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θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS

θ-ЦЕНТРАЛIЗАТОРИ НА НАПIВПРОСТИХ БАНАХОВИХ ∗-АЛГЕБРАХ

By generalizing the celebrated theorem of Johnson, we prove that every left θ-centralizer on a semisimple Banach algebra
with left approximate identity is continuous. We also investigate the generalized Hyers – Ulam – Rassias stability and the
superstability of θ-centralizers on semiprime Banach ∗-algebras.

Шляхом узагальнення вiдомої теореми Джонсона доведено, що кожний лiвий θ-централiзатор на напiвпростiй
банаховiй алгебрi з лiвою наближеною одиницею є неперервним. Також дослiджено узагальнену стiйкiсть Хайерса –
Улама – Рассiаса та надстiйкiсть θ-централiзаторiв на напiвпростих ∗-алгебрах.

1. Introduction. The notion of centralizers has been generalized as θ-centralizer by Albas [1]. Let
A be a ∗-algebra and θ be an algebra automorphism of A. A mapping T : A −→ A is called a left
(right) θ-centralizer on A if T (xy) = T (x)θ(y)

(
T (xy) = θ(x)T (y)

)
holds for all x, y ∈ A. T is

called a θ-centralizer if it is a left as well as a right θ-centralizer. The concept of left and right θ-
centralizer covers the concept of left and right centralizer (in case θ = id, the identity automorphism
on A). The properties of θ-centralizers have been studied by Albas [1], Ali and Haetinger [2], Cortis
and Haetinger [7], Daif [8] and Ullah and Chaudhry [22].

A classical question in the theory of functional equations is the following: When is it true that
a function which approximately satisfies a functional equation ζ must be close to an exact solution
of ζ ? If the problem accepts a solution, we say that the equation ζ is stable. There are cases in
which each approximate solution is actually a true solution. In such cases, we call the equation ζ
superstable. The first stability problem concerning group homomorphisms was raised by Ulam [23]
in 1940. Ulam problem was partially solved by Hyers [12] for Banach spaces. Hyers’ theorem was
generalized by Aoki [3] for additive mappings and by Th. M. Rassias [21] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th. M. Rassias [21] has provided a lot of
influence in the development of what is called the generalized Hyers – Ulam stability or the Hyers –
Ulam – Rassias stability of functional equations. A generalization of the Th. M. Rassias theorem was
obtained by Gavruta [11] in 1994 by replacing the unbounded Cauchy difference by a general control
function in the spirit of Th. M. Rassias’ approach. Badora [5] proved the generalized Hyers – Ulam
stability of ring homomorphisms, which generalizes the result of D. G. Bourgin. Miura [18] proved
the generalized Hyers – Ulam stability of Jordan homomorphisms. For more details about the stability
of functional equations see [9 – 14].

In Section 2, by generalizing the celebrated theorem of Johnson [17], we prove that every left
θ-centralizer on a semisimple Banach algebra with a left approximate identity is continuous. In
Section 3, we prove the superstability of θ-centralizers on semiprime Banach ∗-algebras and we
provide conditions for which a given mapping f is a left (right) θ-centralizer. In Section 4, we
investigate the generalized Hyers – Ulam stability of θ-centralizers on semiprime Banach ∗-algebras.
Throughout this paper, it is assumed that A is a semiprime Banach (complex) ∗-algebra.
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2. Automatic continuity of θ-centralizers. In this section, we show that every left (right) θ-
centralizer is homogenous. Also, we apply a classical theorem of B. E. Johnson to prove that every
left θ-centralizer on a semisimple Banach algebra with a left approximate identity is continuous.
Following [6], a Banach algebra B is said to have a left approximate identity (in Cohen’s sense), if
there exists a constant C, such that given ε > 0, and xi ∈ B, 1 ≤ i ≤ m, there exists an e ∈ B,
satisfying

‖e‖ < C, ‖exi − xi‖ < ε.

