
UDC 512.5

M. J. Nikmehr (K. N. Toosi Univ. Technology, Tehran, Iran)

STRONGLY SEMICOMMUTATIVE RINGS RELATIVE TO A MONOID

СИЛЬНО НАПIВКОМУТАТИВНI КIЛЬЦЯ ВIДНОСНО МОНОЇДА

For a monoid M, we introduce strongly M -semicommutative rings, which are generalization of strongly semicommutative
rings and investigate their properties. We show that if G is a finitely generated Abelian group, then G is torsion free if and
only if there exists a ring R with |R| ≥ 2 such that R is strongly G-semicommutative.

Для моноїда M ми вводимо сильно M -напiвкомутативнi кiльця, що узагальнюють сильно напiвкомутативнi кiльця,
та вивчаємо їх властивостi. Показано, що якщо G — скiнченнопороджена абелева група, то G є вiльною вiд скруту
тодi i тiльки тодi, коли iснує кiльце R з |R| ≥ 2 таке, що R є сильно G-напiвкомутативним.

1. Introduction. Throughout this article, R and M denote an associative ring with identity and a
monoid, respectively. In [1] Cohn introduced the notion of reversible ring. A ring R is said to be
reversible, whenever a, b ∈ R satisfy ab = 0 then ba = 0. A ring R is called symmetric, whenever
abc = 0 implies acb = 0 for all a, b, c ∈ R. A ring R is called reduced, whenever a2 = 0 implies
a = 0 for all a ∈ R. A ring R is called semicommutative, whenever ab = 0 implies aRb = 0 for all
a, b ∈ R. The following implication holds:

reduced =⇒ symmetric =⇒ reversible =⇒ semicommutative.

In [13] Yang and Liu introduced the notion of strongly reversible. A ring R is called strongly
reversible, whenever polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0 implies g(x)f(x) = 0.

All reduced rings are strongly reversible but converse is not true. In [11] Singh and Juyal introduced
the notion of strongly reversible. A ring R is called strongly M -reversible, whenever αβ = 0

implies βα = 0 where α, β ∈ R[M ]. In [5] Huh and Lee showed that polynomial rings over
semicommutative rings need not be semicommutative. In [2] Gang and Ruijuan introduced the notion
of strongly semicommutative. A ring R is called strongly semicommutative, whenever polynomials
f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0 implies f(x)R[x]g(x) = 0. All reduced rings are strongly
semicommutative but converse is not true. Rege and Chhawchharia [10], introduced the notion of an
Armendariz ring. A ring R is called Armendariz, whenever polynomials f(x) = a0+a1x+a2x

2+. . .

. . .+anx
n, g(x) = b0+b1x+b2x

2+. . .+bmx
m ∈ R[x] satisfy f(x)g(x) = 0 then aibj = 0 for all i, j.

Some properties of Armendariz rings were given in [8, 9, 12]. In [7] Z. Liu studied a generalization
of Armendariz rings, which is called M -Armendariz rings, where M is monoid. A ring R is called
M -Armendariz, whenever α = a1g1+a2g2+. . .+angn, β = b1h1+b2h2+. . .+bmgm ∈ R[M ], with
gi, hj ∈M satisfy αβ = 0, then aibj = 0, for all i, j. A ring R is called strongly M-semicommutative,
whenever αβ = 0 implies αR[M ]β = 0, where α, β ∈ R[M ]. Let M = (N ∪{0},+). Then a ring R
is strongly M-semicommutative if and only if R is strongly semicommutative. Recall that a monoid
M is called a unique product monoid (u.p.-monoid) if for any two nonempty finite subsets A,B ⊆M
there exists an element g ∈ M uniquely in the form ab, where a ∈ A and b ∈ B. We investigate a
generalization of strongly semicommutative rings which we call strongly M -semicommutative rings.
It is proved that a ring R is strongly M -semicommutative if and only if its polynomial ring R[x]
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is strongly M -semicommutative if and only if its Laurent polynomial ring R[x, x−1] is strongly
M -semicommutative. Also, we check the following questions:

(1) Does R being a strongly M -semicommutative imply R(+)R being strongly M -semicommu-
tative?

(2) R being a strongly M -semicommutative if and only if R is Abelian ring?

