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0-CENTRALIZERS ON SEMIPRIME BANACH %x-ALGEBRAS
O-HEHTPAJII3ATOPU HA HAIIIBITPOCTUX BAHAXOBHUX *-AJI'EBPAX

By generalizing the celebrated theorem of Johnson, we prove that every left -centralizer on a semisimple Banach algebra
with left approximate identity is continuous. We also investigate the generalized Hyers— Ulam —Rassias stability and the
superstability of f-centralizers on semiprime Banach *-algebras.

lnaxoM y3aranpHeHHS BioMoi TeopeMu J[PKOHCOHA MOBENCHO, IO KOKHUH JIBHHA 0-LIEHTpali3aTop Ha HAaIiBIPOCTil
6aHaxoBii anare6pi 3 JiBOK HAOIMKEHOIO OJWHUIICIO € HemepepBHUM. TakoX TOCITIKEHO y3arajdbHEHy CTikKicTh Xaiiepca —
Vnama - Pacciaca Ta HanCTIHKICTE O-I[eHTpai3aTopiB Ha HAIIBIPOCTUX *-ajurebpax.

1. Introduction. The notion of centralizers has been generalized as 6-centralizer by Albas [1]. Let
A be a x-algebra and 0 be an algebra automorphism of .A. A mapping 7': A — A is called a left
(right) f-centralizer on A if T'(zy) = T'(x)0(y) (T(zy) = 6(x)T(y)) holds for all z,y € A. T is
called a f-centralizer if it is a left as well as a right §-centralizer. The concept of left and right 6-
centralizer covers the concept of left and right centralizer (in case § = id, the identity automorphism
on A). The properties of f-centralizers have been studied by Albas [1], Ali and Haetinger [2], Cortis
and Haetinger [7], Daif [8] and Ullah and Chaudhry [22].

A classical question in the theory of functional equations is the following: When is it true that
a function which approximately satisfies a functional equation  must be close to an exact solution
of (7 If the problem accepts a solution, we say that the equation ( is stable. There are cases in
which each approximate solution is actually a true solution. In such cases, we call the equation ¢
superstable. The first stability problem concerning group homomorphisms was raised by Ulam [23]
in 1940. Ulam problem was partially solved by Hyers [12] for Banach spaces. Hyers’ theorem was
generalized by Aoki [3] for additive mappings and by Th. M. Rassias [21] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th. M. Rassias [21] has provided a lot of
influence in the development of what is called the generalized Hyers — Ulam stability or the Hyers —
Ulam — Rassias stability of functional equations. A generalization of the Th. M. Rassias theorem was
obtained by Gavruta [11] in 1994 by replacing the unbounded Cauchy difference by a general control
function in the spirit of Th. M. Rassias’ approach. Badora [5] proved the generalized Hyers — Ulam
stability of ring homomorphisms, which generalizes the result of D. G. Bourgin. Miura [18] proved
the generalized Hyers — Ulam stability of Jordan homomorphisms. For more details about the stability
of functional equations see [9— 14].

In Section 2, by generalizing the celebrated theorem of Johnson [17], we prove that every left
O-centralizer on a semisimple Banach algebra with a left approximate identity is continuous. In
Section 3, we prove the superstability of f-centralizers on semiprime Banach x-algebras and we
provide conditions for which a given mapping f is a left (right) #-centralizer. In Section 4, we
investigate the generalized Hyers — Ulam stability of f-centralizers on semiprime Banach x-algebras.
Throughout this paper, it is assumed that A is a semiprime Banach (complex) x-algebra.
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2. Automatic continuity of O-centralizers. In this section, we show that every left (right) -
centralizer is homogenous. Also, we apply a classical theorem of B. E. Johnson to prove that every
left f-centralizer on a semisimple Banach algebra with a left approximate identity is continuous.
Following [6], a Banach algebra B is said to have a left approximate identity (in Cohen’s sense), if
there exists a constant C, such that given € > 0, and z; € B, 1 < i < m, there exists an e € B,
satisfying

lle|l < C, llex; — x;|| <e.

Proposition 2.1. Let B be a semiprime algebra. If T: B — B is a left (right) 0-centralizer,
then T is homogenous.