Proposition 2.1. Let B be a semiprime algebra. If T : B −→ B is a left (right) θ-centralizer,
then T is homogenous.

Proof. Set a := T (µx)− µT (x) for every x ∈ B and every µ ∈ C. Let y ∈ B. Then there exists
a z ∈ B such that y = θ(z). Therefore,

aya =
(
T (µx)− µT (x)

)
θ(z)a =

(
T (µx)θ(z)− µT (x)θ(z)

)
a =

=
(
T (µxz)− T (x)θ(µz)

)
a =

(
T (µxz)− T (xµz)

)
a = 0.

From the semiprimeness of B it follows that a = 0. Thus, T is homogenous.
Proposition 2.1 is proved.
We now generalize the result of [17] for continuity of θ-centralizers on Banach algebras.
Theorem 2.1. Let B be a semisimple Banach algebra with a left approximate identity (in Cohen’s

sense). If T : B −→ B is a left θ-centralizer, then T is linear and continuous.
Proof. If x1, x2 ∈ B, then by Johnson’s Theorem (see [17]) one can find y1, y2, z ∈ B such that

x1 = zy1 and x2 = zy2. Thus,

T (x1 + x2) = T
(
z(y1 + y2)

)
= T (z)θ(y1 + y2) =

= T (z)θ(y1) + T (z)θ(y2) = T (zy1) + T (zy2) = T (x1) + T (x2).

Now, Proposition 2.1 implies T is linear.
If xm ∈ B and xm → 0, then by Johnson’s Theorem (see [17]) it follows that there exists a z ∈ B

and a sequence ym in B with ym → 0 such that xm = zym, m = 1, 2, . . . . Hence,

T (xm) = T (zym) = T (z)θ(ym).

But a classical theorem of B. E. Johnson (see [4]) yields θ(ym) → 0 as m → ∞. Therefore, T is
continuous.

Theorem 2.1 is proved.
3. Superstability. In this section, we prove the superstability of θ-centralizers on semiprime

Banach ∗-algebras. Note that throughout this section n > 4 is a fixed integer.
We first summarize the following corollaries from [22].
Corollary 3.1. If T : A −→ A is an additive mapping such that T (xx∗) = T (x)θ(x∗) holds for

all x ∈ A, then T is a left θ-centralizer.
Proof. The result follows from Theorem 2.2 of [22] and the fact that every complex ∗-algebra is

a 2-torsion free ring.
Corollary 3.2. If T : A −→ A is an additive mapping such that T (xx∗) = θ(x∗)T (x) holds for

all x ∈ A, then T is a right θ-centralizer.
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Corollary 3.3. If T : A −→ A is an additive mapping such that T (xx∗) = T (x)θ(x∗) =

= θ(x∗)T (x) holds for all x ∈ A, then T is a θ-centralizer.
We now provide conditions which imply the superstability of θ-centralizers on semiprime Banach

∗-algebras.
Theorem 3.1. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping

such that ∥∥∥∥∥∥ 1

n− 2

n∑
i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
−

n−1∑
i=1

f(xi)

∥∥∥∥∥∥ ≤ ∥∥f(xn)∥∥, (3.1)

∥∥f(aa∗)− f(a)θ(a∗)∥∥ ≤ α‖a‖p (3.2)

for all a, xi ∈ A, 1 ≤ i ≤ n. Then the mapping f : A −→ A is a linear left θ-centralizer. Moreover,
if A is a semisimple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then f is
continuous.