(3) R being strongly M -semicommutative if and only if R/I is strongly M -semicommutative?
2. Strongly M -semicommutative ring. We begin this section with the following definition

which have the main role in the whole work.
Definition 2.1. A ring R is called strongly M -semicommutative, whenever αβ = 0 implies

αR[M ]β = 0, where α, β ∈ R[M ].
Lemma 2.1 [6]. If R is a reduced ring, then

T3(R) =


a b c

0 a d

0 0 a

∣∣∣∣∣∣ a, b, c, d ∈ R


is a semicommutative ring.
Lemma 2.2 [7]. LetM be a monoid with |M | ≥ 2. Then the following conditions are equivalent:
(1) R is M -Armendariz and reduced.
(2) T3(R) is M -Armendariz.
Proposition 2.1. Let M be a monoid with |M | ≥ 2, and R is M -Armendariz and reduced. Then

T3(R) is strongly M -semicommutative.
Proof. Suppose that α = A0g1 + . . .+Angn, β = B0h1 + . . .+Bmhm ∈ T3(R)[M ], αβ = 0.

Since T3(R) is M -Armendariz by Lemma 2.2, so AiBj = 0. Also T3(R) is semicommutative by
Lemma 2.1, and hence AiT3(R)Bj = 0. Therefore αT3(R)[M ]β = 0. This means that T3(R) is
strongly M -semicommutative.

Before stating Proposition 2.2, we need the following lemmas.
Lemma 2.3 [11]. Let M be u.p.-monoid and R be a reduced ring. Then R is strongly M -

reversible.
Lemma 2.4 [11]. Let M be u.p.-monoid and R be a reduced ring. Then R[M ] is reduced.
Proposition 2.2. Let M be u.p.-monoid and R be a reduced ring. Then R is strongly M -

semicommutative.
Proof. Suppose α =

∑n

i=1
aigi, β =

∑m

j=1
bjhj are in R[M ] with ai, bj ∈ R and gi, hj ∈M

for all i, j. Take αβ = 0. So (αR[M ]β)2 = (αR[M ]β)(αR[M ]β) = αR[M ](βα)R[M ]β = 0, since
R is strongly M -reversible by Lemma 2.3. Also by Lemma 2.4, we have αR[M ]β = 0. Hence R is
strongly M -semicommutative ring.

Lemma 2.5. Subrings and direct products of strongly M -semicommutative ring are strongly
M -semicommutative.

Proof. Let Iλ(λ ∈ Λ) be ideals of R such that every
R

Iλ
is strongly M -semicommutative and

∩λ∈ΛIλ = 0. Suppose that α =
∑m

i=0
aigi, β =

∑n
j=0 bjhj ∈ R[M ], satisfy αβ = 0. For any

γ =
∑l

k=0
ckrk ∈ R[M ], we have that αγ β = 0 in

(
R

Iλ

)
[M ] for each λ ∈ Λ, since

R

Iλ
is strongly

M -semicommutative. So
∑

i+j+k=t
aickbj ∈ Iλ for t = 0, . . . ,m + n + l and any λ ∈ Λ, which
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implies that
∑

i+j+k=t
aickbj = 0 for t = 0, . . . ,m + n + l, since ∩λ∈ΛIλ = 0. Thus we obtain

αR[M ]β = 0.

Proposition 2.3. Let M be a cancelative monoid and N an ideal of M. If R is strongly N -
semicommutative, then R is strongly M -semicommutative.

Proof. Suppose that α = a1g1 + a2g2 + . . . + angn, β = b1h1 + b2h2 + . . . + bmhm are
in R[M ] such that αβ = 0. Take g ∈ N. Then gg1, gg2, . . . , ggn, h1g, h2g, . . . , hmg ∈ N and

ggi 6= ggj and hig 6= hjg for all i 6= j. So α1β1 =
(∑n

i=1
aiggi

)(∑m

j=1
bjhjg

)
= 0. Since R

is strongly N -semicommutative, so α1R[N ]β1 = 0. Thus αR[M ]β = 0. Therefore R is strongly
M -semicommutative.

Lemma 2.6. Let M be a cyclic group of order n ≥ 2 and R a ring with unity. Then R is not
strongly M -semicommutative.

Proof. Suppose that M = e, g, g2, . . . , gn − 1. Let α =

(
1 0

0 0

)
e +

(
1 0

0 0

)
g + . . .

. . .+

(
1 0

0 0

)
gn−1 and β =

(
0 0

1 0

)
e+

(
0 0

1 0

)
g ∈ R[M ].

