Libardi Alice Kimie Miwa (I. G. C. E-Unesp-Univ. Estadual Paulista, Brazil), Vladimir Sharko (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

FUNCTIONS AND VECTOR FIELDS ON $C\left(\mathbb{C} P^{n}\right)$-SINGULAR MANIFOLDS ФУНКЦІЇ І ВЕКТОРНІ ПОЛЯ НА $\boldsymbol{C}\left(\mathbb{C} P^{n}\right)$-СИНГУЛЯРНИХ МНОГОВИДАХ

Let $M^{2 n+1}$ be a $C\left(\mathbb{C} P^{n}\right)$-singular manifold. We study functions and vector fields with isolated singularities on $M^{2 n+1}$. A $C\left(\mathbb{C} P^{n}\right)$-singular manifold is obtained from a smooth manifold $M^{2 n+1}$ with boundary which is a disjoint union of complex projective spaces $\mathbb{C} P^{n} \cup \mathbb{C} P^{n} \cup \ldots \cup \mathbb{C} P^{n}$ and subsequent capture of the cone over each component of the boundary. Let $M^{2 n+1}$ be a compact $C\left(\mathbb{C} P^{n}\right)$-singular manifold with k singular points. The Euler characteristic of $M^{2 n+1}$ is equal to $\chi\left(M^{2 n+1}\right)=\frac{k(1-n)}{2}$. Let $M^{2 n+1}$ be a $C\left(\mathbb{C} P^{n}\right)$-singular manifold with singular points m_{1}, \ldots, m_{k}. Suppose that, on $M^{2 n+1}$, there exists an almost smooth vector field $V(x)$ with finite number of zeros $m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{l}$. Then $\chi\left(M^{2 n+1}\right)=\sum_{i=1}^{l} \operatorname{ind}\left(x_{i}\right)+\sum_{i=1}^{k} \operatorname{ind}\left(m_{i}\right)$.
Нехай $M^{2 n+1}-C\left(\mathbb{C} P^{n}\right)$-сингулярний многовид. Ми вивчаємо функції і векторні поля з ізольованими сингулярностями на $M^{2 n+1} . C\left(\mathbb{C} P^{n}\right)$-сингулярний многовид виникає з гладкого многовиду $M^{2 n+1}$ з краєм, який ϵ незв’язним об' єднанням комплексного проективного простору $\mathbb{C} P^{n} \cup \mathbb{C} P^{n} \cup \ldots \cup \mathbb{C} P^{n}$ і послідовності конусів над кожною компонентою краю. Нехай $M^{2 n+1}$ - компактний $C\left(\mathbb{C} P^{n}\right)$-сингулярний многовид із k сингулярними точками. Ейлерова характеристика $M^{2 n+1}$ дорівнює $\chi\left(M^{2 n+1}\right)=\frac{k(1-n)}{2}$. Нехай $M^{2 n+1}-C\left(\mathbb{C} P^{n}\right)$-сингулярний многовид із сингулярними точками m_{1}, \ldots, m_{k}. Припустимо, що на $M^{2 n+1}$ існує майже гладке векторне поле $V(x)$ із скінченним числом нулів $m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{l}$. Тоді $\chi\left(M^{2 n+1}\right)=\sum_{i=1}^{l} \operatorname{ind}\left(x_{i}\right)+\sum_{i=1}^{k} \operatorname{ind}\left(m_{i}\right)$.

1. The functions on $\boldsymbol{C}\left(\mathbb{C} \boldsymbol{P}^{n}\right)$-manifolds. Let $M^{2 n+2}$ be a closed smooth manifold with semifree S^{1}-action

$$
\theta: S^{1} \times M^{2 n+2} \rightarrow M^{2 n+2}
$$

which has only isolated fixed points. It is known that every isolated fixed point m of a semifree S^{1}-action has the following important property: near such a point the action is equivalent to a certain linear $S^{1}=S O(2)$-action on $\mathbb{R}^{2 n+2}$. More precisely, for every isolated fixed point m there exist an open invariant neighborhood U of m and a diffeomorphism h from U to an open unit disk $D^{2 n+2}$ in \mathbb{C}^{n+1} centered at origin such that h is conjugate to the given S^{1}-action on U to the S^{1} action on \mathbb{C}^{n} with weight $(1, \ldots, 1)$. We will use both complex, $\left(z_{1}, \ldots, z_{n+1}\right)$, and real coordinates $\left(x_{1}, y_{1}, \ldots, x_{n+1}, y_{n+1}\right)$ on $\mathbb{C}^{n}=\mathbb{R}^{2 n+2}$ with $z_{j}=x_{j}+\sqrt{-1} y_{j}$. The pair (U, h) will be called a standard chart at the point m.

