UDC 514.763.22

Libardi Alice Kimie Miwa (I. G. C. E-Unesp-Univ. Estadual Paulista, Brazil), Vladimir Sharko (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

FUNCTIONS AND VECTOR FIELDS ON $C(\mathbb{C}P^n)$ -SINGULAR MANIFOLDS ФУНКЦІЇ І ВЕКТОРНІ ПОЛЯ НА $C(\mathbb{C}P^n)$ -СИНГУЛЯРНИХ МНОГОВИДАХ

Let M^{2n+1} be a $C(\mathbb{C}P^n)$ -singular manifold. We study functions and vector fields with isolated singularities on M^{2n+1} . A $C(\mathbb{C}P^n)$ -singular manifold is obtained from a smooth manifold M^{2n+1} with boundary which is a disjoint union of complex projective spaces $\mathbb{C}P^n \cup \mathbb{C}P^n \cup \ldots \cup \mathbb{C}P^n$ and subsequent capture of the cone over each component of the boundary. Let M^{2n+1} be a compact $C(\mathbb{C}P^n)$ -singular manifold with k singular points. The Euler characteristic of M^{2n+1} is equal to $\chi(M^{2n+1}) = \frac{k(1-n)}{2}$. Let M^{2n+1} be a $C(\mathbb{C}P^n)$ -singular manifold with singular points m_1, \ldots, m_k . Suppose that, on M^{2n+1} , there exists an almost smooth vector field V(x) with finite number of zeros $m_1, \ldots, m_k, x_1, \ldots, x_l$. Then $\chi(M^{2n+1}) = \sum_{i=1}^l \operatorname{ind}(x_i) + \sum_{i=1}^k \operatorname{ind}(m_i)$.

Нехай $M^{2n+1} - C(\mathbb{C}P^n)$ -сингулярний многовид. Ми вивчаємо функції і векторні поля з ізольованими сингулярностями на M^{2n+1} . $C(\mathbb{C}P^n)$ -сингулярний многовид виникає з гладкого многовиду M^{2n+1} з краєм, який є незв'язним об'єднанням комплексного проективного простору $\mathbb{C}P^n \cup \mathbb{C}P^n \cup \dots \cup \mathbb{C}P^n$ і послідовності конусів над кожною компонентою краю. Нехай M^{2n+1} – компактний $C(\mathbb{C}P^n)$ -сингулярний многовид із k сингулярними точками. Ейлерова характеристика M^{2n+1} дорівнює $\chi(M^{2n+1}) = \frac{k(1-n)}{2}$. Нехай $M^{2n+1} - C(\mathbb{C}P^n)$ -сингулярний многовид із сингулярними точками m_1, \dots, m_k . Припустимо, що на M^{2n+1} існує майже гладке векторне поле V(x) із скінченним числом нулів $m_1, \dots, m_k, x_1, \dots, x_l$. Тоді $\chi(M^{2n+1}) = \sum_{i=1}^l \operatorname{ind}(x_i) + \sum_{i=1}^k \operatorname{ind}(m_i)$.

1. The functions on $C(\mathbb{C}P^n)$ -manifolds. Let M^{2n+2} be a closed smooth manifold with semifree S^1 -action

$$\theta: S^1 \times M^{2n+2} \to M^{2n+2}$$

which has only isolated fixed points. It is known that every isolated fixed point m of a semifree S^1 -action has the following important property: near such a point the action is equivalent to a certain linear $S^1 = SO(2)$ -action on \mathbb{R}^{2n+2} . More precisely, for every isolated fixed point m there exist an open invariant neighborhood U of m and a diffeomorphism h from U to an open unit disk D^{2n+2} in \mathbb{C}^{n+1} centered at origin such that h is conjugate to the given S^1 -action on U to the S^1 -action on \mathbb{C}^n with weight $(1, \ldots, 1)$. We will use both complex, (z_1, \ldots, z_{n+1}) , and real coordinates $(x_1, y_1, \ldots, x_{n+1}, y_{n+1})$ on $\mathbb{C}^n = \mathbb{R}^{2n+2}$ with $z_j = x_j + \sqrt{-1}y_j$. The pair (U, h) will be called a standard chart at the point m.

Let M^{2n+2} be a manifold with finite many fixed points m_1, \ldots, m_{2k} . Denote by

$$\pi\colon M^{2n+2}\to M^{2n+2}/S^1$$

the canonical map. The set of orbits $N^{2n+1} = M^{2n+2}/S^1$ is a manifold with singular points $\pi(m_1), \ldots, \pi(m_{2k})$. It is clear that a neighborhood of any singular point is a cone over $\mathbb{C}P^n$.