Then αβ = 0. But

(
0 0

1 0

)
R[M ]

(
1 0

0 0

)
6= 0, so αR[M ]β 6= 0. Thus R is not strongly

M -semicommutative.
Lemma 2.7. M be a monoid and N a submonoid of M. If R is strongly M -semicommutative

ring, then R is strongly N -semicommutative.
Lemma 2.8. Let M and N be u.p.-monoids. Then so is the monoid M ×N.
Proof. See [7] (Lemma 1.13).
Let T (G) be set of elements of finite order in an Abelian group G. Then T (G) is fully invariant

subgroup of G. G is said to be torsion-free if T (G) = {e}.
Theorem 2.1. Let G be a finitely generated Abelian group. Then the following conditions on G

are equivalent:
(1) G is torsion-free.
(2) There exists a ring R with |R| ≥ 2 such that R is strongly G-semicommutative.
Proof. (2) =⇒ (1). If g ∈ T (G) and g 6= e, then N = 〈g〉 is cyclic group of finite order. If a

ring R 6= 0 is strongly M -semicommutative. Then by Lemma 2.7 R is strongly N -semicommutative,
a contradiction with Lemma 2.6. Thus every ring R 6= 0 is not strongly M -semicommutative.

(1) =⇒ (2). Let G be a finitely generated Abelian group with T (G) = {e}. Then G =

= Z× Z× . . .× Z a finite direct product of group Z. By Lemma 2.8 G is u.p.-monoid. Let R be a
commutative reduced ring. Then by Proposition 2.2, R is strongly G-semicommutative.

It is natural to conjecture that R is a strongly semicommutative ring if for any nonzero proper
ideal I of R, R/I and I are strongly semicommutative, where I is considered as a strongly semi-
commutative ring without identity. Note that strongly semicommutative rings are Abelian, and so
every n by n upper (or lower) triangular matrix ring, for n ≥ 2, over any ring with identity can not
be strongly semicommutative.

Example 2.1 (see [13], Example 3.7). Let S be a division ring and

R =



a b c

0 a d

0 0 a


∣∣∣∣∣∣∣∣ a, b, c, d ∈ S

 .
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Take an ideal I =

0 0 S

0 0 0

0 0 0

, which is strongly M -semicommutative nonzero proper ideal of

R. Take

α =
n∑
i=0


ai bj 0

0 ai ci

0 0 ai

 gi, β =
m∑
j=0


uj vj 0

0 uj wj

0 0 uj

hj

are in R/I[M ] satisfying αβ = 0. Then we have that

n∑
i=0

aigi

n∑
i=0

bigi 0

0
n∑
i=0

aigi

n∑
i=0

cigi

0 0

n∑
i=0

aigi





m∑
j=0

ujhj

m∑
j=0

vjhj 0

0
m∑
j=0

ujhj

m∑
j=0

wjhj

0 0

m∑
j=0

ujhj


= 0

which implies
∑n

i=0
aigi

∑m

j=0
ujhj = 0, and hence

∑n

i=0
aigi = 0 or

∑m

j=0
ujhj = 0, since

S is division ring, and it is easy to prove that αR[M ]β = 0. There by we get that for any strongly
M -semicommutative nonzero proper ideal I of R, R/I is strongly M -semicommutative.

However we take a stronger condition I is reduced then we may have an affirmative answer as
in the following.

Proposition 2.4. For a ring R suppose that R/I is strongly M -semicommutative ring for some
ideal I of R. If I is reduced then R is strongly M -semicommutative.

Proof. Let αβ = 0 with α, β ∈ R[M ]. Then we have αR[M ]β ⊆ I[M ] and βI[M ]α = 0 since
βI[M ]α ⊆ I[M ], (βI[M ]α)2 = 0 and I[M ] is reduced. According

((αR[M ]β)I[M ])2 = αR[M ]βI[M ]αR[M ]βI[M ] = αR[M ](βI[M ]α)R[M ]βI[M ] = 0

and so αR[M ]βI[M ] = 0, and hence (αR[M ]β)2 ⊆ αR[M ]βI[M ] = 0 implies (αR[M ]β)2 = 0.

But αR[M ]β ⊆ I[M ] and so αR[M ]β = 0, therefore R is strongly M -semicommutative.
As a kind of converse of Proposition 2.4, we obtain the following situation.
Proposition 2.5. Let R be a strongly M -semicommutative ring and I be an ideal of R. If I is

an annihilator in R, then R/I is a strongly M -semicommutative ring.

