UDC 512.5 **Zhu Zhanmin** (Jiaxing Univ., China)

I-n-COHERENT RINGS, *I-n*-SEMIHEREDITARY RINGS AND *I*-REGULAR RINGS

*I-п-*КОГЕРЕНТНІ КІЛЬЦЯ, *I-п-*НАПІВСПАДКОВІ КІЛЬЦЯ ТА *I-*РЕГУЛЯРНІ КІЛЬЦЯ

Let R be a ring, I an ideal of R and n a fixed positive integer. We define and study I-n-injective modules, I-n-flat modules. Moreover, we define and study left I-n-coherent rings, left I-n-semihereditary rings and I-regular rings. By using the concepts of I-n-injectivity and I-n-flatness of modules, we also present some characterizations of left I-n-coherent rings, left I-n-semihereditary rings, and I-regular rings.

Нехай R — кільце, I — ідеал R, а n — фіксоване додатне ціле число. Ми визначаємо та вивчаємо I-n-ін'єктивні модулі та I-n-плоскі модулі. Крім того, визначаємо та вивчаємо ліві I-n-когерентні кільця, ліві I-n-напівспадкові кільця та I-регулярні кільця. За допомогою концепцій I-n-ін'єктивності та I-n-пологості модулів також наводимо деякі характеристики лівих I-n-когерентних кілець, лівих I-n-напівспадкових кілець та I-регулярних кілець.

1. Introduction. Throughout this paper, n is a positive integer, R is an associative ring with identity, I is an ideal of R, J = J(R) is the Jacobson radical of R and all modules considered are unitary.

Recall that a ring R is called left coherent if every finitely generated left ideal of R is finitely presented; a ring R is called left semihereditary if every finitely generated left ideal of R is projective; a ring R is called von Neumann regular (or regular for short) if for any $a \in R$, there exists $b \in R$ such that a = aba. Left coherent rings, left semihereditary rings, von Neumann regular rings and their generalizations have been studied by many authors. For example, a ring R is said to be *left n-coherent* [1] if every *n*-generated left ideal of R is finitely presented; a ring R is said to be *left J-coherent* [8] if every finitely generated left ideal in J(R) is finitely presented; a ring R is said to be *left n-semihereditary* [24, 25] if every *n*-generated left ideal of R is projective; a ring R is said to be *left J-semihereditary* [8] if every finitely generated left ideal of R is projective; a commutative ring R is called an *n-von Neumann regular ring* [14] if every *n*-presented right R-module is projective.

In this article, we extend the concepts of left *n*-coherent rings and left *J*-coherent rings to *left I*-*n*-coherent rings, extend the concepts of left *n*-semihereditary rings and left *J*-semihereditary rings to *left I*-*n*-semihereditary rings, and extend the concept of regular rings to *I*-regular rings, respectively. We call a ring R left *I*-*n*-coherent (resp., left *I*-*n*-semihereditary, *I*-regular) if every finitely generated left ideal in I is finitely presented (resp., projective, a direct summand of $_RR$). Left *I*-1-coherent rings and left *I*-1-semihereditary rings are also called left *I*-*P*-coherent rings and left *IPP* rings respectively.

To characterize left *I*-*n*-coherent rings, left *I*-*n*-semihereditary rings and *I*-regular rings, in Sections 2 and 3, *I*-*n*-injective modules and *I*-*n*-flat modules are introduced and studied. *I*-1-injective modules and *I*-1-flat modules are also called *I*-*P*-injective modules and *I*-*P*-flat modules respectively. In Sections 4, 5, and 6, *I*-*n*-coherent rings, *I*-*n*-semihereditary and *I*-regular rings are investigated respectively. It is shown that there are many similarities between *I*-n-coherent rings and coherent rings, *I*-*n*-semihereditary rings, and between *I*-regular rings and regular rings. For instance, we prove that *R* is a left *I*-*n*-coherent ring \Leftrightarrow any direct product of *I*-

n-flat right *R*-modules is *I*-*n*-flat \Leftrightarrow any direct limit of *I*-*n*-injective left *R*-modules is *I*-*n*-injective \Leftrightarrow every right *R*-module has an *I*-*n*-flat preenvelope; *R* is a left *I*-*n*-semihereditary ring \Leftrightarrow *R* is left *I*-*n*-coherent and submodules of *I*-*n*-flat right *R*-modules are *I*-*n*-flat \Leftrightarrow every quotient module of an *I*-*n*-injective left *R*-module is *I*-*n*-injective \Leftrightarrow every left *R*-module has a monic *I*-*n*-injective cover \Leftrightarrow every right *R*-module has an epic *I*-*n*-flat envelope; *R* is an *I*-regular ring \Leftrightarrow every left *R*-module is *I*-*p*-flat \Leftrightarrow *R* is left *IPP* and left *I*-*P*-injective.

For any module M, M^* denotes $\operatorname{Hom}_R(M, R)$, and M^+ denotes $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$, where \mathbb{Q} is the set of rational numbers, and \mathbb{Z} is the set of integers. In general, for a set S, we write S^n for the set of all formal $(1 \times n)$ -matrices whose entries are elements of S, and S_n for the set of all formal $(n \times 1)$ -matrices whose entries are elements of S. Let N be a left R-module, $X \subseteq N_n$ and $A \subseteq R^n$. Then we definite $\mathbf{r}_{N_n}(A) = \{u \in N_n : au = 0 \ \forall a \in A\}$, and $\mathbf{l}_{R^n}(X) = \{a \in R^n : ax = 0 \ \forall x \in X\}$.

2. *I*-*n*-injective modules. Recall that a left *R*-module *M* is called *F*-injective [11] if every *R*-homomorphism from a finitely generated left ideal to *M* extends to a homomorphism of *R* to *M*, a left *R*-module *M* is called *n*-injective [16] if every *R*-homomorphism from an *n*-generated left ideal to *M* extends to a homomorphism of *R* to *M*, 1-injective modules are also called *P*-injective [16], a ring *R* is called left *P*-injective [16] if $_RR$ is *P*-injective. *P*-injective ring and its generalizations have been studied by many authors, for example, see [16, 17, 19, 22, 26]. A left *R*-module *M* is called *J*-injective [8] if every *R*-homomorphism from a finitely generated left ideal in J(R) to *M* extends to a homomorphism of *R* to *M*. We extends the concepts of *n*-injective modules and *J*-injective modules as follows.

Definition 2.1. A left R-module M is called I-n-injective, if every R-homomorphism from an n-generated left ideal in I to M extends to a homomorphism of R to M. A left R-module M is called I-P-injective if it is I-I-injective.

It is easy to see that direct sums and direct summands of *I*-*n*-injective modules are *I*-*n*-injective. A left *R*-module *M* is *n*-injective if and only if *M* is *R*-*n*-injective, a left *R*-module *M* is *J*-injective if and only if *M* is *J*-*n*-injective for every positive integer *n*. Follow [2], a ring *R* is said to be left Soc-injective if every *R*-homomorphism from a semisimple submodule of $_RR$ to *R* extends to *R*. Clearly, if $Soc(_RR)$ is finitely generated, then *R* is left Soc-injective if and only if $_RR$ is $Soc(_RR)$ -*n*injective for every positive integer *n*. We remark that *J*-*P*-injective modules are called *JP*-injective in [22].

Theorem 2.1. Let M be a left R-module. Then the following statements are equivalent:

(1) M is I-n-injective.

(2) $\operatorname{Ext}^{1}(R/T, M) = 0$ for every *n*-generated left ideal T in I.

(3) $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) = \alpha M$ for all $\alpha \in I_n$.

(4) If $x = (m_1, m_2, ..., m_n)' \in M_n$ and $\alpha \in I_n$ satisfy $\mathbf{l}_{R^n}(\alpha) \subseteq \mathbf{l}_{R^n}(x)$, then $x = \alpha y$ for some $y \in M$.

(5) $\mathbf{r}_{M_n}(R^n B \cap \mathbf{l}_{R^n}(\alpha)) = \mathbf{r}_{M_n}(B) + \alpha M$ for all $\alpha \in I_n$ and $B \in R^{n \times n}$.

(6) *M* is *I*-*P*-injective and $r_M(K \cap L) = r_M(K) + r_M(L)$, where *K* and *L* are left ideals in *I* such that K + L is *n*-generated.

(7) *M* is *I*-*P*-injective and $r_M(K \cap L) = r_M(K) + r_M(L)$, where *K* and *L* are left ideals in *I* such that *K* is cyclic and *L* is (n-1)-generated.

(8) For each n-generated left ideal T in I and any $f \in \text{Hom}(T, M)$, if (α, g) is the pushout of (f, i) in the following diagram:

$$\begin{array}{ccc} T & \stackrel{i}{\longrightarrow} & R \\ f \downarrow & & \downarrow^{g} \\ M & \stackrel{\alpha}{\longrightarrow} & P \end{array}$$

where *i* is the inclusion map, then there exists a homomorphism $h: P \to M$ such that $h\alpha = 1_M$.

Proof. (1) \Leftrightarrow (2) and (8) \Rightarrow (1) are clear.

(1) \Rightarrow (3). Always $\alpha M \subseteq \mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha)$. If $x \in \mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha)$, then the mapping $f: \mathbb{R}^n \alpha \to M$; $\beta \alpha \mapsto \beta x$ is a well-defined left R-homomorphism. Since M is I-n-injective and $\mathbb{R}^n \alpha$ is an n-generated left ideal in I, f can be extended to a homomorphism g of R to M. Let g(1) = y, then $x = \alpha y \in \alpha M$. So $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) \subseteq \alpha M$. And thus $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) = \alpha M$.

 $x = \alpha y \in \alpha M$. So $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) \subseteq \alpha M$. And thus $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) = \alpha M$. (3) \Rightarrow (1). Let $T = \sum_{i=1}^{n} Ra_i$ be an *n*-generated left ideal in *I* and *f* be a homomorphism from *T* to *M*. Write $u_i = f(a_i), i = 1, 2, ..., n, u = (u_1, u_2, ..., u_n)', \alpha = (a_1, a_2, ..., a_n)'$, then $u \in \mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha)$. By (3), there exists some $x \in M$ such that $u = \alpha x$. Now we define $g: R \to M$; $r \mapsto rx$, then g is a left *R*-homomorphism which extends *f*.