Let $M^{2 n+2}$ be a manifold with finite many fixed points $m_{1}, \ldots, m_{2 k}$. Denote by

$$
\pi: M^{2 n+2} \rightarrow M^{2 n+2} / S^{1}
$$

the canonical map. The set of orbits $N^{2 n+1}=M^{2 n+2} / S^{1}$ is a manifold with singular points $\pi\left(m_{1}\right), \ldots, \pi\left(m_{2 k}\right)$. It is clear that a neighborhood of any singular point is a cone over $\mathbb{C} P^{n}$.

In general, a $C\left(\mathbb{C} P^{n}\right)$-singular manifold is obtained from a smooth manifold $M^{2 n+1}$ with boundary which is a disjoint union of complex projective spaces $\mathbb{C} P^{n} \cup \mathbb{C} P^{n} \cup \ldots \cup \mathbb{C} P^{n}$ and subsequent capture of the cone over each component of the boundary. For this type of $C\left(\mathbb{C} P^{n}\right)$-singular manifold parity of the number of singular points depends on parity of the number n.

Lemma 1.1. Let $M^{2 n+1}$ be a compact $C\left(\mathbb{C} P^{n}\right)$-singular manifold with k singular points. The Euler characteristic of $M^{2 n+1}$ is equal $\chi\left(M^{2 n+1}\right)=\frac{k(1-n)}{2}$.

Remark 1.1. For n even, the complex projective space $\mathbb{C} P^{n}$ can not be the boundary of a smooth compact manifold $X^{2 n+1}$.

Lemma 1.2. Let $M^{2 n+1}$ be a compact $C\left(\mathbb{C} P^{n}\right)$-singular manifold with k singular points. If n is an odd number then the number k of singular points can be any number. If n is an even number the number k of singular points is an even number.

Since $C\left(\mathbb{C} P^{n}\right)$-singular manifolds are topological spaces we can consider continuous functions on them and because of the nature of $C\left(\mathbb{C} P^{n}\right)$-singular manifolds it is appropriate to consider continuous functions which are smooth on the complement of the set of singular points. Also it makes sense to study such functions on a $C\left(\mathbb{C} P^{n}\right)$-singular manifold whose singular points of the manifold are critical points of these functions. More precisely, this means the following.

Let $M^{2 n+1}$ be a compact $C\left(\mathbb{C} P^{n}\right)$-singular manifold $M^{2 n+1}$ with singular points m_{1}, \ldots, m_{k} and $U\left(m_{1}\right), \ldots, U\left(m_{k}\right)$ the respective closed neighborhood homeomorphic to the cone over $\mathbb{C} P^{n}$. For any neighborhood $U\left(m_{i}\right)$ there is a disc $D_{i}^{2 n+2}$ and a semifree action of the circle

$$
\theta: D_{i}^{2 n+2} \times S^{1} \rightarrow D_{i}^{2 n+2}
$$

such that performed

$$
D_{i}^{2 n+2} \xrightarrow{\pi} D_{i}^{2 n+2} / S^{1} \approx U\left(m_{i}\right) .
$$

We introduce in the disc $D_{i}^{2 n+2}$ complex coordinates z_{1}, \ldots, z_{n} and recall that the circle is the set of complex numbers of modulus one. We assume that the action of the circle on the disc is defined by the formula

$$
\theta\left(z_{1}, \ldots, z_{n}\right)=e^{i t} z_{1}, \ldots, e^{i t} z_{n}
$$

Consider an arbitrary S^{1}-invariant smooth function $f: D_{i}^{2 n+2} \rightarrow \mathbb{R}$ with a single critical point in the center of the disk. For example, let f be given by

$$
f=-\left|z_{1}\right|^{2}-\ldots-\left|z_{\lambda_{i}}\right|^{2}+\left|z_{\lambda_{i}+1}\right|^{2}+\ldots+\left|z_{n}\right|^{2} .
$$

Notice that the index of the nondegenerate critical point $0 \in D_{i}^{2 n+2}$ of such function f is always even.