Proof. Set I = rR(S) for some S ⊆ R and write t = t+I ∈ R
I
. Let αβ = 0, so S[M ]αR[M ]β =

= 0, since R is strongly M -semicommutative by hypothesis and we have rR(S)[M ] = rR[M ](S[M ]).

Thus αR[M ]β ∈ rR[M ](S[M ]) implies α

(
R

I

)
[M ]β = 0.

Lemma 2.9. For an Abelian ring R, R is strongly M -semicommutative if and only if eR and
(1−e)R are strongly M -semicommutative for every idempotent e of R if and only if eR and (1−e)R
are strongly M -semicommutative for some idempotent e of R.

Proof. Suppose that αβ = 0, since eR and (1 − e)R are strongly M -semicommutative, thus
eαeR[M ]eβe = 0 and (1− e)α(1− e)R[M ](1− e)β(1− e) = 0. So
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αR[M ]β = eαR[M ]β + (1− e)αR[M ]β =

= eαeR[M ]eβe+ (1− e)α(1− e)R[M ](1− e)β(1− e) = 0,

and therefore R is strongly M -semicommutative.
For semicommutative rings relative to monoids, we have following results.
Proposition 2.6. Let M and N be a u.p.-monoid. If R is a reduced ring, then R[M ] is strongly

N -semicommutative.
Proof. By Lemma 2.4 R[M ] is reduced, sinceN is a u.p.-monoid and R[M ] is reduced, therefore

by Proposition 2.2, R[M ] is strongly N-semicommutative.
Proposition 2.7. Let M and N be a u.p.-monoid. If R is a reduced, then R is strongly M ×N -

semicommutative.
Proof. Suppose that

∑s

i=1
ai(mi, ni) is in R[M × N ]. Without loss of generality, we assume

that {n1, n2, . . . , ns} = {n1, n2, . . . , nt} with ni 6= nj when 1 ≤ i 6= j ≤ t. For any 1 ≤ p ≤ t,

denote Ap = {i | 1 ≤ i ≤ s, ni = np}. Then
∑t

p=1

(∑
i∈Ap

aimi

)
np ∈ R[M ][N ]. Note that

mi 6= mi′ for any i, i′ ∈ Ap with i 6= i′. Now it is easy to see that there exists an isomorphism of
rings R[M ×N ]→ R[M ][N ] defined by

s∑
i=1

ai(mi, ni) −→
t∑

p=1

∑
i∈Ap

aimi

np.
Suppose that

(∑s

i=1
ai(mi, ni)

)(∑s′

j=1
bj(m

′
j , n
′
j)

)
= 0 in R[M × N ]. Then from the above

isomorphism, it follows that t∑
p=1

∑
i∈Ap

aimi

np
 t′∑

q=1

∑
j∈Bq

bjm
′
j

n′q
 = 0

in R[M ][N ]. Therefore by Proposition 2.6 we have t∑
p=1

∑
i∈Ap

aimi

np
R[M ][N ]

 t′∑
q=1

∑
j∈Bq

bjm
′
j

n′q
 = 0,

so R is strongly M ×N -semicommutative.
LetMi, i ∈ I, be monoids. Denote

∐
i∈I

Mi =
{

(gi)i∈I | there exist only finite i’s such that gi 6=

6= ei, the identity of Mi

}
. Then

∐
i∈I

Mi is a monoid with the operation (gi)i∈I(g
′
i)i∈I = (gig

′
i)i∈I .

Corollary 2.1. Let Mi, i ∈ I be u.p.-monoids and R be a reduced ring. If R is strongly
Mi-semicommutative for some i0 ∈ I, then R is strongly

∐
i∈I

Mi-semicommutative.

Proof. Let α =
∑n

i=1
aigi, β =

∑m

j=1
bjhj ∈ R

[∐
i∈I

Mi

]
such that αβ = 0. Then α,

β ∈ R[M1 ×M2 × . . . ×Mn] for some finite subset {M1,M2, . . . ,Mn} ⊆ {Mi | i ∈ I}. Thus
α, β ∈ R[Mi0 ×M1 × . . . ×Mn}. The ring R, by Proposition 2.7 and by induction, is strongly
Mi0 ×M1 × . . .×Mn-semicommutative, so αR[Mi0 ×M1 × . . .×Mn]β = 0. Hence R is strongly∐

i∈I
Mi-semicommutative.
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Let R be an algebra over a commutative ring S. The Dorroh extension of R by S is the ring
R× S with operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2 + s1r2 +

+ s2r1, s1s2), where ri ∈ R and si ∈ S. Let R be a commutative ring, M be an R-module, and σ
be an endomorphism of R. Rege and Chhawchharia [10] (Definition 1.3), give R ⊕M a (possibly
noncommutative) ring structure with multiplication (r1,m1)(r2,m2) = (r1r2, σ(r1)m2 + r2m1),

where ri ∈ R and mi ∈M. We shall call this extension the skewtrivial extension of R by M and σ.