(3) \Rightarrow (4). If $\mathbf{l}_{R^n}(\alpha) \subseteq \mathbf{l}_{R^n}(x)$, where $\alpha \in I_n$, $x \in M_n$, then $x \in \mathbf{r}_{M_n} \mathbf{l}_{R^n}(x) \subseteq \mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) = \alpha M$ by (3). Thus (4) is proved.

(4) \Rightarrow (5). Let $x \in \mathbf{r}_{M_n}(\mathbb{R}^n B \cap \mathbf{l}_{\mathbb{R}^n}(\alpha))$, then $\mathbf{l}_{\mathbb{R}^n}(B\alpha) \subseteq \mathbf{l}_{\mathbb{R}^n}(Bx)$. By (4), $Bx = B\alpha y$ for some $y \in M$. Hence $x - \alpha y \in \mathbf{r}_{M_n}(B)$, proving that $\mathbf{r}_{M_n}(\mathbb{R}^n B \cap \mathbf{l}_{\mathbb{R}^n}(\alpha)) \subseteq \mathbf{r}_{M_n}(B) + \alpha M$. The other inclusion always holds.

 $(5) \Rightarrow (3)$. By taking B = E in (5).

(1) \Rightarrow (6). Clearly, M is *I*-P-injective and

$$r_M(K) + r_M(L) \subseteq r_M(K \cap L).$$

Conversely, let $x \in r_M(K \cap L)$. Then $f: K + L \to M$ is well defined by f(k+l) = kx for all $k \in K$ and $l \in L$. Since M is I-n-injective, $f = \cdot y$ for some $y \in M$. Hence, for all $k \in K$ and $l \in L$, we have ky = f(k) = kx and ly = f(l) = 0. Thus $x - y \in r_M(K)$ and $y \in r_M(L)$, so $x = (x - y) + y \in r_M(K) + r_M(L)$.

 $(6) \Rightarrow (7)$ is trivial.

 $(7) \Rightarrow (1)$. We proceed by induction on n. If n = 1, then (1) is clearly holds by hypothesis. Suppose n > 1. Let $T = Ra_1 + Ra_2 + \ldots + Ra_n$ be an n-generated left ideal in I, $T_1 = Ra_1$ and $T_2 = Ra_2 + \ldots + Ra_n$. Suppose $f: T \to M$ is a left R-homomorphism. Then $f|_{T_1} = \cdot y_1$ by hypothesis and $f|_{T_2} = \cdot y_2$ by induction hypothesis for some $y_1, y_2 \in R$. Thus $y_1 - y_2 \in r_M(T_1 \cap T_2) = r_M(T_1) + r_M(T_2)$. So $y_1 - y_2 = z_1 + z_2$ for some $z_1 \in r_M(T_1)$ and $z_2 \in r_M(T_2)$. Let $y = y_1 - z_1 = y_2 + z_2$. Then for any $a \in T$, let $a = b_1 + b_2$, $b_1 \in T_1$, $b_2 \in T_2$, we have $b_1z_1 = 0$, $b_2z_2 = 0$. Hence $f(a) = f(b_1) + f(b_2) = b_1y_1 + b_2y_2 = b_1(y_1 - z_1) + b_2(y_2 + z_2) = b_1y + b_2y = ay$. So (1) follows.

(1) \Rightarrow (8). Without loss of generality, we may assume that $P = (M \oplus R)/W$, where $W = \{f(a), -i(a) \mid a \in T\}$, g(r) = (0, r) + W, $\alpha(x) = (x, 0) + W$ for $x \in M$ and $r \in R$. Since M is *I-n*-injective, there is $\varphi \in \text{Hom}_R(R, M)$ such that $\varphi i = f$. Define $h[(x, r) + W] = x + \varphi(r)$ for all $(x, r) + W \in P$. It is easy to check that h is well-defined and $h\alpha = 1_M$.

Theorem 2.1 is proved.

Corollary 2.1. Let M be a left R-module. Then the following statements are equivalent:

- (1) M is n-injective.
- (2) $\operatorname{Ext}^{1}(R/T, M) = 0$ for every n-generated left ideal T.

(3) $\mathbf{r}_{M_n} \mathbf{l}_{R^n}(\alpha) = \alpha M$ for all $\alpha \in R_n$.

(4) If $x = (m_1, m_2, ..., m_n)' \in M_n$ and $\alpha \in R_n$ satisfy $\mathbf{l}_{R^n}(\alpha) \subseteq \mathbf{l}_{R^n}(x)$, then $x = \alpha y$ for some $y \in M$.

(5) $\mathbf{r}_{M_n}(R^n B \cap \mathbf{l}_{R^n}(\alpha)) = \mathbf{r}_{M_n}(B) + \alpha M$ for all $\alpha \in R_n$ and $B \in R^{n \times n}$.

(6) *M* is *P*-injective and $r_M(K \cap L) = r_M(K) + r_M(L)$, where *K* and *L* are left ideals such that K + L is *n*-generated.

(7) *M* is *P*-injective and $r_M(K \cap L) = r_M(K) + r_M(L)$, where *K* and *L* are left ideals such that *K* is cyclic and *L* is (n - 1)-generated.

(8) For each n-generated left ideal T and any $f \in \text{Hom}(T, M)$, if (α, g) is the pushout of (f, i) in the following diagram:

where *i* is the inclusion map, there exists a homomorphism $h: P \to M$ such that $h\alpha = 1_M$.

We note that the equivalence of (1), (3), (6), (7) in Corollary 2.1 appears in [6] (Corollaries 2.5 and 2.10).

Corollary 2.2. Let $\{M_{\alpha}\}_{\alpha \in A}$ be a family of right *R*-modules. Then $\prod_{\alpha \in A} M_{\alpha}$ is *I*-*n*-injective if and only if each M_{α} is *I*-*n*-injective.

Proof. It follows from the isomorphism $\operatorname{Ext}^1(N, \prod_{\alpha \in A} M_\alpha) \cong \prod_{\alpha \in A} \operatorname{Ext}^1(N, M_\alpha).$

Recall that an element $a \in R$ is called *left I-semiregular* [18] if there exists $e^2 = e \in Ra$ such that $a - ae \in I$, and R is called left *I*-semiregular if every element is *I*-semiregular. A ring R is called *semiregular* if R/J(R) is regular and idempotents lift modulo J(R). It is well known that a ring R is semiregular if and only if it is left (equivalently right) *J*-semiregular [19]. Next, we consider a case when *I*-*n*-injective modules are *n*-injective.

Theorem 2.2. Let R be a left I-semiregular ring. Then a left R-module M is n-injective if and only if M is I-n-injective.

Proof. Necessity is clear. To prove sufficiency, let T be an n-generated left ideal and $f: T \to M$ be a left R-homomorphism. Since R is left I-semiregular, by [18] (Theorem 1.2(2)), $R = H \oplus L$, where $H \leq T$ and $T \cap L \subseteq I$. Hence R = T + L, $T = H \oplus (T \cap L)$, and so $T \cap L$ is n-generated. Since M is I-n-injective, there exists a homomorphism $g: R \to M$ such that g(x) = f(x) for all $x \in T \cap L$. Now let $h: R \to M$; $r \mapsto f(t) + g(l)$, where r = t + l, $t \in T$, $l \in L$. Then h is a well-defined left R-homomorphism and h extends f.

Theorem 2.2 is proved.

Corollary **2.3.** *Let R be a left semiregular ring. Then:*

(1) A left R-module M is P-injective if and only if M is JP-injective.

(2) A left R-module M is F-injective if and only if M is J-injective.

Theorem 2.3. Every pure submodule of an *I*-*n*-injective module is *I*-*n*-injective. In particular, every pure submodule of an *n*-injective module is *n*-injective.

Proof. Let N be a pure submodule of an I-n-injective left R-module M. For any n-generated left ideal T in I, we have the exact sequence

 $\operatorname{Hom}(R/T, M) \to \operatorname{Hom}(R/T, M/N) \to \operatorname{Ext}^{1}(R/T, N) \to \operatorname{Ext}^{1}(R/T, M) = 0.$

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6

770

Since R/T is finitely presented and N is pure in M, the sequence $\operatorname{Hom}(R/T, M) \to \operatorname{Hom}(R/T, M/N) \to 0$ is exact. Hence $\operatorname{Ext}^1(R/T, N) = 0$, and so N is *I*-n-injective.

Theorem 2.3 is proved.

3. *I*-*n*-flat modules. Recall that a right *R*-module *V* is said to be *n*-flat [1, 9], if for every *n*-generated left ideal *T*, the canonical map $V \otimes T \to V \otimes R$ is monic. 1-flat modules are called *P*-flat by some authors such as Couchot [7]. A right *R*-module *V* is said to be *J*-flat [8], if for every finitely generated left ideal *T* in J(R), the canonical map $V \otimes T \to V \otimes R$ is monic. We extend the concepts of *n*-flat modules and *J*-flat modules as follows.

Definition 3.1. A right R-module V is said to be I-n-flat, if for every n-generated left ideal T in I, the canonical map $V \otimes T \rightarrow V \otimes R$ is monic. V_R is said to be I-P-flat if it is I-1-flat. V_R is said to be I-flat if it is I-n-flat for every positive integer n.

It is easy to see that direct sums and direct summands and of I-n-flat modules are I-n-flat.

Theorem 3.1. For a right *R*-module *V*, the following statements are equivalent:

(1) V is I-n-flat.

(2) $\operatorname{Tor}_1(V, R/T) = 0$ for every n-generated left ideal T in I.

(3) V^+ is I-n-injective.

(4) For every n-generated left ideal T in I, the map $\mu_T : V \otimes T \to VT$; $\sum v_i \otimes a_i \mapsto \sum v_i a_i$ is a monomorphism.

(5) For all $x \in V^n$, $a \in I_n$, if xa = 0, then exist positive integer m and $y \in V^m$, $C \in \mathbb{R}^{m \times n}$, such that Ca = 0 and x = yC.