In general, a $C(\mathbb{C}P^n)$ -singular manifold is obtained from a smooth manifold M^{2n+1} with boundary which is a disjoint union of complex projective spaces $\mathbb{C}P^n \cup \mathbb{C}P^n \cup \ldots \cup \mathbb{C}P^n$ and subsequent capture of the cone over each component of the boundary. For this type of $C(\mathbb{C}P^n)$ -singular manifold parity of the number of singular points depends on parity of the number n.

Lemma 1.1. Let M^{2n+1} be a compact $C(\mathbb{C}P^n)$ -singular manifold with k singular points. The *Euler characteristic of* M^{2n+1} *is equal* $\chi(M^{2n+1}) = \frac{k(1-n)}{2}$. *Remark* 1.1. For *n* even, the complex projective space $\mathbb{C}P^n$ can not be the boundary of a smooth

compact manifold X^{2n+1} .

Lemma 1.2. Let M^{2n+1} be a compact $C(\mathbb{C}P^n)$ -singular manifold with k singular points. If n is an odd number then the number k of singular points can be any number. If n is an even number the number k of singular points is an even number.

Since $C(\mathbb{C}P^n)$ -singular manifolds are topological spaces we can consider continuous functions on them and because of the nature of $C(\mathbb{C}P^n)$ -singular manifolds it is appropriate to consider continuous functions which are smooth on the complement of the set of singular points. Also it makes sense to study such functions on a $C(\mathbb{C}P^n)$ -singular manifold whose singular points of the manifold are critical points of these functions. More precisely, this means the following.

Let M^{2n+1} be a compact $C(\mathbb{C}P^n)$ -singular manifold M^{2n+1} with singular points m_1, \ldots, m_k and $U(m_1), \ldots, U(m_k)$ the respective closed neighborhood homeomorphic to the cone over $\mathbb{C}P^n$. For any neighborhood $U(m_i)$ there is a disc D_i^{2n+2} and a semifree action of the circle

$$\theta \colon D_i^{2n+2} \times S^1 \to D_i^{2n+2}$$

such that performed

$$D_i^{2n+2} \xrightarrow{\pi} D_i^{2n+2} / S^1 \approx U(m_i).$$

We introduce in the disc D_i^{2n+2} complex coordinates z_1, \ldots, z_n and recall that the circle is the set of complex numbers of modulus one. We assume that the action of the circle on the disc is defined by the formula

$$\theta(z_1,\ldots,z_n)=e^{it}z_1,\ldots,e^{it}z_n.$$

Consider an arbitrary S¹-invariant smooth function $f: D_i^{2n+2} \to \mathbb{R}$ with a single critical point in the center of the disk. For example, let f be given by

$$f = -|z_1|^2 - \ldots - |z_{\lambda_i}|^2 + |z_{\lambda_i+1}|^2 + \ldots + |z_n|^2$$

Notice that the index of the nondegenerate critical point $0 \in D_i^{2n+2}$ of such function f is always even.

Let $\pi_*(f): U(m_i) \to \mathbb{R}$ be the continuous function induced on $U(m_i)$ by the natural map

$$\pi\colon D_i^{2n+2}\to D_i^{2n+2}/S^1\approx U(m_i)$$

It is clear that the function $\pi_*(f)$ is smooth on the manifold $U(m_i) \setminus m_i$.

Definition 1.1. The function $\pi_*(f): U(m_i) \to \mathbb{R}$ is called almost smooth function on the neighborhood $U(m_i)$ with a singularity at the point m_i .

If f is given by

$$f = -|z_1|^2 - \ldots - |z_{\lambda_i}|^2 + |z_{\lambda_i+1}|^2 + \ldots + |z_n|^2$$

then the function $\pi_*(f): U(m_i) \to \mathbb{R}$ is called almost Morse function on the neighborhood $U(m_i)$.

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3

Definition 1.2. The function $f: M^{2n+1} \to \mathbb{R}$ is called almost Morse function on the $C(\mathbb{C}P^n)$ singular manifold M^{2n+1} if f is an almost Morse function in the neighborhoods $U(m_i)$ of singular
points m_i of M^{2n+1} and f is a Morse function on a smooth manifold $M^{2n+1} \setminus \bigcup_i m_i$.

From Definition 1.1 follows that on any compact $C(\mathbb{C}P^n)$ -singular manifold M^{2n+1} with singular points m_1, \ldots, m_k there exists an almost Morse function [1, 2].

The number of critical points of an almost Morse function is dependent of the structure of such function in the neighborhood of singular points of the $C(\mathbb{C}P^n)$ -singular manifold. Let us examine this issue in more detail.

Definition 1.3. Let f be an almost Morse function on the $C(\mathbb{C}P^n)$ -singular manifold M^{2n+1} with singular points m_1, \ldots, m_k . Denote by

$$\pi_*(f_i) \colon U(m_i) \to \mathbb{R}$$

its almost Morse function in the neighborhood $U(m_i)$ of singular point m_i of M^{2n+1} . The state of the almost Morse function f is the collection of all almost Morse functions in the neighborhood $U(m_i) \pi_*(f_1), \pi_*(f_2), \ldots, \pi_*(f_k)$, which we will be denoted by St(f).