Proof. Letting x1 = . . . = xn = 0 and using n > 4 we conclude that f(0) = 0. Letting x1 = x

and x2 = . . . = xn = 0 we infer that f is odd for all x ∈ A. Setting x3 = . . . = xn = 0, we get

1

n− 2

(
f(−x1 + x2) + f(−x2 + x1)

)
+ f(x1 + x2) = f(x1) + f(x2)

for all x1, x2 ∈ A. From the oddness of f it follows that f is additive. Assume that p < 2. By using
the inequality (3.2), we have∥∥f(aa∗)− f(a)θ(a∗)∥∥ =

1

n2

∥∥∥f((na)(na)∗)− f(na)θ((na)∗)∥∥∥ ≤ 1

n2
αnp‖a‖p

for all a ∈ A. Thus, by letting n tend to ∞ in the last inequality, we obtain f(aa∗) = f(a)θ(a∗)

for all a ∈ A. Hence Corollary 3.1 implies f is a left θ-centralizer. The additivity of f together with
Proposition 2.1 yield f is linear. Moreover, the continuity of f follows from Theorem 2.1. Similarly,
one can obtain the result for the case p > 2.

Theorem 3.1 is proved.
Theorem 3.2. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping

satisfying the inequality (3.1) and∥∥f(aa∗)− θ(a∗)f(a)∥∥ ≤ α‖a‖p (3.3)

for all a ∈ A. Then the mapping f : A −→ A is a linear right θ-centralizer.
Proof. The proof is similar to the proof of Theorem 3.1 and the result follows from Corollary 3.2.
Theorem 3.3. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping

satisfying the inequality (3.1) and∥∥f(aa∗ + bb∗)− f(a)θ(a∗)− θ(b∗)f(b)
∥∥ ≤ α(‖a‖p + ‖b‖p) (3.4)

for all a, b ∈ A. Then the mapping f : A −→ A is a linear θ-centralizer. Moreover, if A is a semi-
simple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then f is continuous.

Proof. Setting b = 0 in (3.4) and applying Theorem 3.1, we conclude that f is a linear left
θ-centralizer. Letting a = 0 in (3.4) and using Theorem 3.2, we deduce that f is a right θ-centralizer.

Theorem 3.3 is proved.
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4. Stability. In this section we prove the generalized Hyers – Ulam stability of θ-centralizers on
semiprime Banach ∗-algebras. Throughout this section n > 3 is a fixed integer.

The following lemma (see [19]) is needed in the rest of the paper.
Lemma 4.1. Let X and Y be linear spaces. A mapping f : X −→ Y satisfies

n∑
i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
= (n− 2)

n∑
i=1

f(xi) (4.1)

for x1, . . . , xn ∈ X, if and only if f is additive.

Theorem 4.1. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control
function ϕ : An+1 −→ [0,∞) such that

ϕ̃(x) :=

∞∑
i=1

1

2i
ϕ
(
2i−1x, 2i−1x, 0, . . . , 0

)
<∞, (4.2)

lim
k→∞

1

2k
ϕ
(
2kx1, . . . , 2

kxn, 2
ka
)
= 0, (4.3)

∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(aa∗)− f(a)θ(a∗)

∥∥∥∥∥ ≤
≤ ϕ(x1, . . . , xn, a) (4.4)

for all a, x1, . . . , xn ∈ A. Then there exists a unique linear left θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
ϕ̃(x) (4.5)

for all x ∈ A.
Proof. Setting x1 = x2 = x, a = x3 = . . . = xn = 0 in (4.4) and using f(0) = 0, we obtain∥∥∥∥12f(2x)− f(x)

∥∥∥∥ ≤ 1

2(n− 2)
ϕ(x, x, 0, . . . , 0) (4.6)

for all x ∈ A. Applying induction method on m, we have∥∥∥∥ 1

2m
f(2mx)− f(x)

∥∥∥∥ ≤ 1

n− 2

m∑
i=1

1

2i
ϕ
(
2i−1x, 2i−1x, 0, . . . , 0

)
(4.7)

for all x ∈ A. In order to show that the functions Tm(x) =
1

2m
f(2mx) form a convergent sequence,

we use the Cauchy convergence criterion. Replace x by 2lx and divide by 2l in (4.7), where l is an
arbitrary positive integer, to find that∥∥∥∥ 1