Proof. (1) \Leftrightarrow (2) follows from the exact sequence $0 \to \text{Tor}_1(V, R/T) \to V \otimes T \to V \otimes R$.

(2) \Leftrightarrow (3) follows from the isomorphism $\operatorname{Tor}_1(M, R/T)^+ \cong \operatorname{Ext}^1(R/T, M^+)$.

(1) \Leftrightarrow (4) follows from the commutative diagram

where σ is an isomorphism.

(4) \Rightarrow (5). Let $x = (v_1, v_2, \dots, v_n)$, $a = (a_1, a_2, \dots, a_n)'$, $T = \sum_{j=1}^n Ra_j$. Write e_j be the element in \mathbb{R}^n with 1 in the jth position and 0's in all other positions, $j = 1, 2, \dots, n$. Consider the short exact sequence

$$0 \to K \stackrel{i_K}{\to} R^n \stackrel{f}{\to} T \to 0$$

where $f(e_j) = a_j$ for each j = 1, 2, ..., n. Since xa = 0, by (4), $\sum_{j=1}^n (v_j \otimes f(e_j)) = \sum_{j=1}^n (v_j \otimes a_j) = 0$ as an element in $V \otimes_R T$. So in the exact sequence

$$V \otimes K \stackrel{1_V \otimes i_K}{\to} V \otimes R^n \stackrel{1_V \otimes f}{\to} V \otimes T \to 0$$

we have $\sum_{j=1}^{n} (v_j \otimes e_j) \in \text{Ker}(1_V \otimes f) = \text{Im}(1_V \otimes i_K)$. Thus there exist $u_i \in V, k_i \in K$, i = 1, 2, ..., m, such that $\sum_{j=1}^{n} (v_j \otimes e_j) = \sum_{i=1}^{m} (u_i \otimes k_i)$. Let $k_i = \sum_{i=1}^{n} c_{ij}e_j, j = 1, 2, ..., m$. Then $\sum_{j=1}^{n} c_{ij}a_j = \sum_{j=1}^{n} c_{ij}f(e_j) = f(k_i) = 0, i = 1, 2, ..., m$. Write $C = (c_{ij})_{mn}$, then Ca = 0.

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6

771

ZHU ZHANMIN

Moreover, this also gives
$$\sum_{j=1}^{n} (v_j \otimes e_j) = \sum_{i=1}^{m} (u_i \otimes k_i) = \sum_{i=1}^{m} \left(u_i \otimes \left(\sum_{j=1}^{n} c_{ij} e_j \right) \right) = \sum_{j=1}^{n} \left(\left(\sum_{i=1}^{m} u_i c_{ij} \right) \otimes e_j \right).$$
 So $v_j = \sum_{i=1}^{m} u_i c_{ij}, j = 1, 2, ..., n$. Let $y = (u_1, u_2, ..., u_m)$, then $y \in V^m$ and $x = yC$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(5) \Rightarrow (4). Let $T = \sum_{j=1}^{n} Rb_j$ be an *n*-generated left ideal in *I* and suppose $a_i = \sum_{j=1}^{n} r_{ij} b_j \in C$.
(6) \Rightarrow (7) $v_i \in V$ with $\sum_{i=1}^{k} v_i a_i = 0$. Then $\sum_{j=1}^{n} \left(\sum_{i=1}^{k} v_i r_{ij} \right) = 1, \ldots, n$. Such that $\sum_{j=1}^{n} c_{ij} b_j = 0$,
(7) $\sum_{i=1}^{n} r_{ij} b_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{k} v_i r_{ij} \right) \otimes b_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} u_i c_{ij} \right) \otimes b_j = \sum_{i=1}^{m} \left(u_i \otimes \sum_{j=1}^{n} r_{ij} b_j \right) = 0$. Thus (4) is proved.
Corollary 3.1. For a right *R*-module *V*, the following statements are equivalent:
(1) *V* is *n*-flat.
(2) Tor_1(*V*, *R*/*T*) = 0 for every *n*-generated left ideal *T*.
(3) V^+ is *n*-injective.
(4) For every *n*-generated left ideal *T* of *R*, the map $\mu_T : V \otimes T \to VT; \sum v_i \otimes x_i \mapsto \sum v_i x_i$
is a monomorphism.

(5) For all $x \in V^n$, $a \in R_n$, if xa = 0, then exist positive integer m and $y \in V^m$, $C \in R^{m \times n}$, such that Ca = 0 and x = yC.

Corollary **3.2.** *Let R be a left I-semiregular ring. Then:*

(1) A right R-module M is n-flat if and only if M is I-n-flat.

(2) A right R-module M is flat if and only if M is I-flat.

Proof. (1) follows from Corollary 3.1, Theorems 2.3 and 3.1. (2) follows from (1).

Corollary **3.3.** *Let R be a left semiregular ring. Then:*

(1) A right R-module M is n-flat if and only if M is J-n-flat.

(2) A right R-module M is flat if and only if M is J-flat.

We note that Corollary 3.3(2) improves the result of [8] (Proposition 2.17).

Corollary 3.4. Let $\{M_{\alpha}\}_{\alpha \in A}$ be a family of right *R*-modules and *n* be a positive integer. Then (1) $\bigoplus M_{\alpha}$ is I-n-flat if and only if each M_{α} is I-n-flat.

(2) $\prod_{\alpha \in A} M_{\alpha}$ is *I*-*n*-injective if and only if each M_{α} is *I*-*n*-injective.

Proof. (1) follows from the isomorphism $\operatorname{Tor}_1\left(\bigoplus_{\alpha\in A} M_\alpha, N\right) \cong \bigoplus_{\alpha\in A} \operatorname{Tor}_1(M_\alpha, N).$ (2) follows from the isomorphism $\operatorname{Ext}^1\left(N, \prod_{\alpha\in A} M_\alpha\right) \cong \prod_{\alpha\in A} \operatorname{Ext}^1(N, M_\alpha).$ **Remark 3.1.** From Theorem 3.1, the *I*-*n*-flatness of V_R can be characterized by the *I*-*n*-injectivity

of V^+ . On the other hand, by [5] (Lemma 2.7(1)), the sequence $\operatorname{Tor}_1(V^+, M) \to \operatorname{Ext}^1(M, V)^+ \to 0$ is exact for all finitely presented left R-module M, so if V^+ is I-n-flat, then V is I-n-injective.

Theorem 3.2. Every pure submodule of an I-n-flat module is I-n-flat. In particular, pure submodules of n-flat modules are n-flat.

Proof. Let A be a pure submodule of an *I*-n-flat right R-module B. Then the pure exact sequence $0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$ induces a split exact sequence $0 \rightarrow (B/A)^+ \rightarrow B^+ \rightarrow A^+ \rightarrow 0$. Since B is *I*-n-flat, by Theorem 3.1, B^+ is *I*-n-injective, and so A^+ is *I*-n-injective. Thus A is *I*-n-flat by Theorem 3.1 again.

Definition 3.2. Given a right *R*-module *U* with submodule *U'*. If $a = (a_1, a_2, ..., a_n)' \in R_n$ and $T = \sum_{i=1}^n Ra_i$, then *U'* is called a-pure in *U* if the canonical map $U' \otimes_R R/T \to U \otimes_R R/T$ is a monomorphism; *U'* is called *I*-n-pure in *U* if *U'* is a-pure in *U* for every $a \in I_n$. *U'* is called *I*-*P*-pure in *U* if *U'* is *I*-1-pure in *U*.

Clearly, if U' is I-n-pure in U then U' is I-m-pure in U for every positive integer $m \le n$.

Theorem 3.3. Let $U'_R \leq U_R$ and $a = (a_1, a_2, ..., a_n)' \in R_n$, $T = \sum_{i=1}^n Ra_i$. Then the following statements are equivalent:

- (1) U' is a-pure in U.
- (2) The canonical map $\operatorname{Tor}_1(U, R/T) \to \operatorname{Tor}_1(U/U', R/T)$ is surjective.
- (3) $U' \cap U^n a = (U')^n a$.
- (4) $U' \cap UT = U'T$.
- (5) The canonical map $\operatorname{Hom}_R(R_n/aR, U) \to \operatorname{Hom}_R(R_n/aR, U/U')$ is surjective.
- (6) Every commutative diagram

$$\begin{array}{ccc} aR & \stackrel{i_{aR}}{\longrightarrow} & R_n \\ f \downarrow & & \downarrow^g \\ U' & \stackrel{i_{U'}}{\longrightarrow} & U \end{array}$$

there exists $h: R_n \to U'$ with $f = hi_{aR}$.

- (7) The canonical map $\operatorname{Ext}^1(R_n/aR, U') \to \operatorname{Ext}^1(R_n/aR, U)$ is a monomorphism.
- (8) $\mathbf{l}_{U^n}^{U'}(a) = (U')^n + \mathbf{l}_{U^n}(a), \text{ where } \mathbf{l}_{U^n}^{U'}(a) = \{x \in U^n | xa \in U'\}.$

Proof. (1) \Leftrightarrow (2). This follows from the exact sequence

$$\operatorname{Tor}_1(U, R/T) \to \operatorname{Tor}_1(U/U', R/T) \to U' \otimes R/T \to U \otimes R/T.$$

 $(1) \Rightarrow (3). \text{ Suppose that } x \in U' \cap U^n a. \text{ Then there exists } y = (y_1, y_2, \dots, y_n) \in U^n \text{ such that } x = ya, \text{ and so we have } x \otimes \left(1 + \sum_{i=1}^n Ra_i\right) = \left(\sum_{i=1}^n y_i a_i\right) \otimes \left(1 + \sum_{i=1}^n Ra_i\right) = \sum_{i=1}^n (y_i \otimes 0) = 0 \text{ in } U \otimes \left(R / \sum_{i=1}^n Ra_i\right). \text{ Since } U' \text{ is } a \text{-pure in } U, x \otimes \left(1 + \sum_{i=1}^n Ra_i\right) = 0 \text{ in } U' \otimes \left(R / \sum_{i=1}^n Ra_i\right). \text{ Let } \iota: \sum_{i=1}^n Ra_i \to R \text{ be the inclusion map and } \pi: R \to R / \sum_{i=1}^n Ra_i \text{ be the natural epimorphism. Then we have } x \otimes 1 \in \text{Ker}(1_{U'} \otimes \pi) = \text{im } (1_{U'} \otimes \iota), \text{ it follows that there exists } x'_i \in U', i = 1, 2, \dots, n, \text{ such that } x \otimes 1 = \sum_{i=1}^n x'_i \otimes a_i = \left(\sum_{i=1}^n x'_i a_i\right) \otimes 1 \text{ in } U' \otimes R, \text{ and so } x = \sum_{i=1}^n x'_i a_i \in (U')^n a. \text{ But } (U')^n a \subseteq U' \cap U^n a, \text{ so } U' \cap U^n a = (U')^n a.$