Consider the case where M^{2n+1} , $2n \ge 5$, is a compact simply connected $C(\mathbb{C}P^n)$ -singular manifold.

Recall that for a simply connected smooth manifold we can calculate the Morse number via its homology groups. More precisely, if we consider a closed manifold N^n and Morse functions $f: N^n \to \mathbb{R}$ then to count the Morse number for the class of such functions we can use the homology group $H_j(N^n, \mathbb{Z})$.

If we consider a compact manifold N^n with boundary $\partial N^n = \partial_1 N^n \bigcup \partial_2 N^n$ and Morse functions $f: (N^n, \partial_1 N^n, \partial_2 N^n) \to \mathbb{R}$ such that $f^{-1}(0) = \partial_1 N^n$ and $f^{-1}(1) = \partial_2 N^n$ then to calculate the Morse numbers for this class of functions we use the group $H_j(N^n, \partial_1 N^n, \mathbb{Z})$ [6].

Let M^{2n+1} , $2n \ge 5$, be a compact simply connected $C(\mathbb{C}P^n)$ -singular manifold with singular points m_1, \ldots, m_k . Let σ be a permutation of $(1, 2, \ldots, k)$. We split the singular point m_1, \ldots, m_k in two disjoint sets A and B consisting of s and k - s points, respectively:

$$A = m_{\sigma(1)}, m_{\sigma(2)}, \dots, m_{\sigma(s)}, \qquad B = m_{\sigma(s+1)}, m_{\sigma(s+2)}, \dots, m_{\sigma(k)}.$$

The case when A or B is empty set is not excluded. Consider the homology groups

$$H_j(M^{2n+1} \setminus B, A, \mathbb{Z}).$$

Remark 1.2. If τ is another permutation of $(1, 2, \ldots, k)$ and

$$A = m_{\tau(1)}, m_{\tau(2)}, \dots, m_{\tau(s)}, \qquad B = m_{\tau(s+1)}, m_{\tau(s+2)}, \dots, m_{\tau(k)}$$

is another splitting of the singular points m_1, \ldots, m_k in two disjoint sets \tilde{A} and \tilde{B} then, in general,

$$H_j(M^{2n+1} \setminus B, A, \mathbb{Z}) \neq H_j(M^{2n+1} \setminus \tilde{B}, \tilde{A}, \mathbb{Z}).$$

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3

Theorem 1.1. Let M^{2n+1} , $2n \ge 5$, be a compact simply connected $C(\mathbb{C}P^n)$ -singular manifold with singular points m_1, \ldots, m_k . Let σ be a permutation of $(1, 2, \ldots, k)$ and let A (with s points) and B (with k - s points) be the split of the singular points m_1, \ldots, m_k in the two disjoint sets:

 $A = m_{\sigma(1)}, m_{\sigma(2)}, \dots, m_{\sigma(s)}, \qquad B = m_{\sigma(s+1)}, m_{\sigma(s+2)}, \dots, m_{\sigma(k)}.$

We fix a collection of almost Morse functions

$$St = \underbrace{\pi_*(f_1), \pi_*(f_1), \dots, \pi_*(f_1)}_{s}, \underbrace{\pi_*(f_2), \pi_*(f_2), \dots, \pi_*(f_2)}_{k-s}$$

in the neighborhoods $U(m_{\sigma(1)}), U(m_{\sigma(2)}), \ldots, U(m_{\sigma(s)}), U(m_{\sigma(s+1)}), \ldots, U(m_{\sigma(k)})$ respectively, where

$$f_1 = \sum_{i=1}^{2n} |z_i|^2, \qquad f_2 = 1 - \sum_{i=1}^{2n} |z_i|^2.$$

Then

 $\mathcal{M}_{\lambda}(M^{2n+1}, St) = \mu \left(H_{\lambda}(M^{2n+1} \setminus B, A, \mathbb{Z}) \right) + \mu \left(\operatorname{Tors} H_{\lambda-1}(M^{2n+1} \setminus B, A, \mathbb{Z}) \right),$

where $\mu(H)$ is the minimal number of generators of the group H.

2. Vector fields on $C(\mathbb{C}P^n)$ -manifolds. Let V(x) be a smooth vector field on a smooth compact manifold N^{2n+1} with boundary with a finite number of points $C(\mathbb{C}P^n)$ in the interior of the manifold N^{2n+1} where V(x) are zero. Suppose that the restriction of the field V(x) on the boundary ∂N^{2n+1} of the manifold N^{2n+1} is outwardly directed to the manifold N^{2n+1} . Recall the definition of a index zero of vector field V(x) on a smooth manifold N^{2n+1} .

