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ON STATISTICAL CONVERGENCE OF METRIC VALUED SEQUENCES

ПРО СТАТИСТИЧНУ ЗБIЖНIСТЬ
МЕТРИЧНОЗНАЧНИХ ПОСЛIДОВНОСТЕЙ

We study the conditions on the density of a subsequence of a statistical convergent sequence under which this subsequence
is also statistical convergent. Some sufficient conditions of this type and almost converse necessary conditions are obtained
in the setting of general metric spaces.

Вивчаються умови на щiльнiсть пiдпослiдовностi статистично збiжної послiдовностi, за яких ця пiдпослiдовнiсть
також є статистично збiжною. Деякi достатнi умови такого типу та майже оберненi необхiднi умови отримано в
постановцi загальних метричних просторiв.

1. Introduction and definitions. Analysis on metric spaces has rapidly developed in present time
(see [15, 18]). This development is usually based on some generalizations of the differentiability.
The generalizations of the differentiation involve linear structure by means of embeddings of metric
spaces in a suitable normed space or by use of geodesics.

A new intrinsic approach to the introduction of the smooth structure for general metric space was
proposed by O. Martio and O. Dovgoshey in [10] (see also [1, 3, 4, 7 – 9]). The approach in [10] is
completely based on the convergence of the metric valued sequences but it is not apriori clear that
the usual convergence is the best possible way to obtain the smooth structure for arbitrary metric
space.

The problem of convergence in different ways of a real (or complex) valued divergent sequence
goes back to the beginning of nineteenth century. A lot of different convergence methods were defined
(Cesaro, Nörlund, Weighted Mean, Abel et al.) and applied to many branches of mathematics. Almost
all convergence methods depend on the algebraic structure of the space. It is clear that metric space
does not have the algebraic structure in general. However, the notion of statistical convergence is
easy to extend for arbitrary metric spaces and this provides a general framework for summability
in such spaces [13, 21]. Thus, the studies of statistical convergence give a natural foundation for
upbuilding of different tangent spaces to general metric spaces.

The construction of tangent spaces in [3, 4, 7 – 10] is based on the following fundamental fact:
“If (xn) is a convergent sequence in a metric space, then each subsequence (xn(k)) of (xn) is
also convergent”. Thus the convergence of subsequence (xn(k)) does not depend on the choice of
(xn(k)). Unfortunately it is not the case for the statistical convergent sequences. The applications
of the statistical convergence to the infinitesimal geometry of metric spaces should be based on the
complete understanding of the structure of statistical convergent subsequences.

We study the conditions on the density of a subsequence of a statistical convergent sequence
under which this subsequence is also statistical convergent. Some sufficient conditions of such type
and “almost converse” them necessary conditions are obtained in the setting of general metric spaces.

Let us remember the main definitions. Let (X, d) be a metric space. For convenience denote by
X̃ the set of all sequences of points from X.
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Definition 1.1. A sequence (xn) ∈ X̃ is called convergent to a point a ∈ X, limn→∞ xn = a,

if for every ε > 0 there is an n0 = n0(ε) ∈ N such that n > n0 implies d(xn, a) < ε.

Definition 1.2. A metric valued sequence x̃ = (xn) ∈ X̃ is d-statistical convergent to a ∈ X if

lim
n→∞

1

n

∣∣ {k : k ≤ n, d(xk, a) ≥ ε} ∣∣ = 0

holds for every ε > 0.

Here and later |B| denotes the number of elements of a set B.

The idea of statistical convergence goes back to Zygmund [22]. It was formally introduced by
Steinhous [20] and Fast [11]. In recent years, it has become an active research for mathematicians
(see, for example, [5, 6, 12 – 14, 17]).

Definition 1.3 [11] (Dense subset of N). A set K ⊆ N is called a statistical dense subset of N if

lim
n→∞

1

n

∣∣K(n)
∣∣ = 1,

where K(n) = {k ∈ K : k ≤ n}.

It may be proved that the intersection of two dense subsets is dense. Moreover it is clear that the
supersets of dense sets are also dense. Hence the family of all dense sets forms a filter on N. The d
-statistical convergence is simply the convergence in (X, d) with respect to this filter.

Definition 1.4 (Dense subsequence). If
(
n(k)

)
is an infinite, strictly increasing sequence of

natural numbers and x̃ = (xn) ∈ X̃, write x̃′ = (xn(k)) and Kx̃′ =
{
n(k) : k ∈ N

}
. The sub-

sequence x̃′ is a dense subsequence of x̃ if Kx̃′ is a dense subset of N.