Proof. Seta:=T(ux)— pT'(z) for every x € B and every u € C. Let y € B. Then there exists
a z € B such that y = 0(z). Therefore,

aya = (T(ux) — pT(2))8(=)a = (T(ux)0(=) — pT (x)8(2))a =

= (T(pzz) — T(2)8(pz))a = (T(pzz) — T(zpz))a = 0.

From the semiprimeness of B it follows that a = 0. Thus, 7" is homogenous.

Proposition 2.1 is proved.

We now generalize the result of [17] for continuity of #-centralizers on Banach algebras.

Theorem 2.1. Let BB be a semisimple Banach algebra with a left approximate identity (in Cohen's
sense). If T': B — B is a left 0-centralizer, then T is linear and continuous.

Proof. 1f x1,x9 € B, then by Johnson’s Theorem (see [17]) one can find y1, y2, 2 € B such that
x1 = 2y and x9 = zyo. Thus,

T(z1+22) =T(2(y1 + y2)) = T(2)0(y1 + y2) =
— T(2)0(y1) + T(2)0(y2) = T(zn) + T(2y2) = T(x1) + T(2).

Now, Proposition 2.1 implies 7" is linear.
If x,, € B and x,,, — 0, then by Johnson’s Theorem (see [17]) it follows that there exists a z € B
and a sequence y,, in B with y,,, — 0 such that z,,, = zy.,,, m = 1,2, .... Hence,

T(zm) =T (zym) = T(2)0(ym).

But a classical theorem of B. E. Johnson (see [4]) yields 6(y,,) — 0 as m — oo. Therefore, T is
continuous.

Theorem 2.1 is proved.

3. Superstability. In this section, we prove the superstability of #-centralizers on semiprime
Banach x-algebras. Note that throughout this section n > 4 is a fixed integer.

We first summarize the following corollaries from [22].

Corollary 3.1. IfT: A — A is an additive mapping such that T (zx*) = T(z)0(x*) holds for
all x € A, then T is a left O-centralizer.

Proof. The result follows from Theorem 2.2 of [22] and the fact that every complex x-algebra is
a 2-torsion free ring.

Corollary 3.2. If T: A — A is an additive mapping such that T (zz*) = 0(x*)T'(z) holds for
all v € A, then T is a right 6-centralizer.

ISSN 1027-3190. Ykp. mam. sxcypn., 2014, m. 66, Ne 2
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Corollary 33. If T: A — A is an additive mapping such that T'(zz*) = T(z)0(z*) =
= 0(z*)T () holds for all x € A, then T is a §-centralizer.

We now provide conditions which imply the superstability of #-centralizers on semiprime Banach
x-algebras.

Theorem 3.1. Let p # 2 and « be nonnegative real numbers and f: A — A be a mapping
such that

n n n—1
ni22f<—xi+ > xj> > f@)| < || f )], 3.1
i=1 j=1,j%#i i=1
| f(aa®) = f(a)8(a”)| < afal? (3.2)

forall a,x; € A, 1 < i <n. Then the mapping f: A —> A is a linear left 0-centralizer. Moreover,
if A is a semisimple Banach x-algebra with a left approximate identity (in Cohen's sense), then f is
continuous.

Proof. Letting x1 = ... =z, = 0 and using n > 4 we conclude that f(0) = 0. Letting x1 = z
and zo = ... = z, = 0 we infer that f is odd for all x € A. Setting z3 = ... = x,, = 0, we get

— (f(mwr 4 @2) + (w2 + 1)) + f21 +22) = f(1) + f(22)

for all z1, x5 € A. From the oddness of f it follows that f is additive. Assume that p < 2. By using
the inequality (3.2), we have

1
< p p
| < —an”|a

| #(aa) ~ f(@)0(a)| = | £ ((na)na)*) — f(na)6((na)”)

for all @ € A. Thus, by letting n tend to oo in the last inequality, we obtain f(aa*) = f(a)f(a*)
for all a € A. Hence Corollary 3.1 implies f is a left f-centralizer. The additivity of f together with
Proposition 2.1 yield f is linear. Moreover, the continuity of f follows from Theorem 2.1. Similarly,
one can obtain the result for the case p > 2.

Theorem 3.1 is proved.