Definition 2.1. Let N^{2n+1} be a cone over $C(\mathbb{C}P^n)$ and let V(x) be an almost smooth vector field on N^{2n+1} such that the singular point $n \in N^{2n+1}$ is an isolated zero point of V(x), the field V(x) has finite number of zeros n_1, \ldots, n_l and such zeros points belong to $N^{2n+1} \setminus \partial N^{2n+1}$ and V(x) on the boundary of the manifold N^{2n+1} is pointed out to the manifold N^{2n+1} . The index $ind(n)_{V(x)}$ of the vector field V(x) at the point n is defined as the

$$\operatorname{ind}(n)_{V(x)} = \chi(N^{2n+1}) - \sum_{i=1}^{l} \operatorname{ind}(n_i)_{V(x)}$$

For definition of the index at a singular point of an arbitrary vector field on cone over $C(\mathbb{C}P^n)$ we will need to build additional. First we prove the following lemma.

Lemma 2.1. Let N^{2n+1} be a cone over $C(\mathbb{C}P^n)$ and let V(x) be an almost smooth vector field on N^{2n+1} such that the singular point $n \in N^{2n+1}$ is an isolated zero point of V(x). Then on singular manifold N^{2n+1} there exists an almost smooth vector field W(x) such that:

1) W(x) coincides with the field V(x) in some neighborhood of singular point $n \in N^{2n+1}$;

2) W(x) has finite number of zero points and such zero points belong to $N^{2n+1} \setminus \partial N^{2n+1}$;

3) W(x) on the boundary of the manifold N^{2n+1} is pointed out to the manifold N^{2n+1} .

We must show that so defined index at the singular point $n \in N^{2n+1}$ does not depend on the choice of the vector field W(x).

We prove the following lemma.

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 3

Lemma 2.2. Let N^{2n+1} be a smooth closed manifold and let V(x) and W(x) be smooth vector fields on $N^{2n+1} \times [0,1)$ such that:

1) the vector field W(x) coincides with the vector field V(x) on $N^{2n+1} \times [1 - \varepsilon, 1)$, where $0 < \varepsilon < 1$;

2) vector fields V(x) and W(x) have finite number of zeros;

3) vector fields V(x) and W(x) are not zero on the boundary $N^{2n+1} \times 0$ of the manifold $N^{2n+1} \times [0,1)$ and pointed out to the manifold $N^{2n+1} \times [0,1)$.

Let x_1, \ldots, x_s and y_1, \ldots, y_t be zeros of the vector fields V(x) and W(x) respectively. Then

$$\sum_{i=1}^{s} \operatorname{ind}(x_i)_{V(x)} = \sum_{i=1}^{t} \operatorname{ind}(y_i)_{W(x)}.$$

Proposition 2.1. Let N^{2n+1} be a cone over $C(\mathbb{C}P^n)$ and V(x) is an almost smooth vector field on N^{2n+1} such that the singular point $n \in N^{2n+1}$ is an isolated zero of V(x). The index of the zero n of the vector field V(x) in Definition 2.1 does not depend of the almost smooth vector field W(x).

Theorem 2.1. Let M^{2n+1} be a $C(\mathbb{C}P^n)$ -singular manifold with singular points m_1, \ldots, m_k . Suppose that on M^{2n+1} there exists an almost smooth vector field V(x) with finite number of zeros $m_1, \ldots, m_k, x_1, \ldots, x_k$. Then

$$\chi(M^{2n+1}) = \sum_{i=1}^{l} \operatorname{ind}(x_i) + \sum_{i=1}^{k} \operatorname{ind}(m_i).$$

- 1. Asimov D. Round handle and non-singular Morse Smale flows // Ann. Math. 1975. 102, № 1. P. 41-54.
- 2. Bott R. Lecture on Morse theory, old and new // Bull. Amer. Math. Soc. 1982. 7, № 2. P. 331-358.
- Kogan M. Existence of perfect Morse functions on spaces with semifree circle action // J. Sympl. Geometry. 2003. 1, № 3. – P. 829–850.
- 4. Milnor D. Mathematics notes lectures on the h-cobordism theorem. Princeton Univ. Press, 1965. 122 p.
- Brasselet Jean-Paul, Seade Jose, Suwa Tatsuo. Vector fields on singular varieties // Lect. Notes Math. 1987. 255 p.
- 6. *Repovs D., Sharko V. S*¹-Bott functions on manifolds // Ukr. Math. J. 2012. **64**, № 12. P. 1685–1698.
- Sharko V. Functions on manifolds. Algebraic and topology aspects. Providence, Rhode Island: Amer. Math. Soc., 1993. – 131. – 193 p.

Received 20.12.13