Let $\pi_{*}(f): U\left(m_{i}\right) \rightarrow \mathbb{R}$ be the continuous function induced on $U\left(m_{i}\right)$ by the natural map

$$
\pi: D_{i}^{2 n+2} \rightarrow D_{i}^{2 n+2} / S^{1} \approx U\left(m_{i}\right) .
$$

It is clear that the function $\pi_{*}(f)$ is smooth on the manifold $U\left(m_{i}\right) \backslash m_{i}$.
Definition 1.1. The function $\pi_{*}(f): U\left(m_{i}\right) \rightarrow \mathbb{R}$ is called almost smooth function on the neighborhood $U\left(m_{i}\right)$ with a singularity at the point m_{i}.

If f is given by

$$
f=-\left|z_{1}\right|^{2}-\ldots-\left|z_{\lambda_{i}}\right|^{2}+\left|z_{\lambda_{i}+1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}
$$

then the function $\pi_{*}(f): U\left(m_{i}\right) \rightarrow \mathbb{R}$ is called almost Morse function on the neighborhood $U\left(m_{i}\right)$.

Definition 1.2. The function $f: M^{2 n+1} \rightarrow \mathbb{R}$ is called almost Morse function on the $C\left(\mathbb{C} P^{n}\right)$ singular manifold $M^{2 n+1}$ if f is an almost Morse function in the neighborhoods $U\left(m_{i}\right)$ of singular points m_{i} of $M^{2 n+1}$ and f is a Morse function on a smooth manifold $M^{2 n+1} \backslash \bigcup_{i} m_{i}$.

From Definition 1.1 follows that on any compact $C\left(\mathbb{C} P^{n}\right)$-singular manifold $M^{2 n+1}$ with singular points m_{1}, \ldots, m_{k} there exists an almost Morse function [1, 2].

The number of critical points of an almost Morse function is dependent of the structure of such function in the neighborhood of singular points of the $C\left(\mathbb{C} P^{n}\right)$-singular manifold. Let us examine this issue in more detail.

Definition 1.3. Let f be an almost Morse function on the $C\left(\mathbb{C} P^{n}\right)$-singular manifold $M^{2 n+1}$ with singular points m_{1}, \ldots, m_{k}. Denote by

$$
\pi_{*}\left(f_{i}\right): U\left(m_{i}\right) \rightarrow \mathbb{R}
$$

its almost Morse function in the neighborhood $U\left(m_{i}\right)$ of singular point m_{i} of $M^{2 n+1}$. The state of the almost Morse function f is the collection of all almost Morse functions in the neighborhood $U\left(m_{i}\right) \pi_{*}\left(f_{1}\right), \pi_{*}\left(f_{2}\right), \ldots, \pi_{*}\left(f_{k}\right)$, which we will be denoted by $S t(f)$.

Consider the case where $M^{2 n+1}, 2 n \geq 5$, is a compact simply connected $C\left(\mathbb{C} P^{n}\right)$-singular manifold.

Recall that for a simply connected smooth manifold we can calculate the Morse number via its homology groups. More precisely, if we consider a closed manifold N^{n} and Morse functions $f: N^{n} \rightarrow \mathbb{R}$ then to count the Morse number for the class of such functions we can use the homology group $H_{j}\left(N^{n}, \mathbb{Z}\right)$.

If we consider a compact manifold N^{n} with boundary $\partial N^{n}=\partial_{1} N^{n} \bigcup \partial_{2} N^{n}$ and Morse functions $f:\left(N^{n}, \partial_{1} N^{n}, \partial_{2} N^{n}\right) \rightarrow \mathbb{R}$ such that $f^{-1}(0)=\partial_{1} N^{n}$ and $f^{-1}(1)=\partial_{2} N^{n}$ then to calculate the Morse numbers for this class of functions we use the group $H_{j}\left(N^{n}, \partial_{1} N^{n}, \mathbb{Z}\right)$ [6].