 $(3) \Rightarrow (5)$. Consider the following diagram with exact rows:

$$0 \longrightarrow aR \xrightarrow{i_{aR}} R_n \xrightarrow{\pi_2} R_n/aR \longrightarrow 0$$
$$\downarrow f$$
$$0 \longrightarrow U' \xrightarrow{i_{U'}} U \xrightarrow{\pi_1} U/U' \longrightarrow 0$$

where $f \in \operatorname{Hom}_R(R_n/aR, U/U')$. Since R_n is projective, there exist $g \in \operatorname{Hom}_R(R_n, U)$ and $h \in$ $\in \operatorname{Hom}_R(aR, U')$ such that the diagram commutes. Now let u = g(a), Then $u = g(a) = h(a) \in U'$. Note that $u = (g(e_1), g(e_2), \dots, g(e_n))a \in U^n a$, where $e_i \in R_n$, with 1 in the ith position and 0's in all other positions. By (3), $u \in (U')^n a$. Therefore, $u = \sum_{i=1}^n u'_i a_i$ for some $u'_i \in U', i = 1, 2, ..., n$. Define $\sigma \in \text{Hom}_R(R_n, U')$ such that $\sigma(e_i) = u'_i$, $i = 1, 2, \dots, n$, then $\sigma i_{aR} = h$. Finally, we define $\tau \colon R_n/aR \to U$ by $\tau(x+aR) = g(x) - \sigma(x)$, then τ is a well-defined right R-homomorphism and $\pi_1 \tau = f$. Whence $\operatorname{Hom}_R(R_n/aR, U) \to \operatorname{Hom}_R(R_n/aR, U/U')$ is surjective.

 $(5) \Rightarrow (3)$. Suppose that $x \in U' \cap U^n a$. Then x = ya for some $y = (y_1, y_2, \dots, y_n) \in U^n$. Thus we have the following commutative diagram with exact rows:

where f_2 is defined by $f_2(e_i) = y_i$, i = 1, 2, ..., n and $f_1 = f_2|_{aR}$. Define $f_3: R_n/aR \to U/U'$ by $f_3(z + aR) = \pi_1 f_2(z)$. It is easy to see that f_3 is well defined and $f_3\pi_2 = \pi_1 f_2$. By hypothesis, $f_3 = \pi_1 \tau$ for some $\tau \in \operatorname{Hom}_R(R_n/aR, U)$. Now we define $\sigma \colon R_n \to U'$ by $\sigma(z) = f_2(z) - \tau \pi_2(z)$. Then $\sigma \in \operatorname{Hom}_R(R_n, U')$ and $\sigma(a) = f_2(a)$ since $\pi_2(a) = 0$. Hence $x = f_2(a) = \sigma(a) = \sigma(a)$

Then $b \in \operatorname{Hom}_R(R_n, b)$ and $b(a) = f_2(a)$ since $h_2(a) = 0$. Thence $x = f_2(a) = b(a) = (\sigma(e_1), \sigma(e_2), \dots, \sigma(e_n))a \in (U')^n a$. (3) \Rightarrow (1). Suppose that $\sum_{k=1}^s u'_k \otimes \left(b_k + \sum_{i=1}^n Ra_i\right) = 0$ in $U \otimes \left(R / \sum_{i=1}^n Ra_i\right)$, where $u'_k \in U'$, $b_k \in R$, then $\left(\sum_{k=1}^s u'_k b_k\right) \otimes \left(1 + \sum_{i=1}^n Ra_i\right) = 0$ in $U \otimes \left(R / \sum_{i=1}^n Ra_i\right)$. By the exactness of the sequence $U \otimes \left(\sum_{i=1}^n Ra_i\right) \to U \otimes R \to U \otimes \left(R / \sum_{i=1}^n Ra_i\right) \to 0$, we have that $\sum_{k=1}^s u'_k b_k = xa$ for some $x \in U^n$. By (3), there exists some $y \in (U')^n$ such that $\sum_{k=1}^s u'_k b_k = xa$ for some $x \in U^n$. By (3), there exists some $y \in (U')^n$ such that $\otimes \left(R / \sum_{i=1}^{n} Ra_i \right).$ (5) \Leftrightarrow (6). By diagram lemma (see [21, p. 53]).

 $(5) \Leftrightarrow (7)$. It follows from the exact sequence

$$\operatorname{Hom}_{R}(R_{n}/aR, U) \to \operatorname{Hom}_{R}(R_{n}/aR, U/U') \to \operatorname{Ext}^{1}(R_{n}/aR, U') \to \operatorname{Ext}^{1}(R_{n}/aR, U).$$

(5) \Rightarrow (8). It is sufficient to show that $\mathbf{l}_{U^n}^{U'}(a) \subseteq (U')^n + \mathbf{l}_{U^n}(a)$. Let $x = (x_1, x_2, \dots, x_n) \in$ $\in \mathbf{I}_{U^n}^{U'}(a)$. Define $f: R_n/aR \to U/U'$ via $\alpha + aR \mapsto x\alpha + U'$, then $f \in \operatorname{Hom}_R(R_n/aR, U/U')$. By (5), $f = \pi g$ for some $g \in \text{Hom}_R(R_n/aR, U)$, where $\pi \colon U \to U/U'$ is the natural epimorphism. Let $g(e_i + aR) = y_i, i = 1, 2, ..., n, y = (y_1, y_2, ..., y_n)$. Then $y \in \mathbf{l}_{U^n}(a), x_i + U' = f(e_i + aR) = 0$ $=\pi g(e_i+aR)=y_i+U'$, and so $x_i-y_i\in U', i=1,2,\ldots,n$, this implies that $x-y\in (U')^n$. Therefore, $x = (x - y) + y \in (U')^n + l_{U^n}(a)$.

(8) \Rightarrow (6). Let $x = (g(e_1), g(e_2), \dots, g(e_n))$. Then $xa = g(a) = f(a) \in U'$, so $x \in \mathbf{l}_{U^n}^{U'}(a)$. By (8), x = y + z for some $y \in (U')^n$ and $z \in \mathbf{l}_{U^n}(a)$. Now we define $h: R_n \to U'; b \mapsto yb$, then h(a) = ya = xa = f(a). And thus $f = hi_{aR}$.

Theorem 3.3 is proved.

Let M be a right R-module, K be a submodule of M and X a subset of M, then we write $X/K = \{x + K | x \in X\}.$

Corollary 3.5. Suppose that E, F and G are right R-modules such that $E \subseteq F \subseteq G$, and $a \in R_n$. Then:

- (1) If E is a-pure in F and F is a-pure in G, then E is a-pure in G.
- (2) If E is a-pure in G, then E is a-pure in F.
- (3) If F is a-pure in G, then F/E is a-pure in G/E.
- (4) If E is a-pure in G and F/E is a-pure in G/E, then F is a-pure in G.

Proof. (1). Since E is a-pure in F and F is a-pure in G, we have $F \cap G^n a = F^n a$ and $E \cap F^n a = E^n a$. Thus, $E \cap G^n a = E \cap (F \cap G^n a) = E \cap F^n a = E^n a$, and therefore E is a-pure in G.

(2) Since E is a-pure in G, $E \cap G^n a = E^n a$. Note that $E \cap G^n a \supseteq E \cap F^n a \supseteq E^n a$, we get that $E \cap F^n a = E^n a$, and (2) follows.

(3) Since F is a-pure in G, $F \cap G^n a = F^n a$, and so $(F/E) \cap (G/E)^n a = (F \cap G^n a)/E = (F^n a)/E = (F/E)^n a$. This follows that F/E is a-pure in G/E.

(4) By hypothesis, we have $(F/E) \cap (G/E)^n a = (F/E)^n a$, i.e., $(F \cap G^n a)/E = (F^n a)/E$, and $E \cap G^n a = E^n a$. For any $f \in F \cap G^n a$, write f = ga, where $g \in G^n$. Then there exists $f_1 \in F^n$ such that $(g - f_1)a = ga - f_1a = f - f_1a \in E \cap G^n a = E^n a$, so $f - f_1a = ea$ for some $e \in E^n$. This implies that $f = f_1a + ea = (f_1 + e)a \in F^n a$, and hence F is a-pure in G.

Corollary 3.6. Let $U'_R \leq U_R$ and $a \in R$. Then the following statements are equivalent:

- (1) U' is a-pure in U.
- (2) The canonical map $\operatorname{Tor}_1(U, R/Ra) \to \operatorname{Tor}_1(U/U', R/Ra)$ is surjective.
- (3) $U' \cap Ua = U'a$.
- (4) The canonical map $\operatorname{Hom}_R(R/aR, U) \to \operatorname{Hom}_R(R/aR, U/U')$ is surjective.
- (5) Every commutative diagram

$$\begin{array}{ccc} aR & \stackrel{\iota_{aR}}{\longrightarrow} & R \\ f \downarrow & & \downarrow^{g} \\ U' & \stackrel{i_{U'}}{\longrightarrow} & U \end{array}$$

there exists $h: R \to U'$ with $f = hi_{aR}$.

(6) The canonical map $\operatorname{Ext}^1(R/aR, U') \to \operatorname{Ext}^1(R/aR, U)$ is a monomorphism.

(7) $\mathbf{l}_{U}^{U'}(a) = U' + \mathbf{l}_{U}(a)$, where $\mathbf{l}_{U}^{U'}(a) = \{x \in U \mid xa \in U'\}$.

Corollary 3.7. Let U be an n-generated right R-module with submodule U'. If U' is I-n-pure in U, then U' is I-m-pure in U for each positive integer m. In particular, if a right ideal T of R is I-P-pure in R, then it is I-m-pure in R for each positive integer m.