Theorem 3.2. Let p # 2 and « be nonnegative real numbers and f: A — A be a mapping
satisfying the inequality (3.1) and

£ (aa®) = 0(a™) f(a)]| < allall? (3.3)

for all a € A. Then the mapping f : A — A is a linear right 0-centralizer.
Proof. The proof is similar to the proof of Theorem 3.1 and the result follows from Corollary 3.2.
Theorem 3.3. Let p # 2 and « be nonnegative real numbers and f: A — A be a mapping
satisfying the inequality (3.1) and

£ (aa™ +b0") — f(a)0(a”) — 0(b") f(b)|| < e([lall” + [Ib]]") (3.4)

for all a,b € A. Then the mapping f: A — A is a linear O-centralizer. Moreover, if A is a semi-

simple Banach x-algebra with a left approximate identity (in Cohen'’s sense), then f is continuous.
Proof. Setting b = 0 in (3.4) and applying Theorem 3.1, we conclude that f is a linear left

f-centralizer. Letting a = 0 in (3.4) and using Theorem 3.2, we deduce that f is a right f-centralizer.
Theorem 3.3 is proved.
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4. Stability. In this section we prove the generalized Hyers — Ulam stability of §-centralizers on
semiprime Banach x-algebras. Throughout this section n > 3 is a fixed integer.

The following lemma (see [19]) is needed in the rest of the paper.

Lemma 4.1. Let X and Y be linear spaces. A mapping f: X — Y satisfies

Zf(—m > :cj> =(n-2))_ f(z:) (4.1)
i=1 j=1j# i=1
for x1,...,x, € X, if and only if f is additive.

Theorem 4.1. Let f: A — A be a mapping for which f(0) = 0 and there exists a control
function @: A" — [0, 00) such that

> 1 . .
p(z) =Y —p(27 2,27 2,0, .. 4.2
A(x) ;wso( 2,2712,0,...,0) < o0, (42)
lim — (2" 2%z, 2%a) =0 4.3
k;nczo?(p( Llyeenya Tp, CL)— ; ( . )
Zf( —zit Y xj) —(n=2))_ f(x:) + f(aa®) = f(a)f(a")| <
i=1 j=1,j7i i=1
< p(x1,...,Tn,a) (4.4)
forall a,x1,...,x, € A. Then there exists a unique linear left 0-centralizer T: A — A such that
.
|T(x) - f(x)| < () (4.5)
n—2
forall x € A.
Proof. Setting 11 =z9 =x,a=1x3=...= 1z, = 0in (4.4) and using f(0) = 0, we obtain
$F20) — f@)| < 5,0, 0) *.6)
5/ (22 x _2(n_2)goa:,x, yeens .

for all z € A. Applying induction method on m, we have

H;nf(me)—f(a:) < L in:l.go(Zila:,Qilx,O,...,O) 4.7)

. 1
for all x € A. In order to show that the functions T}, (z) = om f(2™z) form a convergent sequence,
we use the Cauchy convergence criterion. Replace = by 2z and divide by 2! in (4.7), where [ is an
arbitrary positive integer, to find that

m+l

1 1 1 1 iy
wa(2m+l$)—2lf(2l:c)H <— D (@712, 271,0,...,0)
=1+l
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for all positive integers m > [ and all x € A. Hence by the Cauchy criterion the limit 7'(z) :=
= limy;, 00 Tin () exists for each x € A. By taking the limit as m — oo in (4.7) we see that the
inequality (4.5) holds for all x € A. Setting a = 0 in (4.4), we get

Zf(-xﬂr > xj) —(n—2)) f(x)

j=1j#i i=1

< p(r1,...,2n,0)

for all x; € A, 1 < i < n. Replacing x; by 2™x;, 1 < i < n and dividing both sides by 2™ and
taking the limit as m — oo and using (4.3) we deduce that T satisfies (4.1). Thus, it follows from
Lemma 4.1 that T is additive. Setting z; = ... = z, = 0 in (4.4), we get

Hf(aa*) — f(a)@(a*)“ < (0,...,0,a) (4.8)

for all a € A. Replacing a by 2a in (4.8) and dividing its both sides by 22, we obtain

for all a € A. Taking the limit as m — oo and using (4.3), we conclude that T'(aa*) = T'(a)f(a*).
So Corollary 3.1 implies 7' is a left f-centralizer. Now, let 77: A — A be another additive mapping
satisfying (4.5). Consequently, we have

1 1 1
22—mf(22maa*) - Z—mf(Qma)H(a*) < 22—m<p(0, ...,0, 2ma)

IT(@) - T'(2)|| = 2imHT(2m:z:) _Teme)| <

< %(\\T@’%) — f@ma)|| + || (2m) — f(2mx)|\) < 2’”(712—2)¢(2mx) _
2 =1 .
T2 i;ﬂ 5?2, 2702, 0,...,0)

for all x € A. The right-hand side tends to zero as m — oo. This proves the uniqueness of 7. The
linearity of 1" follows from Proposition 2.1.