2m+l
f(2m+lx)− 1

2l
f(2lx)

∥∥∥∥ ≤ 1

n− 2

m+l∑
i=1+l

1

2i
ϕ
(
2i−1x, 2i−1x, 0, . . . , 0

)
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for all positive integers m ≥ l and all x ∈ A. Hence by the Cauchy criterion the limit T (x) :=

:= limm→∞ Tm(x) exists for each x ∈ A. By taking the limit as m → ∞ in (4.7) we see that the
inequality (4.5) holds for all x ∈ A. Setting a = 0 in (4.4), we get∥∥∥∥∥

n∑
i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi)

∥∥∥∥∥ ≤ ϕ(x1, . . . , xn, 0)
for all xi ∈ A, 1 ≤ i ≤ n. Replacing xi by 2mxi, 1 ≤ i ≤ n and dividing both sides by 2m and
taking the limit as m → ∞ and using (4.3) we deduce that T satisfies (4.1). Thus, it follows from
Lemma 4.1 that T is additive. Setting x1 = . . . = xn = 0 in (4.4), we get∥∥f(aa∗)− f(a)θ(a∗)∥∥ ≤ ϕ(0, . . . , 0, a) (4.8)

for all a ∈ A. Replacing a by 2ma in (4.8) and dividing its both sides by 22m, we obtain∥∥∥∥ 1

22m
f(22maa∗)− 1

2m
f(2ma)θ(a∗)

∥∥∥∥ ≤ 1

22m
ϕ
(
0, . . . , 0, 2ma

)
for all a ∈ A. Taking the limit as m → ∞ and using (4.3), we conclude that T (aa∗) = T (a)θ(a∗).

So Corollary 3.1 implies T is a left θ-centralizer. Now, let T ′ : A −→ A be another additive mapping
satisfying (4.5). Consequently, we have∥∥T (x)− T ′(x)∥∥ =

1

2m
∥∥T (2mx)− T ′(2mx)∥∥ ≤

≤ 1

2m

(∥∥T (2mx)− f(2mx)∥∥+ ∥∥T ′(2mx)− f(2mx)∥∥) ≤ 2

2m(n− 2)
ϕ̃(2mx) =

=
2

n− 2

∞∑
i=m+1

1

2i
ϕ
(
2i−1x, 2i−1x, 0, . . . , 0

)
for all x ∈ A. The right-hand side tends to zero as m → ∞. This proves the uniqueness of T. The
linearity of T follows from Proposition 2.1.

Theorem 4.1 is proved.
Theorem 4.2. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control

function ϕ : An+1 −→ [0,∞) that satisfies (4.2), (4.3) and∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(aa∗)− θ(a∗)f(a)

∥∥∥∥∥ ≤
≤ ϕ(x1, . . . , xn, a) (4.9)

for all a, x1, . . . , xn ∈ A. Then there exists a unique linear right θ-centralizer T : A −→ A such
that, ∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
ϕ̃(x) (4.10)

for all x ∈ A.
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Proof. The proof is similar to the proof of Theorem 4.1.
Theorem 4.3. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control

function φ : An+2 −→ [0,∞) such that

φ̃(x) :=
∞∑
i=1

1

2i
φ
(
2i−1x, 2i−1x, 0, . . . , 0

)
<∞, (4.11)

lim
k→∞

1

2k
φ
(
2kx1, . . . , 2

kxn, 2
ka, 2kb

)
= 0, (4.12)

∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi)+

+f(aa∗ + bb∗)− f(a)θ(a∗)− θ(b∗)f(b)

∥∥∥∥∥ ≤ φ(x1, . . . , xn, a, b) (4.13)

for all a, b, x1, . . . , xn ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that

∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
φ̃(x) (4.14)

for all x ∈ A.
Proof. Setting b = 0 in (4.13), we obtain∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(aa∗)− f(a)θ(a∗)