Proposition 2.8. (1) Let R be an algebra over a commutative ring S, and D be the Dorroh
extension of R by S. If R is strongly M -semicommutative and S is a domain, then D is strongly
M -semicommutative.

(2) Let R be a commutative domain, and σ be an injective endomorphism of R. Then the
skewtrivial extension of R by R and σ is strongly M -semicommutative.

Proof. (1) Let α = (α1, α2) =
∑

(ri, si)gi, β = (β1, β2) =
∑

(sj , nj)hj ∈ D[M ] with

(α1, α2)(β1, β2) = 0. Then (α1β1 + α2β1 + β2α1, α2β2) = 0, so we have α1β1 + α2β1 + β2α1 = 0

and α2β2 = 0. Since S is a domain, α2 = 0 or β2 = 0. In the following computations we use freely the
condition that R is strongly M -semicommutative. Say α2 = 0, then 0 = α1β1 +β2α1 = α1(β1 +β2)

and since R is strongly M -semicommutative, we have α1(γ1 +γ2)(β1 +β2) = 0 such that γ1 +γ2 ∈
∈ R[M ] and so (α1γ1β1 +α2γ1β1 + γ2α1β1 +α2γ2β1 + β2α1γ1 + β2α2γ1 + β2γ2α1, α2γ2β2) = 0.

Also β2 = 0, then 0 = α1β1+α2β1 = (α1+α2)β1 and so we have (α1+α2)(γ1+γ2)β1 = 0 such that
γ1+γ2 ∈ R[M ] and so (α1γ1β1+α2γ1β1+γ2α1β1+α2h2β1+β2α1γ1+β2α2γ1+β2γ2α1, α2γ2β2) =

= 0. Therefore we obtain (α1, α2)(γ1, γ2)(β1, β2) = 0 for any γ = (γ1, γ2) ∈ D[M ], so in any case,
proving that D is strongly M -semicommutative.

(2) LetN be the skewtrivial extension ofR byR and σ. Set (α1, α2)(β1, β2) = 0 for (αi, βi) ∈ N
with i = 1, 2, 3. Then α1β1 = 0 and σ(α1)β2 + β1α2 = 0, so α1 = 0 and so β1 = 0, since R is a
domain. Say α1 = 0, then 0 = σ(α1)β2 + β1α2 = g1α2, therefore β1γ1α2 = 0 for any y1 ∈ N [M ],

since R is strongly semicommutative, and so 0 = (α1γ1β1, β1γ1α2) = (α1γ1β1, σ(α1)σ(γ1)β2 +

+ σ(α1)β1γ2 + β1γ1α2 = (α1, α2)(γ1, γ2)(β1, β2) for any γ = (γ1, γ2) ∈ N [M ]. Say β1 = 0, then
σ(α1)β2 = 0 and it follows that σ(α1) = 0, or β2 = 0, then α1 = 0 since σ is injective and R is a
domain. Hence we have (α1, α2)(γ1, γ2)(β1, β2) = 0 in any case.

Now we will study some conditions under which polynomial rings may be strongly M -semicom-
mutative. The Laurent polynomial ring with an indeterminate x over a ring R consists of all formal
sums

∑n

i=k
mix

i with obvious addition and multiplication, where mi ∈ R and k, n are (possibly

negative) integer; we denote it R[x;x−1].

Proposition 2.9. (1) Let R be a ring and ∆ be a multiplicatively closed subset of R consisting
of central regular elements. Then R is strongly M -semicommutative if and only if so is ∆−1R.

(2) For a ring R, R[x] is strongly M -semicommutative if and only if so is R[x;x−1].

Proof. (1) Let αβ = 0 with α =
∑n

i=0
(u−1ai)gi, β =

∑m

j=0
(v−1bj)hj , u, v ∈ ∆ and a, b ∈ R.