In the next definition we introduce an equivalence relation on the set X̃.

Definition 1.5. Sequences x̃ = (xn) ∈ X̃ and ỹ = (yn) ∈ X̃ are statistical equivalent, x̃ � ỹ, if
there is a statistical dense M ⊆ N such that xn = yn for every n ∈M.

2. Convergent sequences and statistical convergent ones. In this section, some basic results
on d-statistical convergence will be given for an arbitrary metric space. In particular, it is shown that
there is some one-to-one correspondence between metrizable topologies on X and the subsets of X̃
consisting of all statistical convergent sequences.

Let (X, d) be a nonvoid metric space. It is clear that every convergent sequence (xn) ∈ X̃ is also
d-statistical convergent. Moreover, all statistical convergent sequences are convergent if and only if
|X| = 1. Nevertheless, we have the following result.

Theorem 2.1. Let (X, d1) and (X, d2) be two metric spaces with the same underlining set X.
Then the following statements are equivalent:

(i) The set of all d1-statistical convergent sequences coincides the set of all d2-statistical con-
vergent sequences.

(ii) The set of all sequences which are convergent in the space (X, d1) coincides the set of all
sequences which are convergent in the space (X, d2).

(iii) The metrics d1 and d2 induce one and the same topology on X.
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Proof. The equivalence (ii) ⇔ (iii) is well known. Since every statistical convergent sequence
can be obtained by a variation of values of a suitable convergent sequence outside of a statistical
dense set, the implication (ii)⇒ (i) follows.

Suppose now that topologies induced by the metrics d1 and d2 are distinct. Then there exist a
point a ∈ X and ε0 > 0 such that either{

x ∈ X : d1(x, a) < ε0} + {x ∈ X : d2(x, a) < δ
}

(2.1)

for all δ > 0 or {
x ∈ X : d2(x, a) < ε0} + {x ∈ X : d1(x, a) < δ

}
for all δ > 0. We assume, without loss of generality, that (2.1) holds. Then there is a sequence
x̃ = (xn) such that

d2(xn, a) <
1

n
and d1(xn, a) ≥ ε0 (2.2)

for each n ∈ N. Let us define a new sequence ỹ = (yn) ∈ X̃ by the rule

yn =

xn if n is odd,

a if n is even.

This definition and (2.2) imply the equality

lim
n→∞

∣∣{k ∈ N : d1(yk, a) ≥ ε0, k ≤ n}
∣∣

n
=

1

2
. (2.3)

It is clear that the sequence ỹ is d2-statistical convergent to a. If statement (i) holds, then ỹ is
also d1-statistical convergent. Using Theorem 3.1 (the proof of Theorem 3.1 does not depend on
Theorem 2.1, see Section 3 of the paper) we obtain that ỹ is d1-statistically convergent to the same
a. Consequently we have

lim
n→∞

∣∣{k ∈ N : d1(yk, a) ≥ ε0, k ≤ n}
∣∣

n
= 0,

contrary to (2.3) The implication (i)⇒ (iii) follows.
Theorem 2.1 is proved.
The next simple lemma gives us a tool for a reduction of some questions related to the d-statistical

convergence to the case of the statistical convergence in R.
Lemma 2.1. Let (X, d) be a metric space, a ∈ X and x̃ = (xn) ∈ X̃. Then x̃ is d-statistical

convergent to a in X if and only if the sequence
(
d(xn, a)

)
is statistical convergent to 0 in R.

The proof follows directly from the definitions.
Theorem 2.2. Let (X, d) be a metric space, a ∈ X and let x̃ = (xn) ∈ X̃ be a d-statistically

convergent to a sequence. There is ỹ = (yn) ∈ X̃ such that ỹ � x̃ and ỹ is convergent to a.
Proof. If X = R and d(x, y) = |x − y| for all x, y ∈ X, then the theorem is known (see

Theorem A in [14] or Lemma 1.1 in [17]). Now let (X, d) be an arbitrary metric space. By Lemma 2.1(
d(xn, a)

)
is statistically convergent to 0. Hence there is a subsequence

(
d(xn(k), a)

)
of the sequence(

d(xn, a)
)

such that limk→∞ d(xn(k), a) = 0 and the set K =
{
n(k) : k ∈ N

}
is a dense subset of

N. Define the sequence ỹ = (yn) ∈ X̃ as
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yn =

xn if n ∈ K,

a if n ∈ N \K.

It is easy to see that ỹ � x̃ and limn→∞ yn = a.