∥∥∥∥∥ ≤ φ(x1, . . . , xn, a, 0)
for all a, x1, . . . , xn ∈ A. By taking ϕ(x1, . . . , xn, a) := φ(x1, . . . , xn, a, 0) for all a, x1, . . . , xn ∈ A
and applying the same method as in the proof of Theorem 4.1, we obtain the Cauchy sequence{

1

2m
f(2mx)

}
for all x ∈ A. Completeness of A gives a unique mapping T : A −→ A which is a

linear left θ-centralizer and ∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
ϕ̃(x) =

1

n− 2
φ̃(x). (4.15)

Setting a = 0 in (4.13), we obtain∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(bb∗)− θ(b∗)f(b)

∥∥∥∥∥ ≤ φ(x1, . . . , xn, 0, b)
for all b, x1, . . . , xn ∈ A. By taking ϕ(x1, . . . , xn, b) := φ(x1, . . . , xn, 0, b) for all b, x1, . . . , xn ∈ A
and applying the same method as in the proof of Theorem 4.2, we obtain the above Cauchy sequence
which converges to the mapping T : A −→ A. Now, Theorem 4.2 implies the mapping T is a linear
right θ-centralizer and satisfies (4.15). Therefore, T is a unique linear θ-centralizer satisfying (4.14).

Theorem 4.3 is proved.
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Corollary 4.1. Let α and rj , 1 ≤ j ≤ n+2, be nonnegative real numbers such that 0 < rj < 1.

Suppose that a mapping f : A −→ A with f(0) = 0 satisfies∥∥∥∥∥
n∑

i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(xn+1x
∗
n+1 + xn+2x

∗
n+2)−

−f(xn+1)θ(x
∗
n+1)− θ(x∗n+2)f(xn+2)

∥∥∥∥∥ ≤ α
n+2∑
j=1

‖xj‖rj (4.16)

for all x1, . . . , xn+2 ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ α

n− 2

(
‖x‖r1
2− 2r1

+
‖x‖r2
2− 2r2

)
for all x ∈ A.

Proof. It is an immediate consequence of Theorem 4.3 by taking

φ(x1, . . . , xn+2) := α
n+2∑
j=1

‖xj‖rj

for all x1, . . . , xn+2 ∈ A.
The following Corollary is Isac – Rassias type stability (see [15, 16]) for θ-centralizers on semiprime

Banach ∗-algebras.
Corollary 4.2. Let ψ : R+ ∪ {0} −→ R+ ∪ {0} be a function with ψ(0) = 0 such that

lim
t→∞

ψ(t)

t
= 0, ψ(ts) ≤ ψ(t)ψ(s)

for t, s ∈ R+, and ψ(t) < t for t > 1. Suppose that α is a nonnegative real number and f : A −→ A
is a mapping with f(0) = 0 satisfies∥∥∥∥∥

n∑
i=1

f

(
− xi +

n∑
j=1,j 6=i

xj

)
− (n− 2)

n∑
i=1

f(xi) + f(xn+1x
∗
n+1 + xn+2x

∗
n+2)−

−f(xn+1)θ(x
∗
n+1)− θ(x∗n+2)f(xn+2)

∥∥∥∥∥ ≤ α
n+2∑
j=1

ψ
(
‖xj‖

)
for all x1, . . . , xn+2 ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 2αψ(2)ψ(2−1)

(n− 2)(2− ψ(2))
ψ
(
‖x‖
)

for all x ∈ A.
Proof. The result follows from Theorem 4.3 by letting

φ(x1, . . . , xn+2) := α

n+2∑
j=1

ψ
(
‖xj‖

)
for all x1, . . . , xn+2 ∈ A.
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Theorem 4.4. Let f : A −→ A be a mapping for which there exists a control function ϕ : An+1 −→
−→ [0,∞) that satisfies (4.4) and