Since ∆ is contained in the center of R, we have 0 = αβ =
∑n

i=0
(u−1ai)gi

∑m

j=0
(v−1bj)hj =

=
∑

s=i+j
(aibj)(gihj)(uv)−1, so

n∑
i=0

aigi

m∑
j=1

bjhj = 0.
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But R is strongly M -semicommutative by the condition, and hence for any
∑l

k=0
ckpk ∈ R[M ] we

have that
n∑
i=0

aigi

l∑
k=0

ckpk

m∑
j=0

bjhj =
∑

i+j+k=t

(aickbj)(gipkhj) = 0

for t = 0, 1, . . . ,m+ n+ l. Hence

αγβ =

n∑
i=0

(u−1ai)gi

l∑
k=0

(ω−1ck)pk

m∑
j=0

(v−1bj)hj =
∑

t=i+j+k

(aickbj)(gipkhj)(uωv)−1 = 0

for any γ =
∑l

k=0
(ω−1ck)pk ∈ ∆−1R[M ]. Hence ∆−1R is strongly M -semicommutative.

(2) Let ∆ = 1, x, x2, . . . . Then clearly ∆ is a multiplicatively closed subset of R[x]. Since
R[x;x−1] = ∆−1R[x], it follows that R[x;x−1] is strongly M -semicommutative by the result (1).

Given a ring R we denote the center of R by Z(R), i.e.,

Z(R) =
{
s ∈ R | sr = rs for all r ∈ R

}
.

Proposition 2.10. Let R be a ring and suppose that Z(R) contains an infinite subring every
nonzero element of which is regular in R. Then R is strongly M -semicommutative ring if and only
if R[x] is strongly M -semicommutative ring if and only if R[x;x−1] is strongly M -semicommutative
ring.

Proof. It suffices to prove that R[x] is strongly M -semicommutative ring when so is R, by
Lemma 2.5 and Proposition 2.9 (2). Since Z(R) contains an infinite subring every nonzero element
of which is regular in R by hypothesis, it follows that R[x] is a subdirect product of infinite number
of copies of R. Thus R[x] is strongly M -semicommutative by Lemma 2.5 because R is strongly
M -semicommutative ring by the assumption.

We study following proposition the connections between Armendariz rings and strongly M -
semicommutative rings. Recall that reduced rings, M is u.p.-monoid are both M -Armendariz and
strongly M -semicommutative rings Abelian. So it is natural to observe the relationships between
them.

Proposition 2.11. LetR[M ] be a Armendariz ring. Then the following statements are equivalent:
(1) R is a strongly M -semicommutative ring.
(2) R[x] is a strongly M -semicommutative ring.
(3) R[x, x−1] is a strongly M -semicommutative ring.
Proof. (1) ⇒ (2). It is easy to see that there exists an isomorphism of R[x][M ] −→ R[M ][x]

via
∑

i

(∑
p
aipx

p
)
gi −→

∑
p

(∑
i
aipgi

)
xp. Let

α =
∑
p

(∑
i

aipgi

)
xp, β =

∑
q

(∑
j

bjqhj

)
xq

be polynomial in R[M ][x], such that αβ = 0, where αi =
∑

p
aipgi and βj =

∑
q
bjqhj ∈ R[M ].

Since R[M ] is Armendariz, so R[M ][x] is a Armendariz ring, therefore αiβj = 0 for all i, j. Also
R is strongly M -semicommutative by the hypothesis, therefore αiγkβj = 0 for all i, j, k. Thus
αR[M ][x]β = 0.

(2)⇒ (3). By the Proposition 2.9 (2) is trivial.
(3)⇒ (1). It is clear.
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Proposition 2.12. Let R be an M -Armendariz ring. If R is a semicommutative ring, then R is
strongly M -semicommutative.

Proof. Suppose that α =
∑m

i=0
aigi, β =

∑n

j=0
bjhj ∈ R[M ] satisfy αβ = 0. Since R is M -

Armendariz, and hence aibj = 0 for all i, j, also R is semicommutative, therefore aicbj = 0 for any

element c in R, for all i, j. Now it is easy to check that αγβ = 0 for any γ =
∑s

k=0
cklk ∈ R[M ].

Since reversible rings are semicommutative, the following corollary is clear.
Corollary 2.2. Let R be an M -Armendariz ring. If R is a reversible ring, then R is a strongly

M -Armendariz.
Let R be a commutative ring and M an R-module. The R-module R ⊕ M acquires a ring

structure where the product is defined by (a,m)(b, n) = (ab, an + bm). We shall use the notation
R(+)M for this ring. If M is not zero, this ring is not reduced, since M can be identified with the
ideal 0⊕M which has square zero. (It seems appropriate to call this ring as “R Nagata M”.)