Let $M^{2 n+1}, 2 n \geq 5$, be a compact simply connected $C\left(\mathbb{C} P^{n}\right)$-singular manifold with singular points m_{1}, \ldots, m_{k}. Let σ be a permutation of $(1,2, \ldots, k)$. We split the singular point m_{1}, \ldots, m_{k} in two disjoint sets A and B consisting of s and $k-s$ points, respectively:

$$
A=m_{\sigma(1)}, m_{\sigma(2)}, \ldots, m_{\sigma(s)}, \quad B=m_{\sigma(s+1)}, m_{\sigma(s+2)}, \ldots, m_{\sigma(k)}
$$

The case when A or B is empty set is not excluded. Consider the homology groups

$$
H_{j}\left(M^{2 n+1} \backslash B, A, \mathbb{Z}\right)
$$

Remark 1.2. If τ is another permutation of $(1,2, \ldots, k)$ and

$$
\tilde{A}=m_{\tau(1)}, m_{\tau(2)}, \ldots, m_{\tau(s)}, \quad \tilde{B}=m_{\tau(s+1)}, m_{\tau(s+2)}, \ldots, m_{\tau(k)}
$$

is another splitting of the singular points m_{1}, \ldots, m_{k} in two disjoint sets \tilde{A} and \tilde{B} then, in general,

$$
H_{j}\left(M^{2 n+1} \backslash B, A, \mathbb{Z}\right) \neq H_{j}\left(M^{2 n+1} \backslash \tilde{B}, \tilde{A}, \mathbb{Z}\right)
$$

Theorem 1.1. Let $M^{2 n+1}, 2 n \geq 5$, be a compact simply connected $C\left(\mathbb{C} P^{n}\right)$-singular manifold with singular points m_{1}, \ldots, m_{k}. Let σ be a permutation of $(1,2, \ldots, k)$ and let A (with s points) and B (with $k-s$ points) be the split of the singular points m_{1}, \ldots, m_{k} in the two disjoint sets:

$$
A=m_{\sigma(1)}, m_{\sigma(2)}, \ldots, m_{\sigma(s)}, \quad B=m_{\sigma(s+1)}, m_{\sigma(s+2)}, \ldots, m_{\sigma(k)}
$$

We fix a collection of almost Morse functions

$$
S t=\underbrace{\pi_{*}\left(f_{1}\right), \pi_{*}\left(f_{1}\right), \ldots, \pi_{*}\left(f_{1}\right)}_{s}, \underbrace{\pi_{*}\left(f_{2}\right), \pi_{*}\left(f_{2}\right), \ldots, \pi_{*}\left(f_{2}\right)}_{k-s}
$$

in the neighborhoods $U\left(m_{\sigma(1)}\right), U\left(m_{\sigma(2)}\right), \ldots, U\left(m_{\sigma(s)}\right), U\left(m_{\sigma(s+1)}\right), \ldots, U\left(m_{\sigma(k)}\right)$ respectively, where

$$
f_{1}=\sum_{i=1}^{2 n}\left|z_{i}\right|^{2}, \quad f_{2}=1-\sum_{i=1}^{2 n}\left|z_{i}\right|^{2}
$$

Then

$$
\mathcal{M}_{\lambda}\left(M^{2 n+1}, S t\right)=\mu\left(H_{\lambda}\left(M^{2 n+1} \backslash B, A, \mathbb{Z}\right)\right)+\mu\left(\operatorname{Tors} H_{\lambda-1}\left(M^{2 n+1} \backslash B, A, \mathbb{Z}\right)\right)
$$

where $\mu(H)$ is the minimal number of generators of the group H.
2. Vector fields on $\boldsymbol{C}\left(\mathbb{C} \boldsymbol{P}^{n}\right)$-manifolds. Let $V(x)$ be a smooth vector field on a smooth compact manifold $N^{2 n+1}$ with boundary with a finite number of points $C\left(\mathbb{C} P^{n}\right)$ in the interior of the manifold $N^{2 n+1}$ where $V(x)$ are zero. Suppose that the restriction of the field $V(x)$ on the boundary $\partial N^{2 n+1}$ of the manifold $N^{2 n+1}$ is outwardly directed to the manifold $N^{2 n+1}$. Recall the definition of a index zero of vector field $V(x)$ on a smooth manifold $N^{2 n+1}$.

Definition 2.1. Let $N^{2 n+1}$ be a cone over $C\left(\mathbb{C} P^{n}\right)$ and let $V(x)$ be an almost smooth vector field on $N^{2 n+1}$ such that the singular point $n \in N^{2 n+1}$ is an isolated zero point of $V(x)$, the field $V(x)$ has finite number of zeros n_{1}, \ldots, n_{l} and such zeros points belong to $N^{2 n+1} \backslash \partial N^{2 n+1}$ and $V(x)$ on the boundary of the manifold $N^{2 n+1}$ is pointed out to the manifold $N^{2 n+1}$. The index ind $(n)_{V(x)}$ of the vector field $V(x)$ at the point n is defined as the

$$
\operatorname{ind}(n)_{V(x)}=\chi\left(N^{2 n+1}\right)-\sum_{i=1}^{l} \operatorname{ind}\left(n_{i}\right)_{V(x)}
$$

For definition of the index at a singular point of an arbitrary vector field on cone over $C\left(\mathbb{C} P^{n}\right)$ we will need to build additional. First we prove the following lemma.