Theorem 2.2 is proved.
3. Statistical convergence of sequences and their subsequences. If a given sequence is d-

statistical convergent it is natural to ask how we can check that its subsequence is d-statistical
convergent to the same limit.

Theorem 3.1. Let (X, d) be a metric space, x̃ = (xn) ∈ X̃ and let x̃′ = (xn(k)) be a subse-
quence of x̃ such that

lim inf
n→∞

|Kx̃′(n)|
n

> 0.

If x̃ is d-statistical convergent to a ∈ X, then x̃′ is also d-statistical convergent to this a.
Proof. Suppose that (xn) is d-statistical convergent to a. It is clear that{

n(k) : n(k) ≤ n, d(xn(k), a) ≥ ε
}
⊆
{
m : m ≤ n, d(xm, a) ≥ ε

}
for all n. Consequently we have

1∣∣Kx̃′(n)
∣∣ ∣∣{n(k) : n(k) ≤ n, d(xn(k), a) ≥ ε

}∣∣ ≤ 1∣∣Kx̃′(n)
∣∣ ∣∣{m : m ≤ n, d(xm, a) ≥ ε

}∣∣. (3.1)

The sequence x̃ = (xn(k)) is d-statistical convergent if we obtain

lim sup
n→∞

∣∣n(k) : n(k) ≤ n, d(xn(k), a) ≥ ε∣∣∣∣Kx̃′(n)
∣∣ = 0

for every ε > 0. The last limit relation holds if

lim sup
n→∞

∣∣{m : m ≤ n, d(xm, a) ≥ ε}
∣∣∣∣Kx̃′(n)

∣∣ = 0. (3.2)

To prove (3.2) we can use the inequality

lim inf
n→∞

yn lim sup
n→∞

zn ≤ lim sup
n→∞

ynzn (3.3)

which holds for all sequences of nonnegative real numbers with 0 6= lim infn→∞ yn 6= ∞ (see, for
example, [2]). Putting in (3.3)

yn =

∣∣Kx̃′(n)
∣∣

n
and zn =

∣∣{m : m ≤ n, d(xm, a) ≥ ε}
∣∣∣∣Kx̃′(n)

∣∣
we see that

ynzn =

∣∣{m : m ≤ n, d(xm, a) ≥ ε}
∣∣

n
.

Hence we get

lim inf
n→∞

∣∣Kx̃′(n)
∣∣

n
lim sup
n→∞

∣∣{m : m ≤ n, d(xm, a) ≥ ε}
∣∣∣∣Kx̃′(n)

∣∣ ≤ lim sup
n→∞

∣∣{m : m ≤ n, d(xm, a) ≥ ε}
∣∣

n
.

The last inequality implies (3.2) because (xn) is d-statistical convergent.
Theorem 3.1 is proved.
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Theorem 3.2. Let (X, d) be a metric space and let x̃ ∈ X̃. The following statements are equi-
valent:

(i) The sequence x̃ is d-statistical convergent.
(ii) Every subsequence x̃′ of x̃ with

lim inf
n→∞

∣∣Kx̃′(n)
∣∣

n
> 0

is d-statistical convergent.
(iii) Every dense subsequence x̃′ of x̃ is d-statistical convergent.
Proof. The implication (i)⇒ (ii) was proved in Theorem 3.1. Since every dense subsequence x̃′

of x̃ satisfies the inequality

lim inf
n→∞

∣∣Kx̃′(n)
∣∣

n
> 0,

we have (ii)⇒ (iii). The implication (iii)⇒ (i) holds because x̃ is a dense subsequence of it-self.
Theorem 3.2 is proved.
Lemma 3.1. Let (X, d) be a metric space with |X| ≥ 2, let x̃ = (xn) ∈ X̃ and let x̃′ =

(
xn(k)

)
be an infinite subsequence of x̃ such that

lim sup
n→∞

∣∣Kx̃′(n)
∣∣

n
= 0. (3.4)

There are a sequence ỹ ∈ X̃ and a subsequence ỹ′ of ỹ such that: x̃ � ỹ and Kỹ′ = Kx̃′ and ỹ′ is
not d-statistical convergent.

Proof. Let a and b be two distinct points of X. Define the sequence ỹ = (yn) ∈ X̃ by the rule

yn =


xn if n ∈ N \Kx̃′ ,

a if n = n(k) ∈ Kx̃′ and k is odd,

b if n = n(k) ∈ Kx̃′ and k is even.