Let R be a ring and A an ideal of R. The factor ring R = R/A has the natural structure of a left
R-, right R-bimodule. Denote a = a+A ∈ R for each a ∈ R. We use this structure to define a ring
structure on R⊕ (R/A) as follows:

(r, a)
(
r′, a′

)
=
(
rr′, ra′ + ar′

)
.

We denote this ring by R(+)R/A. Its properties are similar to those of R(+)M.

Proposition 2.13. Let R be a domain, A be an ideal of R. Suppose R/A is strongly M -
semicommutative. Then R(+)R/A is strongly M -semicommutative.

Proof. Let α, β be elements of {R(+)R/A}[M ], where

α =

m∑
i=0

(ai, ui)gi = (α0, α1)

and

β =

n∑
j=0

(bj , vj)hj = (β0, β1).

If αβ = 0, we have (α0, α1)(β0, β1) = 0. Thus we have the following equations:

α0β0 = 0, (2.1)

α0β1 + α1β0 = 0. (2.2)

Let α0 = 0. Then (2.2) becomes α1β0 = 0 over R/A. Since R/A is strongly M -semicommutative,

it follows that α1

(
R

A

)
[M ]β0 = 0. Also for any γ0 ∈ R[M ] implies that α1γ0β0 = 0. We conclude

that 0 =
(
α0γ0β0, α0γ0β1 + α0γ1β0 + α1γ0β0

)
= (α0, α1)(γ0, γ1)

(
β0, β1

)
. This case β0 = 0 is

similar.
Corollary 2.3. LetR be a domain,A be an ideal ofR. SupposeR/A is strongly semicommutative.

Then R(+)R/A is strongly semicommutative.
It follows from Proposition 2.13 that if R is a domain then R(+)R is strongly semicommutative.

This result can be extended to reduced rings. The following properties of these rings will be used:
(1) If a, b are elements of a reduced ring, then ab = 0 if and only if ba = 0.

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 11



1536 M. J. NIKMEHR

(2) Reduced rings are strongly semicommutative.
(3) If R is reduced, then so is the ring R[x]. We shall also identify {R(+)R}[x] with the ring

R[x](+)R[x] in a natural manner. Therefore if R is a reduced ring, then the ring R(+)R is strongly
semicommutative.

Proposition 2.14. Let M be u.p.-monoid and R be a reduced ring. Then the ring R(+)R is
strongly M -semicommutative.

Proof. Let α = (α0, α1), β = (β0, β1) be elements of {R(+)R}[M ], we claim that

α{R(+)R}[M ]β = 0. Write α =
∑m

i=0
(ai, ui)gi = (α0, α1) and β =

∑n

j=0
(bj , vj)hj = (β0, β1),

with corresponding representations for αk, βk (for k = 0, 1). Now we have

α0β0 = 0, (2.3)

α0β1 + α1β0 = 0. (2.4)

By Lemma 2.4 R[M ] is reduced, (2.3) implies

β0α0 = 0. (2.5)

Multiplying equation (2.4) by β0 on the left and using (2.5) we get β0α1β0 = 0. This implies that
(α1β0)2 = 0 and so (since R[M ] is reduced)

α1β0 = 0. (2.6)

This implies (on account of (2.4))

α0β1 = 0. (2.7)

Now (2.3), (2.6) and (2.7) yield (since R is strongly M -semicommutative)

α0R[M ]β0 = 0, α1R[M ]β0 = 0, and α0R[M ]β1 = 0.

Therefore (α0, α1)(γ0, γ1)(β0, β1) = (α0γ0β0, α0γ0β1 +α0γ1β0 +α1γ0β0) = 0 for each (γ0, γ1) of
{R(+)R}[M ].

The following theorem generalization of Proposition 2.14 has a similar proof.
Theorem 2.2. Let M be u.p.-monoid, R be a reduced ring and A an ideal of R such that R/A

is reduced. Then R(+)R/A is strongly M -semicommutative.
Remark 2.1. Recall that a ring R is strongly regular [3] if for each element a in R, there exists

an element b in R such that a = a2b. A ring is strongly regular, if and only if it is (von Neumann)
regular and reduced. If R is a strongly regular ring, then for each ideal A of R, R/A is strongly
regular and reduced. On applying Theorem 2.2 we get the following result: If R is a strongly regular
ring, then for each ideal A of R, then ring R(+)R/A is strongly M -semicommutative.