ϕ̃(x) :=
∞∑
i=1

2iϕ

(
1

2i−1
x,

1

2i−1
x, 0, . . . , 0

)
<∞, (4.17)

lim
k→∞

4kϕ
(x1
2k
, . . . ,

xn
2k
,
a

2k

)
= 0 (4.18)

for all a, x1, . . . , xn ∈ A. Then there exists a unique linear left θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
ϕ̃(x) (4.19)

for all x ∈ A.
Proof. Setting a = x1 = . . . = xn = 0 in (4.18) we conclude that ϕ(0, . . . , 0) = 0. Setting

a = x1 = . . . = xn = 0 in (4.4) and using n > 3 we see that f(0) = 0. Therefore by a similar

calculation as in the proof of Theorem 4.1 we can obtain (4.6). Now, replace x by
x

2
and multiply

both sides by 2 in (4.6), to get∥∥∥f(x)− 2f
(x
2

)∥∥∥ ≤ 1

n− 2
ϕ
(x
2
,
x

2
, 0, . . . , 0

)
for all x ∈ A. Using induction method on m, we have∥∥∥f(x)− 2mf

( x

2m

)∥∥∥ ≤ 1

n− 2

m∑
i=1

2i−1ϕ
( x
2i
,
x

2i
, 0, . . . , 0

)
(4.20)

for all x ∈ A. Replacing x by
x

2l
and multiplying by 2l in (4.20), where l is an arbitrary positive

integer, we get

∥∥∥2lf ( x
2l

)
− 2m+lf

( x

2m+l

)∥∥∥ ≤ 1

n− 2

m+l∑
i=1+l

2i−1ϕ
( x
2i
,
x

2i
, 0, . . . , 0

)
(4.21)

for all positive integers m ≥ l. Due to completeness of A the sequence
{
2mf

( x

2m

)}
converges

for all x ∈ A. Hence we can define the mapping T : A −→ A by T (x) := limn→∞ 2mf
( x

2m

)
. By

taking the limit as m→∞ in (4.20) we obtain the desired inequality (4.19). The rest of the proof is
similar to the proof of Theorem 4.1 and we omit it.

Theorem 4.5. Let f : A −→ A be a mapping for which there exists a control function
ϕ : An+1 −→ [0,∞) that satisfies (4.9), (4.17) and (4.18). Then there exists a unique linear right
θ-centralizer T : A −→ A that satisfies the inequality (4.19).

Theorem 4.6. Let f : A −→ A be a mapping for which there exists a control function
φ : An+2 −→ [0,∞) that satisfies (4.13) and

φ̃(x) :=

∞∑
i=1

2iφ

(
1

2i−1
x,

1

2i−1
x, 0, . . . , 0

)
<∞, (4.22)
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lim
k→∞

4kφ

(
x1
2k
, . . . ,

xn
2k
,
a

2k
,
b

2k

)
= 0 (4.23)

for all a, b, x1, . . . , xn ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1

n− 2
φ̃(x) (4.24)

for all x ∈ A.
Corollary 4.3. Let α and rj , 1 ≤ j ≤ n + 2, be nonnegative real numbers such that rj > 1.

Suppose that a mapping f : A −→ A satisfies (4.16). Then there exists a unique linear θ-centralizer
T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 2α

n− 2

(
2r1

2r1 − 2
‖x‖r1 + 2r2

2r2 − 2
‖x‖r2

)
for all x ∈ A.

Proof. It is enough to define

φ(x1, . . . , xn+2) := α

n+2∑
j=1

‖xj‖rj

for all x1, . . . , xn+2 ∈ A and apply Theorem 4.6.
Remark 4.1. In Theorems 4.3, 4.4, and 4.6 and Corollaries 4.1, 4.2, and 4.3 if A is replaced

by a semisimple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then T is
continuous. Note that in this case the result follows from Theorem 2.1.
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