Lemma 2.1. Let $N^{2 n+1}$ be a cone over $C\left(\mathbb{C} P^{n}\right)$ and let $V(x)$ be an almost smooth vector field on $N^{2 n+1}$ such that the singular point $n \in N^{2 n+1}$ is an isolated zero point of $V(x)$. Then on singular manifold $N^{2 n+1}$ there exists an almost smooth vector field $W(x)$ such that:

1) $W(x)$ coincides with the field $V(x)$ in some neighborhood of singular point $n \in N^{2 n+1}$;
2) $W(x)$ has finite number of zero points and such zero points belong to $N^{2 n+1} \backslash \partial N^{2 n+1}$;
3) $W(x)$ on the boundary of the manifold $N^{2 n+1}$ is pointed out to the manifold $N^{2 n+1}$.

We must show that so defined index at the singular point $n \in N^{2 n+1}$ does not depend on the choice of the vector field $W(x)$.

We prove the following lemma.

Lemma 2.2. Let $N^{2 n+1}$ be a smooth closed manifold and let $V(x)$ and $W(x)$ be smooth vector fields on $N^{2 n+1} \times[0,1)$ such that:

1) the vector field $W(x)$ coincides with the vector field $V(x)$ on $N^{2 n+1} \times[1-\varepsilon, 1)$, where $0<\varepsilon<1$;
2) vector fields $V(x)$ and $W(x)$ have finite number of zeros;
3) vector fields $V(x)$ and $W(x)$ are not zero on the boundary $N^{2 n+1} \times 0$ of the manifold $N^{2 n+1} \times[0,1)$ and pointed out to the manifold $N^{2 n+1} \times[0,1)$.

Let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{t} be zeros of the vector fields $V(x)$ and $W(x)$ respectively. Then

$$
\sum_{i=1}^{s} \operatorname{ind}\left(x_{i}\right)_{V(x)}=\sum_{i=1}^{t} \operatorname{ind}\left(y_{i}\right)_{W(x)}
$$

Proposition 2.1. Let $N^{2 n+1}$ be a cone over $C\left(\mathbb{C} P^{n}\right)$ and $V(x)$ is an almost smooth vector field on $N^{2 n+1}$ such that the singular point $n \in N^{2 n+1}$ is an isolated zero of $V(x)$. The index of the zero n of the vector field $V(x)$ in Definition 2.1 does not depend of the almost smooth vector field $W(x)$.

Theorem 2.1. Let $M^{2 n+1}$ be a $C\left(\mathbb{C} P^{n}\right)$-singular manifold with singular points m_{1}, \ldots, m_{k}. Suppose that on $M^{2 n+1}$ there exists an almost smooth vector field $V(x)$ with finite number of zeros $m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{l}$. Then

$$
\chi\left(M^{2 n+1}\right)=\sum_{i=1}^{l} \operatorname{ind}\left(x_{i}\right)+\sum_{i=1}^{k} \operatorname{ind}\left(m_{i}\right)
$$

1. Asimov D. Round handle and non-singular Morse - Smale flows // Ann. Math. - 1975. - 102, № 1. - P. $41-54$.
2. Bott R. Lecture on Morse theory, old and new // Bull. Amer. Math. Soc. - 1982. - 7, № 2. - P. $331-358$.
3. Kogan M. Existence of perfect Morse functions on spaces with semifree circle action // J. Sympl. Geometry. - 2003. 1, № 3. - P. 829-850.
4. Milnor D. Mathematics notes lectures on the h-cobordism theorem. - Princeton Univ. Press, 1965. - 122 p .
5. Brasselet Jean-Paul, Seade Jose, Suwa Tatsuo. Vector fields on singular varieties // Lect. Notes Math. - 1987. 255 p.
6. Repovs D., Sharko V. S^{1}-Bott functions on manifolds // Ukr. Math. J. - 2012. - 64, № 12. - P. 1685-1698.
7. Sharko V. Functions on manifolds. Algebraic and topology aspects. - Providence, Rhode Island: Amer. Math. Soc., 1993. - 131. - 193 p.