Proof. For any $a \in I_m$, if $x \in U' \cap U^m a$, then $x = (x_1, x_2, \ldots, x_m)a$, where each $x_i \in U$. Suppose that u_1, u_2, \ldots, u_n is a generating set of U. Then $(x_1, x_2, \ldots, x_m) = (u_1, u_2, \ldots, u_n)C$ for some $C \in \mathbb{R}^{n \times m}$, and so $x = (u_1, u_2, \ldots, u_n)(Ca) \in U' \cap U^n(Ca)$. Since U' is I-n-pure in U, by Theorem 3.3, $x \in (U')^n(Ca) = ((U')^n C)a \subseteq (U')^m a$. Thus $U' \cap U^m a = (U')^m a$ and therefore U' is I-m-pure in U.

Proposition 3.1. Let $U'_R \leq U_R$.

- (1) If U/U' is I-n-flat, then U' is I-n-pure in U.
- (2) If U' is I-n-pure in U and U is I-n-flat, then U/U' is I-n-flat.

Proof. It follows from the exact sequence

$$\operatorname{Tor}_1(U, R/T) \to \operatorname{Tor}_1(U/U', R/T) \to U' \otimes R/T \to U \otimes R/T$$

and Theorem 3.1(2).

Theorem 3.4. *n*-Generated I-n-flat module is I-flat.

Proof. Suppose V is an n-generated I-n-flat module, there exists an exact sequence $0 \rightarrow K \rightarrow F \rightarrow V \rightarrow 0$ with F free and rank(F) = n. Then K is I-n-pure in F by Proposition 3.1(1) and hence I-m-pure for every positive integer m by Corollary 3.7. So, by Proposition 3.1(2), V is I-m-flat for every positive integer m. Hence, V is I-flat.

Theorem 3.4 is proved.

Corollary 3.8. (1) n-Generated n-flat module is flat.

(2) *I-P-flat cyclic module is I-flat.*

4. *I*-*n*-coherent rings.

Definition 4.1. A ring R is called left I-n-coherent if every n-generated left ideal in I is finitely presented.

Clearly, a ring R is left n-coherent if and only if R is left R-n-coherent.

Lemma 4.1. Let $a \in R_n$. Then $\mathbf{l}_{R^n}(a) \cong P^*$, where $P = R_n/aR$.

Proof. This is a corollary of [23] (Lemma 5.3).

Theorem 4.1. The following statements are equivalent for a ring R:

(1) R is left I-n-coherent.

(2) If $0 \to K \xrightarrow{f} R^n \xrightarrow{g} I$ is an exact sequence of left *R*-modules, then *K* is finitely generated.

(3) $\mathbf{l}_{R^n}(a)$ is a finitely generated submodule of R^n for any $a \in I_n$.

(4) For any $a \in I_n$, $(R_n/aR)^*$ is finitely generated.

Proof. (1) \Rightarrow (2). Since R is left *I*-n-coherent and Im(g) is an n-generated left ideal in I, Im(g) is finitely presented. Noting that the sequence $0 \rightarrow \text{Ker}(g) \rightarrow R^n \rightarrow \text{Im}(g) \rightarrow 0$ is exact, so Ker(g) is finitely generated. Thus $K \cong \text{Im}(f) = \text{Ker}(g)$ is finitely generated.

(2) \Rightarrow (3). Let $a = (a_1, \ldots, a_n)'$. Then we have an exact sequence of left *R*-modules $0 \rightarrow l_{R^n}(a) \rightarrow R^n \xrightarrow{g} I$, where $g(r_1, \ldots, r_n) = \sum_{i=1}^n r_i a_i$. By (2), $l_{R^n}(a)$ is a finitely generated left *R*-module.

 $(3) \Rightarrow (1)$ is obvious. $(3) \Leftrightarrow (4)$ follows from Lemma 4.1.

Theorem 4.1 is proved.

Let \mathcal{F} be a class of right *R*-modules and *M* a right *R*-module. Following [10], we say that a homomorphism $\varphi \colon M \to F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of *M* if for any morphism $f \colon M \to F'$ with $F' \in \mathcal{F}$, there is a $g \colon F \to F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi \colon M \to F$ is said to be an \mathcal{F} -envelope if every endomorphism $g \colon F \to F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of an \mathcal{F} -precover and an \mathcal{F} -cover. \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Theorem 4.2. The following statements are equivalent for a ring R:

(1) R is left I-n-coherent.

(2) $\varinjlim \operatorname{Ext}^1(R/T, M_\alpha) \cong \operatorname{Ext}^1(R/T, \varinjlim M_\alpha)$ for every n-generated left ideal T in I and direct system $(M_\alpha)_{\alpha \in A}$ of left R-modules.

(3) $\operatorname{Tor}_1\left(\prod N_{\alpha}, R/T\right) \cong \prod \operatorname{Tor}_1(N_{\alpha}, R/T)$ for any family $\{N_{\alpha}\}$ of right R-modules and any n-generated left ideal T in I.

(4) Any direct product of copies of R_R is I-n-flat.

I-n-COHERENT RINGS, I-n-SEMIHEREDITARY RINGS AND I-REGULAR RINGS

(5) Any direct product of I-n-flat right R-modules is I-n-flat.

(6) Any direct limit of I-n-injective left R-modules is I-n-injective.

(7) Any direct limit of injective left R-modules is I-n-injective.

(8) A left R-module M is I-n-injective if and only if M^+ is I-n-flat.

(9) A left R-module M is I-n-injective if and only if M^{++} is I-n-injective.

(10) A right R-module M is I-n-flat if and only if M^{++} is I-n-flat.

(11) For any ring S, $\text{Tor}_1(\text{Hom}_S(B,C), R/T) \cong \text{Hom}_S(\text{Ext}^1(R/T,B),C)$ for the situation $(R(R/T), RB_S, C_S)$ with T n-generated left ideal in I and C_S injective.

(12) Every right R-module has an I-n-flat preenvelope.

(13) For any $U \in I_n$, U(R) is a finitely generated left ideal, where $U(R) = \{r \in R : (r, r_2, ..., r_n)U = 0 \text{ for some } r_2, ..., r_n \in R\}.$

Proof. (1) \Rightarrow (2) follows from [5] (Lemma 2.9(2)).

 $(1) \Rightarrow (3)$ follows from [5] (Lemma 2.10(2)).

 $(2) \Rightarrow (6) \Rightarrow (7); (3) \Rightarrow (5) \Rightarrow (4)$ are trivial.

 $(7) \Rightarrow (1)$. Let T be an n-generated left ideal in I and $(M_{\alpha})_{\alpha \in A}$ a direct system of injective left *R*-modules (with A directed). Then $\varinjlim M_{\alpha}$ is *I*-n-injective by (7), and so $\operatorname{Ext}^{1}(R/T, \varinjlim M_{\alpha}) = 0$. Thus we have a commutative diagram with exact rows:

Since f and g are isomorphism by [21] (25.4(d)), h is an isomorphism by the Five lemma. So T is finitely presented by [21] (25.4(e)) again. Hence R is left I-n-coherent.

(4) \Rightarrow (1). Let T be an n-generated left ideal in I. By (4), $\text{Tor}_1(\Pi R, R/T) = 0$. Thus we have a commutative diagram with exact rows:

Since f_3 and f_2 are isomorphism by [10] (Theorem 3.2.22), f_1 is an isomorphism by the Five lemma. So T is finitely presented by [10] (Theorem 3.2.22) again. Hence R is left *I*-n-coherent.

 $(5) \Rightarrow (12)$. Let N be any right R-module. By [10] (Lemma 5.3.12), there is a cardinal number \aleph_{α} dependent on Card(N) and Card(R) such that for any homomorphism $f: N \to F$ with F I-n-flat, there is a pure submodule S of F such that $f(N) \subseteq S$ and Card $S \leq \aleph_{\alpha}$. Thus f has a factorization $N \to S \to F$ with S I-n-flat by Theorem 3.2. Now let $\{\varphi_{\beta}\}_{\beta \in B}$ be all such homomorphisms $\varphi_{\beta}: N \to S_{\beta}$ with Card $S_{\beta} \leq \aleph_{\alpha}$ and S_{β} I-n-flat. Then any homomorphism $N \to F$ with F I-n-flat has a factorization $N \to S_i \to F$ for some $i \in B$. Thus the homomorphism $N \to \Pi_{\beta \in B} S_{\beta}$ induced by all φ_{β} is an I-n-flat preenvelope since $\Pi_{\beta \in B} S_{\beta}$ is I-n-flat by (5).

 $(12) \Rightarrow (5)$ follows from [4] (Lemma 1).

(1) \Rightarrow (11). For any *n*-generated left ideal *T* in *I*, since *R* is left *I*-*n*-coherent, *R*/*T* is 2-presented. And so (11) follows from [5] (Lemma 2.7(2)).

(11) \Rightarrow (8). Let $S = \mathbb{Z}$, $C = \mathbb{Q}/\mathbb{Z}$ and B = M. Then $\operatorname{Tor}_1(M^+, R/T) \cong \operatorname{Ext}^1(R/T, M)^+$ for any *n*-generated left ideal T in I by (11), and hence (8) holds.

(8) \Rightarrow (9). Let *M* be a left *R*-module. If *M* is *I*-*n*-injective, then *M*⁺ is *I*-*n*-flat by (8), and so M^{++} is *I*-*n*-injective by Theorem 3.1. Conversely, if M^{++} is *I*-*n*-injective, then *M*, being a pure submodule of M^{++} (see [20, p. 48], Exercise 41), is *I*-*n*-injective by Theorem 2.3.

 $(9) \Rightarrow (10)$. If M is an *I*-*n*-flat right R-module, then M^+ is an *I*-*n*-injective left R-module by Theorem 3.1, and so M^{+++} is *I*-*n*-injective by (9). Thus M^{++} is *I*-*n*-flat by Theorem 3.1 again. Conversely, if M^{++} is *I*-*n*-flat, then M is *I*-*n*-flat by Theorem 3.2 as M is a pure submodule of M^{++} .