Theorem 4.1 is proved.

Theorem 4.2. Let f: A — A be a mapping for which f(0) = 0 and there exists a control
function p: A" — [0, 00) that satisfies (4.2), (4.3) and

Zf(—ﬂvﬂr > %) —(n—=2)>_ f(z:) + flaa*) — 6(a*) f(a)|| <
i=1 j=1,j#i i=1
< p(x1y...,Tpn,a) (4.9)
for all a,x1,...,x, € A. Then there exists a unique linear right 0-centralizer T: A — A such
that,
1

[7@) — f@)] < o) (4.10)

forall x € A.
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Proof. The proof is similar to the proof of Theorem 4.1.
Theorem 4.3. Let f: A — A be a mapping for which f(0) = 0 and there exists a control
function ¢: A"T? — [0, c0) such that

— 1 i i
— Z?¢(2 '2,2712,0,...,0) < oo, (4.11)
i=1
Lok k.. ok ok
kl;n;o ?¢(2 Tlyeery 2 Ty, 2%, 2 b) =0, (4.12)
(—:w > w) —(n=2)) flai)+
j=1,57#1i =1
+/f(aa” 4+ bb") — f(a)d(a”) = 0(b") f(b)|| < ¢(z1,...,2n,a,b) (4.13)
forall a,b,xz1,...,x, € A. Then there exists a unique linear 0-centralizer T': A — A such that
1 -
|17@) = @) < ——59() (4.14)

forall ¢ € A.
Proof. Setting b = 0 in (4.13), we obtain

(— . x) — (=2 (@) + flaa®) = f(a)b(a")
=1

J=1,j#i

S ¢($1,... 71'77,7@70)

forall a,z1,...,z, € A. By taking ¢(z1,...,zp,a) := ¢(z1,...,2pn,a,0) forall a,z1,...,2, € A
and applying the same method as in the proof of Theorem 4.1, we obtain the Cauchy sequence

1
om f(@2™z) b for all x € A. Completeness of A gives a unique mapping 7': A — A which is a

linear left #-centralizer and

|7 (z) — f(z)| < o(). (4.15)

Setting a = 0 in (4.13), we obtain

S ¢(x17" * 7xn707b>

( — @ + Z %) (n=2) " flw:) + f(00") = O(b") f (D)

Jj=1,j#i i=1

for all b, x1,...,z, € A. By taking p(z1,...,2,,b) := ¢(x1,...,2,,0,b) forall b,z1,...,2, € A

and applying the same method as in the proof of Theorem 4.2, we obtain the above Cauchy sequence

which converges to the mapping 7: A — A. Now, Theorem 4.2 implies the mapping 7" is a linear

right f-centralizer and satisfies (4.15). Therefore, T is a unique linear #-centralizer satisfying (4.14).
Theorem 4.3 is proved.
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Corollary 4.1. Let aand rj, 1 < j < n+ 2, be nonnegative real numbers such that 0 < r; < 1.
Suppose that a mapping f: A — A with f(0) = 0 satisfies

dof ( —wt Y %’) —(n=2)> " f(@i) + f(@ni1Th 41 + Tnrorin)—
=1

=T i—1
n+2
e )B(r) — O (an )| | < 03 s (4.16)
j=1
forall x1,...,x,19 € A. Then there exists a unique linear 0-centralizer T: A — A such that

HT(J:) - f(x)H = - (QHfHQm + 2|’iH2r2>

n—2
forall x € A.
Proof- 1t is an immediate consequence of Theorem 4.3 by taking

n+2

R D 1
j=1

for all x1,..., x40 € A.
The following Corollary is Isac — Rassias type stability (see [15, 16]) for #-centralizers on semiprime