(3.5)

The set N \Kx̃′ is a statistical dense subset of N. Indeed, the equality

n =
∣∣{m ∈ Kx̃′ : m ≤ n}

∣∣+ ∣∣{m ∈ N \Kx̃′ : m ≤ n}
∣∣

holds for each n ∈ N. It implies the inequality

lim inf
n→∞

∣∣{m ∈ N \Kx̃′ : m ≤ n}
∣∣

n
≥ 1− lim sup

n→∞

∣∣{m ∈ Kx̃′ : m ≤ n}
∣∣

n
. (3.6)

Using (3.4) we obtain

1 ≤ lim inf
n→∞

∣∣{m ∈ N \Kx̃′ : m ≤ n}
∣∣

n
≤ lim sup

n→∞

∣∣{m ∈ N \Kx̃′ : m ≤ n}
∣∣

n
≤ 1.

Consequently,

lim
n→∞

∣∣{m ∈ N \Kx̃′ : m ≤ n}
∣∣

n
= 1. (3.7)

The equivalence x̃ � ỹ follows.
Define the desired subsequence ỹ′ of ỹ as ỹ′ = (yn(k)). It is easy to see that ỹ′ is not d-statistical

convergent.
Lemma 3.1 is proved.
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Lemma 3.2. Let (X, d) be a metric space, a ∈ X, x̃ and ỹ belong to X̃ and let x̃ be d-statistical
convergent to a. If x̃ � ỹ, then ỹ is also d-statistical convergent to a.

Proof. Suppose that ỹ � x̃. Define a subset M of the set N as

(n ∈M)⇔ (xn 6= yn).

Then, by Definition 1.5, N \M is statistical dense. It implies the equality

lim
n→∞

∣∣{m ∈M : m ≤ n}
∣∣

n
= 0. (3.8)

Let ε be a strictly positive number. It follows directly from the definition of the set M that the
inclusion{

m ∈ N : m ≤ n, d(ym, a) ≥ ε
}
⊆
{
m ∈M : m ≤ n

}
∪
{
m ∈ N : m ≤ n, d(xm, a) ≥ ε

}
(3.9)

holds for each n ∈ N. Using this inclusion and equality (3.8) we obtain

lim sup
n→∞

∣∣{m ∈ N : m ≤ n, d(ym, a) ≥ ε}
∣∣

n
≤

≤ lim sup
n→∞

∣∣{m ∈M : m ≤ n}
∣∣

n
+ lim sup

n→∞

∣∣{m ∈ N : m ≤ n, d(xm, a) ≥ ε}
∣∣

n
=

= lim sup
n→∞

∣∣{m ∈ N : m ≤ n, d(xm, a) ≥ ε}
∣∣

n
.

Since x̃ is d-statistical convergent to a we have

lim sup
n→∞

∣∣{m ∈ N : m ≤ n, d(xm, a) ≥ ε}
∣∣

n
= 0

for every ε > 0. Consequently the inequality

lim sup
n→∞

∣∣{m ∈ N : m ≤ n, d(ym, a) ≥ ε}
∣∣

n
≤ 0 (3.10)

holds for every ε > 0. Using (3.10) we get

0 ≤ lim inf
n→∞

∣∣{m ∈ N : m ≤ n, d(ym, a) ≥ ε}
∣∣

n
≤ lim sup

n→∞

∣∣{m ∈ N : m ≤ n, d(ym, a) ≥ ε}
∣∣

n
≤ 0.

Hence the limit relation

lim
n→∞

∣∣{m ∈ N : m ≤ n, d(ym, a) ≥ ε}
∣∣

n
= 0

holds. The last limit relation holds for every ε > 0 if and only if ỹ is d-statistical convergent to a.
Lemma 3.2 is proved.
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Theorem 3.3. Let (X, d) be a metric space with |X| ≥ 2, a ∈ X, and let x̃ ∈ X̃ be a d-
statistical convergent to a. Then for every infinite subsequence x̃′ of x̃ with

lim sup
n→∞

∣∣Kx̃′(n)
∣∣

n
= 0

there are a sequence ỹ ∈ X̃ and a subsequence ỹ′ of ỹ such that:

(i) ỹ � x̃ and Kx̃′ = Kỹ′ ;

(ii) ỹ is d-statistical convergent to a;

(iii) ỹ′ is not d-statistical convergent.

Proof. By Lemma 3.1 there are ỹ and ỹ′ such that (i) and (iii) holds. To prove (ii) note that
ỹ � x̃ by (i) and x̃ is d-statistical convergent to a. Consequently, by Lemma 3.2, ỹ is also d-statistical
convergent to a.