 $(10) \Rightarrow (5). \text{ Let } \{N_{\alpha}\}_{\alpha \in A} \text{ be a family of } I\text{-}n\text{-flat right } R\text{-modules. Then by Corollary 3.4(1),} \\ \bigoplus_{\alpha \in A} N_{\alpha} \text{ is } I\text{-}n\text{-flat, and so } \left(\prod_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \cong \left(\bigoplus_{\alpha \in A} N_{\alpha}\right)^{++} \text{ is } I\text{-}n\text{-flat by (10). Since } \bigoplus_{\alpha \in A} N_{\alpha}^{+} \text{ is a pure submodule of } \prod_{\alpha \in A} N_{\alpha}^{+} \text{ by [3] (Lemma 1(1)), } \left(\prod_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \rightarrow \left(\bigoplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \rightarrow 0 \text{ split,}$ and hence $\left(\bigoplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+}$ is $I\text{-}n\text{-flat. Thus } \prod_{\alpha \in A} N_{\alpha}^{++} \cong \left(\bigoplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+}$ is $I\text{-}n\text{-flat. Since } \prod_{\alpha \in A} N_{\alpha}$ is a pure submodule of $\prod_{\alpha \in A} N_{\alpha}^{++}$ by [3] (Lemma 1(2)), $\prod_{\alpha \in A} N_{\alpha}$ is I-n-flat by Theorem 3.2.

(1) \Rightarrow (13). Let $U = (u_1, u_2, \dots, u_n)' \in I_n$. Write $T_1 = Ru_1 + Ru_2 + \dots + Ru_n$ and $T_2 = Ru_2 + \dots + Ru_n$. Then $R/U(R) \cong T_1/T_2$. By (1), T_1 is finitely presented, and so T_1/T_2 is finitely presented. Therefore U(R) is finitely generated.

 $(13) \Rightarrow (1)$. Let $T_1 = Ru_1 + Ru_2 + \ldots + Ru_n$ be an *n*-generated left ideal in *I*. Let $T_2 = Ru_2 + \ldots + Ru_n$, $T_3 = Ru_3 + \ldots + Ru_n$, \ldots , $T_n = Ru_n$. Then $T_1/T_2 \cong R/U(R)$ is finitely presented by (13). Similarly, $T_2/T_3, \ldots, T_{n-1}/T_n, T_n$ are finitely presented. Hence T_1 is finitely presented, and (1) follows.

Theorem 4.2 is proved.

Corollary 4.1. *The following statements are equivalent for a ring* R:

(1) R is left n-coherent.

(2) $\varinjlim \operatorname{Ext}^1(R/T, M_\alpha) \cong \operatorname{Ext}^1(R/T, \varinjlim M_\alpha)$ for every *n*-generated left ideal *T* and direct system $(M_\alpha)_{\alpha \in A}$ of left *R*-modules.

(3) $\operatorname{Tor}_1(\prod N_{\alpha}, R/T) \cong \prod \operatorname{Tor}_1(N_{\alpha}, R/T)$ for any family $\{N_{\alpha}\}$ of right *R*-modules and any *n*-generated left ideal *T*.

(4) Any direct product of copies of R_R is n-flat.

(5) Any direct product of n-flat right R-modules is n-flat.

(6) Any direct limit of n-injective left R-modules is n-injective.

(7) Any direct limit of injective left R-modules is n-injective.

(8) A left R-module M is n-injective if and only if M^+ is n-flat.

(9) A left R-module M is n-injective if and only if M^{++} is n-injective.

(10) A right R-module M is n-flat if and only if M^{++} is n-flat.

(11) For any ring S, $\operatorname{Tor}_1(\operatorname{Hom}_S(B,C), R/T) \cong \operatorname{Hom}_S(\operatorname{Ext}^1(R/T,B), C)$ for the situation

 $(R(R/T), RB_S, C_S)$ with T n-generated left ideal and C_S injective.

(12) Every right R-module has an n-flat preenvelope.

(13) For any $U \in R_n, U(R)$ is a finitely generated left ideal, where

 $U(R) = \{r \in R: (r, r_2, \dots, r_n) U = 0 \text{ for some } r_2, \dots, r_n \in R\}.$

Corollary **4.2.** *The following statements are equivalent for a ring R*: (1) *R is left coherent.*

(2) $\varinjlim \operatorname{Ext}^1(R/T, M_\alpha) \cong \operatorname{Ext}^1(R/T, \varinjlim M_\alpha)$ for every finitely generated left ideal T and direct system $(M_\alpha)_{\alpha \in A}$ of left R-modules.

(3) $\operatorname{Tor}_1\left(\prod N_{\alpha}, R/T\right) \cong \prod \operatorname{Tor}_1(N_{\alpha}, R/T)$ for any family $\{N_{\alpha}\}$ of right *R*-modules and any finitely generated left ideal *T*.

(4) Any direct product of copies of R_R is flat.

(5) Any direct product of flat right R-modules is flat.

(6) Any direct limit of F-injective left R-modules is F-injective.

(7) Any direct limit of injective left R-modules is F-injective.

(8) A left R-module M is F-injective if and only if M^+ is flat.

(9) A left R-module M is F-injective if and only if M^{++} is F-injective.

(10) A right R-module M is flat if and only if M^{++} is flat.

(11) For any ring S, $\operatorname{Tor}_1(\operatorname{Hom}_S(B,C), R/T) \cong \operatorname{Hom}_S(\operatorname{Ext}^1(R/T,B),C)$ for the situation $(_R(R/T),_R B_S, C_S)$ with T finitely generated left ideal and C_S injective.

(12) For any positive integer n and any $U \in R_n, U(R)$ is a finitely generated left ideal, where

 $U(R) = \{r \in R : (r, r_2, \dots, r_n) U = 0 \text{ for some } r_2, \dots, r_n \in R\}.$

(13) Every right *R*-module has a flat preenvelope.

Proof. The equivalence of (1)-(12) is a consequence of Corollary 4.1. The proof of $(5) \Leftrightarrow (13)$ is similar to that of $(5) \Leftrightarrow (12)$ in the proof of Theorem 4.2.

Corollary **4.3.** *Let R be a left I*-*n*-*coherent ring. Then every left R*-*module has an I*-*n*-*injective cover.*

Proof. Let $0 \to A \to B \to C \to 0$ be a pure exact sequence of left *R*-modules with *B I-n*-injective. Then $0 \to C^+ \to B^+ \to A^+ \to 0$ is split. Since *R* is left *I-n*-coherent, B^+ is *I-n*-flat by Theorem 4.2, so C^+ is *I-n*-flat, and hence *C* is *I-n*-injective by Remark 3.1. Thus, the class of *I-n*-injective modules is closed under pure quotients. By [12] (Theorem 2.5), every left *R*-module has an *I-n*-injective cover.

Corollary 4.4. Let R be a left n-coherent ring. Then every left R-module has an n-injective cover. **Proposition 4.1.** Let R be a left coherent ring. Then every left R-module has a F-injective cover.

Proof. It is similar to the proof of Corollary 4.3.

Corollary **4.5.** *The following are equivalent for a left I-n-coherent ring R*:

(1) Every I-n-flat right R-module is n-flat.

(2) Every I-n-injective left R-module is n-injective.

In this case, R is left n-coherent.

Proof. (1) \Rightarrow (2). Let M be any I-n-injective left R-module. Then M^+ is I-n-flat by Theorem 4.2, and so M^+ is n-flat by (1). Thus M^{++} is n-injective by Corollary 3.1. Since M is a pure submodule of M^{++} , and pure submodule of an n-injective module is n-injective by Theorem 2.3, so M is n-injective.

(2) \Rightarrow (1). Let *M* be any *I*-*n*-flat right *R*-module. Then M^+ is *I*-*n*-injective left *R*-module by Theorem 3.1, and so M^+ is *n*-injective by (2). Thus *M* is *n*-flat by Corollary 3.1.

In this case, any direct product of n-flat right R-modules is n-flat by Theorem 4.2, and so R is left n-coherent by Corollary 4.1.

Corollary 4.6. Left I-semiregular left I-n-coherent ring is left n-coherent.

Proof. By Corollaries 3.2(1) and 4.5.

Corollary 4.7. Semiregular left J-coherent ring is left coherent.

Proposition 4.2. The following statements are equivalent for a left I-n-coherent ring R:

- (1) $_{R}R$ is I-n-injective.
- (2) Every right R-module has a monic I-n-flat preenvelope.
- (3) Every left R-module has an epic I-n-injective cover.
- (4) Every injective right R-module is I-n-flat.

Proof. (1) \Rightarrow (2). Let M be any right R-module. Then M has an I-n-flat preenvelope $f: M \to F$ by Theorem 4.2. Since $(_RR)^+$ is a cogenerator, there exists an exact sequence $0 \to M \xrightarrow{g} \prod (_RR)^+$. Since $_RR$ is I-n-injective, by Theorem 4.2, $\prod (_RR)^+$ is I-n-flat, and so there exists a right R-homomorphism $h: F \to \prod (_RR)^+$ such that g = hf, which shows that f is monic.

(2) \Rightarrow (4). Assume (2). Then for every injective right *R*-module *E*, *E* has a monic *I*-*n*-flat preenvelope *F*, so *E* is isomorphism to a direct summand of *F*, and thus *E* is *I*-*n*-flat.

(4) \Rightarrow (1). Since $(_RR)^+$ is injective, by (4), it is *I*-*n*-flat. Thus $_RR$ is *I*-*n*-injective by Theorem 4.2.

(1) \Rightarrow (3). Let *M* be a left *R*-module. Then *M* has an *I*-*n*-injective cover $\varphi \colon C \to M$ by Corollary 4.3. On the other hand, there is an exact sequence $F \xrightarrow{\alpha} M \to 0$ with *F* free. Since *F* is *I*-*n*-injective by (1), there exists a homomorphism $\beta \colon F \to C$ such that $\alpha = \varphi\beta$. This follows that φ is epic.

(3) \Rightarrow (1). Let $f: N \rightarrow {}_{R}R$ be an epic *I*-*n*-injective cover. Then the projectivity of ${}_{R}R$ implies that ${}_{R}R$ is isomorphism to a direct summand of N, and so ${}_{R}R$ is *I*-*n*-injective.

