^0]: ${ }^{1}$ In the sequel, Latin indices i, j, k, \ldots run from 1 to n, while the Greek indices α, β, γ will run from 1 to $n+1$.