Theorem 3.3 is proved.
Using this theorem we obtain the following “weak” converse of Theorem 3.1.
Theorem 3.4. Let (X, d) be a metric space with |X| ≥ 2 and let x̃ ∈ X̃ be a d-statistical

convergent sequence. Assume x̃′ is a subsequence of x̃ having the following property: if ỹ � x̃ and
ỹ′ is a subsequence of ỹ such that Kx̃′ = Kỹ′ , then ỹ′ is d-statistical convergent. Then the inequality

lim sup
n→∞

∣∣Kx̃′(n)
∣∣

n
> 0 (3.11)

holds.
Proof. We have either (3.11) or

lim sup
n→∞

∣∣Kx̃′(n)
∣∣

n
= 0.

If the last equality holds then, by Theorem 3.3, there are ỹ and ỹ′ such that ỹ � x̃ Kx̃′ = Kỹ′ and ỹ′

is not d-statistical convergent, contrary to the assumption.
Theorem 3.4 is proved.
Similarly we have a “weak” converse of Theorem 3.3.
Theorem 3.5. Let (X, d) be a metric space, a ∈ X, and let x̃ ∈ X̃ be a d-statistical convergent

to a sequence. Suppose x̃′ =
(
xn(k)

)
is a subsequence of x̃ for which there are ỹ ∈ X̃ and ỹ′ such

that conditions (i) and (iii) of Theorem 3.3 hold. Then we have the equality

lim inf
n→∞

∣∣Kx̃′(n)
∣∣

n
= 0. (3.12)

To prove this result we shall use the next lemma.
Lemma 3.3. Let (X, d) be a metric space, x̃ and ỹ belong to X̃ and let x̃ � ỹ. If K is a subset

of N such that

lim inf
n→∞

∣∣K(n)
∣∣

n
> 0 (3.13)

and if x̃′ =
(
xn(k)

)
and ỹ′ = (yn(k)) are subsequences of x̃ and, respectively, of ỹ such that

Kx̃′ = Kỹ′ = K, then the relation ỹ′ � x̃′ holds.
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Proof. It is sufficient to show that

lim sup
m→∞

∣∣{n(k) ∈ K : xn(k) 6= yn(k), n(k) ≤ m}
∣∣∣∣K(m)

∣∣ = 0. (3.14)

Since the inclusion{
n(k) ∈ K : xn(k) 6= yn(k), n(k) ≤ m} ⊆ {n ∈ N : xn 6= yn, n ≤ m}

holds for each m ∈ N, we have

lim sup
m→∞

∣∣{n(k) ∈ K : xn(k) 6= yn(k), n(k) ≤ m}
∣∣

|K(m)|
≤

≤ lim sup
m→∞

∣∣{n ∈ N : xn 6= yn, n ≤ m}
∣∣∣∣K(m)

∣∣ ≤ lim sup
m→∞

m∣∣K(m)
∣∣ lim sup

m→∞

∣∣{n ∈ N : xn 6= yn, n ≤ m}
∣∣

m
=

= lim sup
m→∞

∣∣{n ∈ N : xn 6= yn, n ≤ m}
∣∣

m

(
lim inf
m→∞

∣∣K(m)
∣∣

m

)−1
. (3.15)

Inequality (3.13) implies that

0 ≤

(
lim inf
m→∞

∣∣K(m)
∣∣

m

)−1
< +∞. (3.16)

Moreover we have

lim sup
m→∞

∣∣{n ∈ N : xn 6= yn, n ≤ m}
∣∣

m
= 0

because x̃ � ỹ. Now (3.14) follows from the last equality, (3.15) and (3.16).
Lemma 3.3 is proved.
Proof of Theorem 3.5. Suppose that

lim inf
n→∞

∣∣Kx̃′(n)
∣∣

n
> 0. (3.17)

Let ỹ ∈ X̃ and let ỹ′ be a subsequence of ỹ such that conditions (i) and (iii) of Theorem 3.3 hold.
Then we have Kx̃′ = Kỹ′ and x̃ � ỹ. It follows from (3.17) and Lemma 3.3 that x̃′ � ỹ′. Moreover,
applying Theorem 3.1, we see that x̃′ is d-statistical convergent to a. Since x̃′ � ỹ′, Lemma 3.2
shows that ỹ′ is also d-statistical convergent to a, contrary to condition (iii) of Theorem 3.3. Hence
equality (3.12) holds.

Theorem 3.5 is proved.
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