The ring R is called Abelian if every idempotent is central, that is, ae = ea for any e2 = e,

a ∈ R.
Recall that a ring R is a called right principally projective ring (or simples right p.p.-ring) if the

right annihilator of an element of R is generated by an idempotent.
Lemma 2.10. Let M be an monoid and R be strongly M -semicommutative. Then R is an

Abelian ring. The converse holds if R is a right p.p.-ring.
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Proof. If e is an idempotent in R, then e(1− e) = 0. Since R is strongly M -semicommutative,
we have eα(1− e) = 0 for any α ∈ R[M ] and so eα = eαe. On the other hand, (1− e)e = 0 implies
that (1− e)αe = 0, so we have αe = eαe. Therefore, αe = eα. For converse suppose now R is an
Abelian and right p.p.-ring. Let α, β ∈ R[M ] with αβ = 0. Then α ∈ Ann(β) = eR[M ] for some
e2 = e ∈ R and so βα = 0 and α = eα. Since R is Abelian, we have αγβ = eαγβ = αγβe = 0 for
any γ ∈ R[M ], so, αR[M ]β = 0. Therefore R is strongly M -semicommutative.

Before stating Example 2.2, we need the following lemmas.
Lemma 2.11 ([4], Lemma 1). Given a ring R we have the following assertion: R is an Abelian

ring if and only if R is a reduced ring if and only if R is a semicommutative ring, when R is a right
p.p.-ring.

Lemma 2.12 ([4], Lemma 2). Let S be an Abelian ring and define



a a12 a13 . . . a1n

0 a a23 . . . a2n

0 0 a . . . a3n

...
...

...
. . .

...

0 0 0 . . . a



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a, aij ∈ S


= Rn

with n a positive integer ≥ 2. Then every idempotent in Rn is of the form

f 0 0 . . . 0

0 f 0 . . . 0

0 0 f . . . 0

...
...

...
. . .

...

0 0 0 . . . f


with f2 = f ∈ S and so Rn is Abelian.

Example 2.2. Let S be Abelian ring and

R =




a a12 . . . a1n

0 a . . . a2n

...
...

. . .
...

0 0 0 a



∣∣∣∣∣∣∣∣∣∣∣∣
a, aij ∈ S


.

Then R is Abelian by Lemma 2.12. Let M be a monoid with |M | ≥ 2. Take e, g ∈ M such that
e 6= g. Consider

α =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e+


0 1 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

g ∈ R[M ],
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β =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

e+


0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

g ∈ R[M ].

Then αβ = 0, but
0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1




0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

 6= 0,

so R is not strongly M -semicommutative. Assuming that R is a right p.p.-ring, then R is reduced
by Lemma 2.11, a contradiction by the element

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


in R. Thus, R is not a right p.p.-ring. In fact there can not be an idempotent e ∈ R such that

AnnR


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 = eR.

Proposition 2.15. The direct limit of a direct system of strongly M -semicommutative rings is
also strongly M -semicommutative.

Proof. Let A = {Ri, αij} be a direct system of strongly M -semicommutative rings Ri for
i ∈ I and ring homomorphism αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1, where I

is a directed partially ordered set. Let R = limRi be the direct limit of D with li : Ri → R and
ljαij = li, we will prove thatR is stronglyM -semicommutative ring. Take x, y ∈ R, then x = li(xi),

y = lj(yj) for some i, j ∈ I and there is k ∈ I such that i ≤ k, j ≤ k define x+ y = lk(αik(xi) +

+ αjk(yj)) and xy = lk(αik(xi)αjk(yj)), where αik(xi), αjk(yj) are in Rk. Then R forms a rings

with 0 = li(0) and 1 = li(1). Now suppose αβ = 0 for α =
∑m

s=1
asgs, β =

∑n

t=1
btht in

R[M ]−{0}. There exist is, jt, k ∈ I such that as = lis(ais), bt = ljt(bjt), is ≤ k, jt ≤ k. So asbt =

= lk(αisk(ais)αjtk(bjt)). Thus αβ =
(∑m

s=1
lk(αisk(ais))gs

)(∑n

t=0
lk(αjtk(bjt)ht

)
= 0. But Rk

is strongly M -semicommutative ring and so lk(αisk(ais)Rk[M ]αjtk(bjt)) = 0. Thus αR[M ]β = 0,

and hence R is strongly M -semicommutative ring.
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