Proposition 4.2 is proved.

Corollary **4.8.** *The following statements are equivalent for a left n-coherent ring R*:

- (1) $_{R}R$ is *n*-injective.
- (2) Every right *R*-module has a monic *n*-flat preenvelope.
- (3) Every left *R*-module has an epic *n*-injective cover.
- (4) Every injective right R-module is n-flat.

Proposition 4.3. The following statements are equivalent for a left coherent ring R:

- (1) $_{R}R$ is F-injective.
- (2) Every right *R*-module has a monic flat preenvelope.
- (3) Every left R-module has an epic F-injective cover.
- (4) Every injective right R-module is flat.

Proof. It is similar to the proof of Proposition 4.2.

5. *I-n*-semihereditary rings.

Definition 5.1. A ring R is called left I-n-semihereditary if every n-generated left ideal in I is projective. A ring R is called left I-semihereditary if every finitely generated left ideal in I is projective. A ring R is called left IPP if every principal left ideal in I is projective. A ring R is called left IPP if every principal left ideal in I is projective. A ring R is called left ideal in J is projective.

Recall that a ring R is called left PP [13] if every principal left ideal is projective. It is easy to see that a ring R is left PP if and only if R is left R-1-semihereditary, a ring R is left JPP if and only if R is left J-1-semihereditary, a ring R is left n-semihereditary if and only if R is left R-n-semihereditary, a ring R is left J-n-semihereditary for every positive integer n.

Theorem 5.1. *The following statements are equivalent for a ring R:*

- (1) *R* is a left *I*-*n*-semihereditary ring.
- (2) R is left I-n-coherent and submodules of I-n-flat right R-modules are I-n-flat.

(3) *R* is left *I*-n-coherent and every right ideal is *I*-n-flat.

(4) R is left I-n-coherent and every finitely generated right ideal is I-n-flat.

(5) Every quotient module of an I-n-injective left R-module is I-n-injective.

(6) Every quotient module of an injective left R-module is I-n-injective.

(7) Every left R-module has a monic I-n-injective cover.

(8) Every right R-module has an epic I-n-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of I-n-injective submodules of A is I-n-injective.

Proof. $(2) \Rightarrow (3) \Rightarrow (4)$, and $(5) \Rightarrow (6)$ are trivial.

 $(1) \Rightarrow (2)$. R is clearly left *I*-*n*-coherent. Let A be a submodule of an *I*-*n*-flat right R-module B and T an n-generated left ideal in I. Then T is projective by (1) and hence flat. Then the exactness of $0 = \text{Tor}_2(B/A, R) \rightarrow \text{Tor}_2(B/A, R/T) \rightarrow \text{Tor}_1(B/A, T) = 0$ implies that $\text{Tor}_2(B/A, R/T) = 0$. And thus from the exactness of the sequence $0 = \text{Tor}_2(B/A, R/T) \rightarrow \text{Tor}_1(A, R/T) \rightarrow \text{Tor}_1(B, R/T) = 0$ we have $\text{Tor}_1(A, R/T) = 0$, this follows that A is I-*n*-flat.

(4) \Rightarrow (1). Let T be an n-generated left ideal in I. Then for any finitely generated right ideal K of R, the exact sequence $0 \rightarrow K \rightarrow R \rightarrow R/K \rightarrow 0$ implies the exact sequence $0 \rightarrow \text{Tor}_2(R/K, R/T) \rightarrow \text{Tor}_1(K, R/T) = 0$ since K is I-n-flat. So $\text{Tor}_2(R/K, R/T) = 0$, and hence we obtain an exact sequence $0 = \text{Tor}_2(R/K, R/T) \rightarrow \text{Tor}_1(R/K, T) \rightarrow 0$. Thus, $\text{Tor}_1(R/K, T) = 0$, and so T is a finitely presented flat left R-module. Therefore, T is projective.

(1) \Rightarrow (5). Let *M* be an *I*-*n*-injective left *R*-module and *N* be a submodule of *M*. Then for any *n*-generated left ideal *T* in *I*, since *T* is projective, the exact sequence $0 = \text{Ext}^1(T, N) \rightarrow$ $\rightarrow \text{Ext}^2(R/T, N) \rightarrow \text{Ext}^2(R, N) = 0$ implies that $\text{Ext}^2(R/T, N) = 0$. Thus the exact sequence $0 = \text{Ext}^1(R/T, M) \rightarrow \text{Ext}^1(R/T, M/N) \rightarrow \text{Ext}^2(R/T, N) = 0$ implies that $\text{Ext}^1(R/T, M/N) =$ = 0. Consequently, *M*/*N* is *I*-*n*-injective.

(6) \Rightarrow (1). Let *T* be an *n*-generated left ideal in *I*. Then for any left *R*-module *M*, by hypothesis, E(M)/M is *I*-*n*-injective, and so $\operatorname{Ext}^1(R/T, E(M)/M) = 0$. Thus, the exactness of the sequence $0 = \operatorname{Ext}^1(R/T, E(M)/M) \to \operatorname{Ext}^2(R/T, M) \to \operatorname{Ext}^2(R/T, E(M)) = 0$ implies that $\operatorname{Ext}^2(R/T, M) = 0$. Hence, the exactness of the sequence $0 = \operatorname{Ext}^1(R, M) \to \operatorname{Ext}^1(T, M) \to \operatorname{Ext}^2(R/T, M) = 0$ implies that $\operatorname{Ext}^2(R/T, M) = 0$ implies that $\operatorname{Ext}^1(T, M) = 0$, this shows that *T* is projective, as required.

(2), (5) \Rightarrow (7). Since R is left *I*-n-coherent by (2), for any left R-module M, there is an *I*-n-injective cover $f: E \to M$ by Corollary 4.3. Note that $\operatorname{im}(f)$ is *I*-n-injective by (5), and $f: E \to M$ is an *I*-n-injective precover, so for the inclusion map $i: \operatorname{im}(f) \to M$, there is a homomorphism $g: \operatorname{im}(f) \to E$ such that i = fg. Hence f = f(gf). Observing that $f: E \to M$ is an *I*-n-injective cover and gf is an endomorphism of E, so gf is an automorphisms of E, and hence $f: E \to M$ is a monic *I*-n-injective cover.

 $(7) \Rightarrow (5)$. Let M be an I-n-injective left R-module and N be a submodule of M. By (7), M/N has a monic I-n-injective cover $f: E \to M/N$. Let $\pi: M \to M/N$ be the natural epimorphism. Then there exists a homomorphism $g: M \to E$ such that $\pi = fg$. Thus f is an isomorphism, and whence $M/N \cong E$ is I-n-injective.

(2) \Leftrightarrow (8). By Theorem 4.2 and [4] (Theorem 2).

(5) \Rightarrow (9). Let A be a left R-module and $\{A_{\gamma} \mid \gamma \in \Gamma\}$ be an arbitrary family of I-n-injective submodules of A. Since the direct sum of I-n-injective modules is I-n-injective and $\sum_{\gamma \in \Gamma} A_{\gamma}$ is a homomorphic image of $\oplus_{\gamma \in \Gamma} A_{\gamma}$, by (5), $\sum_{\gamma \in \Gamma} A_{\gamma}$ is I-n-injective.

(9) \Rightarrow (6). Let E be an injective left R-module and $K \leq E$. Take $E_1 = E_2 = E$, $N = E_1 \oplus E_2$, $D = \{(x, -x) \mid x \in K\}$. Define $f_1: E_1 \rightarrow N/D$ by $x_1 \mapsto (x_1, 0) + D$, $f_2: E_2 \rightarrow N/D$ by $x_2 \mapsto (0, x_2) + D$ and write $\overline{E}_i = f_i(E_i)$, i = 1, 2. Then $\overline{E}_i \cong E_i$ is injective, i = 1, 2, and hence $N/D = \overline{E}_1 + \overline{E}_2$ is *I*-*n*-injective. By the injectivity of $\overline{E}_i, (N/D)/\overline{E}_i$ is isomorphic to a summand of N/D and thus it is *I*-*n*-injective.

Theorem 5.1 is proved.

Corollary 5.1. *The following statements are equivalent for a ring* R:

- (1) R is a left n-semihereditary ring.
- (2) R is left n-coherent and submodules of n-flat right R-modules are n-flat.
- (3) *R* is left *n*-coherent and every right ideal is *n*-flat.
- (4) *R* is left *n*-coherent and every finitely generated right ideal is *n*-flat.
- (5) Every quotient module of an n-injective left R-module is n-injective.
- (6) Every quotient module of an injective left *R*-module is *n*-injective.
- (7) Every left R-module has a monic n-injective cover.
- (8) Every right R-module has an epic n-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of n-injective submodules of A is *n*-injective.

Recall that a ring R is called left P-coherent [15] if it is left 1-coherent.

- *Corollary* 5.2. *The following statements are equivalent for a ring* R:
- (1) R is a left PP ring.
- (2) R is left P-coherent and submodules of P-flat right R-modules are P-flat.
- (3) *R* is left *P*-coherent and every right ideal is *P*-flat.
- (4) *R* is left *P*-coherent and every finitely generated right ideal is *P*-flat.
- (5) Every quotient module of a P-injective left R-module is P-injective.
- (6) Every quotient module of an injective left R-module is P-injective.
- (7) Every left R-module has a monic P-injective cover.
- (8) Every right R-module has an epic P-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of P-injective submodules of A is P-injective.

Corollary 5.3. *The following statements are equivalent for a ring* R:

(1) R is a left JPP ring.

- (2) R is left J-P-coherent and submodules of J-P-flat right R-modules are J-P-flat.
- (3) *R* is left *J*-*P*-coherent and every right ideal is *J*-*P*-flat.
- (4) *R* is left J-P-coherent and every finitely generated right ideal is J-P-flat.
- (5) Every quotient module of a *J*-*P*-injective left *R*-module is *J*-*P*-injective.
- (6) Every quotient module of an injective left R-module is J-P-injective.
- (7) Every left R-module has a monic J-P-injective cover.
- (8) Every right *R*-module has an epic *J*-*P*-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of J-P-injective submodules of A is J-P-injective.