Banach x-algebras.
Corollary 4.2. Let vp: RT U {0} — R U {0} be a function with 1)(0) = 0 such that

im Y 0 pis) < w)(s)

t—oo t

fort,s € RT, and 1(t) < t for t > 1. Suppose that v is a nonnegative real number and f: A — A
is a mapping with f(0) = 0 satisfies

Mof ( —zit Y wj) —(n=2) Y f(@) + [(@ni12) 41 + Tnyow)yo)—
=1

j=1,j#i i=1
n+2
— [ (@n41)0(@h 1) = O(w ) F@ng2) || < @ w(llzl)
j=1
forall xv,...,xp10 € A. Then there exists a unique linear 0-centralizer T: A — A such that
2a1p(2)y(27")
T(x)— f(x)|| < T

Sforall x € A.
Proof. The result follows from Theorem 4.3 by letting

n+2

¢(x1’ SERE) IEn+2) = qub(”x]”)
j=1

for all x1,..., 2,40 € A.
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Theorem 4.4. Let f: A — A be a mapping for which there exists a control function p: A"t —;

— [0, 00) that satisfies (4.4) and

1
ZQZ (21 - 1g:,o,...,o> < 00, (4.17)

T C
lim 4t <2k Sbig) =0 (4.18)
forall a,xq,...,x, € A. Then there exists a unique linear left 0-centralizer T: A — A such that
I7) - @) < () (4.19)
“n—2
forall x € A.
Proof. Setting a = x1 = ... = x, = 0 in (4.18) we conclude that ©(0,...,0) = 0. Setting
a=u1x1 =...=2x, = 0in (4.4) and using n > 3 we see that f(0) = 0. Therefore by a similar

calculation as in the proof of Theorem 4.1 we can obtain (4.6). Now, replace = by g and multiply

both sides by 2 in (4.6), to get
xr X
2. 2.0,...,0)
“’(2 2

s =21 Gl <5

for all z € A. Using induction method on m, we have

R EFE e E SUNR) BTE
=1

for all z € A. Replacing = by % and multiplying by 2! in (4.20), where [ is an arbitrary positive

integer, we get

m+l

Lp (TN _ogmly (2 1 i1 (T T
21 (5) -2 ()l < s X 2 e (gogno0) @2y

=141

for all positive integers m > [. Due to completeness of A the sequence {2m f <i>} converges

for all z € A. Hence we can define the mapping 7: A — A by T'(x) := lim,,_,o, 2™ f(2—> By
taking the limit as m — oo in (4.20) we obtain the desired inequality (4.19). The rest of the proof is
similar to the proof of Theorem 4.1 and we omit it.

Theorem 4.5. Let f: A — A be a mapping for which there exists a control function
o: A" [0, 00) that satisfies (4.9), (4.17) and (4.18). Then there exists a unique linear right
O-centralizer T': A — A that satisfies the inequality (4.19).

Theorem 4.6. Let f: A — A be a mapping for which there exists a control function
¢: A2 — [0, 00) that satisfies (4.13) and

SNy 1 1
= ZQZ¢ <2le7 27;1(17707...,0> < oo, (422)
=1
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. T1 T, a b
lim 4%¢ ( =-,..., =%, — — | = 4.2
hoo ¢<2k’ ’2k’2k’2k) 0 (4.23)
forall a,b,xz1,...,x, € A. Then there exists a unique linear 0-centralizer T': A — A such that
1 -
|IT() = f@)]| < — () (4.24)

Sforall x € A.
Corollary 4.3. Let o and rj, 1 < j < n + 2, be nonnegative real numbers such that r; > 1.

Suppose that a mapping f: A — A satisfies (4.16). Then there exists a unique linear 0-centralizer
T: A— A such that

2c 2m 272
7@ - 50l < 2225 (Gomgllel” + g lel)

Sforall x € A.
Proof. 1t is enough to define

n+2

S,y Tg2) =y [y
j=1

for all z1,...,xy+2 € A and apply Theorem 4.6.

Remark 4.1. In Theorems 4.3, 4.4, and 4.6 and Corollaries 4.1, 4.2, and 4.3 if A is replaced
by a semisimple Banach x-algebra with a left approximate identity (in Cohen’s sense), then T is
continuous. Note that in this case the result follows from Theorem 2.1.
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