Proposition 5.1. Let R be an left I-semiregular ring. Then:

- (1) *R* is left *n*-semihereditary if and only if it is left *I*-*n*-semihereditary.
- (2) *R* is left semihereditary if and only if it is left *I*-semihereditary.
- (3) *R* is left *PP* if and only if it is left *IPP*.

I-n-COHERENT RINGS, I-n-SEMIHEREDITARY RINGS AND I-REGULAR RINGS

Proof. (1). We need only to prove the sufficiency. Suppose R is left I-n-semihereditary, then by Theorem 5.1, every quotient module of an injective left R-module is I-n-injective. Since R is left I-semiregular, every I-n-injective left R-module is n-injective by Theorem 2.2. So every quotient module of an injective left R-module is n-injective, and hence R is left n-semihereditary by Corollary 5.1.

(2), (3) follows from (1).

Proposition 5.1 is proved.

From Proposition 5.1, we have immediately the following results.

Corollary **5.4.** *Let R be a semiregular ring. Then:*

(1) *R* is left *n*-semihereditary if and only if it is left *J*-*n*-semihereditary.

(2) *R* is left semihereditary if and only if it is left *J*-semihereditary.

(3) *R* is left *PP* if and only if it is left *JPP*.

6. *I-P*-injective rings and *I*-regular rings. In this section we extend the concept of regular rings to *I*-regular rings, give some characterizations of *I*-regular rings and *I-P*-injective modules, and give some properties of left *I-P*-injective rings.

Definition 6.1. A ring R is called I-regular if every element in I is regular.

Clearly, every ring is 0-regular, R is semiprimitive if and only if R is J-regular, R is regular if and only R is R-regular.

We call a module M is absolutely I-P-pure if M is I-P-pure in every module containing M.

Theorem 6.1. Let M be a left R-module. Then the following statements are equivalent:

(1) M is I-P-injective.

(2) $\operatorname{Ext}^{1}(R/Ra, M) = 0$ for all $a \in I$.

(3) $\mathbf{r}_M \mathbf{l}_R(a) = aM$ for all $a \in I$.

(4) $\mathbf{l}_R(a) \subseteq \mathbf{l}_R(x)$, where $a \in I, x \in M$, implies $x \in aM$.

(5) $\mathbf{r}_M(Rb \cap \mathbf{l}_R(a)) = \mathbf{r}_M(b) + aM$ for all $a \in I$ and $b \in R$.

(6) If $\gamma \colon Ra \to M$, $a \in I$, is *R*-linear, then $\gamma(a) \in aM$.

(7) M is absolutely I-P-pure.

(8) M is *I*-*P*-pure in its injective envelope E(M).

(9) *M* is an *I*-*P*-pure submodule of an *I*-*P*-injective module.

(10) For each $a \in I$ and any $f \in Hom(Ra, M)$, if (α, g) is the pushout of (f, i) in the following diagram:

$$\begin{array}{ccc} aR & \stackrel{i}{\longrightarrow} & R \\ f & & & \downarrow^g \\ M & \stackrel{\alpha}{\longrightarrow} & P \end{array}$$

where *i* is the inclusion map, then there exists a homomorphism $h: P \to M$ such that $h\alpha = 1_M$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (10) are follows from Theorem 2.1. (7) \Rightarrow (8) \Rightarrow (9) are clear.

(4) \Rightarrow (6). Let $\gamma \colon Ra \to M$ be *R*-linear, where $a \in I$. Then $\mathbf{l}_R(a) \subseteq \mathbf{l}_R(\gamma(a))$. By (4), $\gamma(a) \in aM$.

(6) \Rightarrow (1). Let γ : $Ra \rightarrow M$ be *R*-linear, where $a \in I$. By (6), write $\gamma(a) = am, m \in M$. Then $\gamma = \cdot m$, proving (1).

 $(2) \Rightarrow (7)$. By Theorem 3.3(5).

 $(9) \Rightarrow (2)$. Let M be an I-P-pure submodule of an I-P-injective module N. Then (2) follows from the the exact sequence

ZHU ZHANMIN

 $\operatorname{Hom}_R(R/Ra, N) \to \operatorname{Hom}_R(R/Ra, N/M) \to \operatorname{Ext}^1_R(R/Ra, M) \to 0$

and Theorem 3.3(5).

Theorem 6.1 is proved.

Corollary 6.1. Let $R = I_1 \oplus I_2$, where I_1, I_2 are ideals of R. Then R is left P-injective if and only if $_RR$ is I_1 -P-injective and I_2 -P-injective.

Proof. We need only to prove the sufficiency. Let $a = a_1 + a_2 \in R$, where $a_1 \in I_1, a_2 \in I_2$. Then by routine computations, we have $\mathbf{r}_R \mathbf{l}_R(a_1) = \mathbf{r}_{I_1} \mathbf{l}_{I_1}(a_1)$, $\mathbf{r}_R \mathbf{l}_R(a_2) = \mathbf{r}_{I_2} \mathbf{l}_{I_2}(a_2)$, $\mathbf{r}_R \mathbf{l}_R(a_1 + a_2) =$ $= \mathbf{r}_{I_1} \mathbf{l}_{I_1}(a_1) + \mathbf{r}_{I_2} \mathbf{l}_{I_2}(a_2)$, $a_1R + a_2R = (a_1 + a_2)R$. Since R is left I_1 -P-injective and left I_2 -P-injective, $\mathbf{r}_R \mathbf{l}_R(a_1) = a_1R$, $\mathbf{r}_R \mathbf{l}_R(a_2) = a_2R$. Hence, $\mathbf{r}_R \mathbf{l}_R(a) = aR$, which shows that R is left P-injective.

Proposition 6.1. Let R be a left I-P-injective ring. Then:

(1) Every left ideal in I that is isomorphic to a direct summand of $_RR$ is itself a direct summand of $_RR$.

(2) If $Re \cap Rf = 0$, $e^2 = e \in R$, $f^2 = f \in I$, then $Re \oplus Rf = Rg$ for some $g^2 = g$.

(3) If Rk is a simple left ideal in I, then kR is a simple right ideal.

(4) $\operatorname{Soc}(_RI) \subseteq \operatorname{Soc}(I_R).$

Proof. (1). If T is a left ideal in I and $T \cong Re$, where $e^2 = e \in R$, then T = Ra for some $a \in T$ and T is projective. Hence $\mathbf{l}_R(a) \subseteq^{\oplus} {}_RR$, say $\mathbf{l}_R(a) = Rf$, where $f^2 = f \in R$. Then $aR = \mathbf{r}_R \mathbf{l}_R(a) = (1 - f)R \subseteq^{\oplus} R_R$, and so $T = Ra \subseteq^{\oplus} {}_RR$.

(2). Observe that $Re \oplus Rf = Re \oplus Rf(1-e)$, so $Rf(1-e) \cong Rf$. Since R is left *I*-P-injective, by (1), Rf(1-e) = Rh for some idempotent element $h \in I$. Let g = e + h - eh. Then $g^2 = g$ such that ge = g = eg and gh = h = hg. It follows that $Re \oplus Rf = Re \oplus Rh = Rg$.

(3). If Rk is a simple left ideal in I, and $0 \neq ka \in kR$, define $\gamma \colon Rk \to Rka; rk \mapsto rka$. Then γ is an isomorphism, and so, as R is left I-P-injective, $\gamma^{-1} = \cdot c$ for some $c \in R$. Then $k = \gamma^{-1}(ka) = kac \in kaR$. Therefore, kR is a simple right ideal.

(4). It follows from (3).

Proposition 6.1 is proved.

A ring R is called *left Kasch* if every simple left R-module embeds in $_RR$, or equivalently, $\mathbf{r}_R(T) \neq 0$ for every maximal left ideal T of R. Right Kasch, right P-injective rings have been discussed in [19]. Next, we discuss left Kasch left I-P-injective rings.

Proposition 6.2. Let R be a left I-P-injective left Kasch ring. Then:

(1) $\operatorname{Soc}(I_R) \subseteq^{ess} I_R$.

(2) $\mathbf{r}_I(J) \subseteq^{ess} I_R$.

Proof. (1). If $0 \neq a \in I$, let $\mathbf{l}_R(a) \subseteq T$, where T is a maximal left ideal. Then $\mathbf{r}_R(T) \subseteq \mathbf{r}_R \mathbf{l}_R(a) = aR$, and (1) follows because $\mathbf{r}_R(T)$ is simple by [19] (Theorem 3.31).

(2). If $0 \neq b \in I$. Choose M maximal in Rb, let $\sigma: Rb/M \to {}_{R}R$ be monic, and define $\gamma: Rb \to {}_{R}R$ by $\gamma(x) = \sigma(x+M)$. Then $\gamma = \cdot c$ for some $c \in R$ by hypothesis. Hence $bc = \sigma(b+M) \neq 0$ because $b \notin M$ and σ is monic. But $Jbc = \gamma(Jb) = 0$ because $Jb \subseteq M$ (if $Jb \notin M$, then Jb + M = Rb. But Jb < < Rb, so M = Rb, a contradition). So $0 \neq bc \in bR \cap \mathbf{r}_{I}(J)$, as required.

Proposition 6.2 is proved.

Recall that a left R-module M is called *mininjective* [17] if every R-homomorphism from a minimal left ideal to M extends to a homomorphism of R to M.

Proposition 6.3. If M is a JP-injective left R-module, then it is mininjective.

Proof. Let Ra be a minimal left ideal of R. If $(Ra)^2 \neq 0$, then exists $k \in Ra$ such that $Rak \neq 0$. Since Ra is minimal, Rak = Ra. Thus k = ek for some $0 \neq e \in Ra$, this shows that $e^2 - e \in \mathbf{l}_{Ra}(k)$. But $\mathbf{l}_{Ra}(k) \neq Ra$ because $ek \neq 0$, and note that Ra is simple, we have $\mathbf{l}_{Ra}(k) = 0$, and so $e^2 = e$ and Ra = Re. Clearly, in this case, every homomorphism from Ra to M can be extended to a homomorphism of R to M. If $(Ra)^2 = 0$, then $a \in J(R)$. Since M is JP-injective, every homomorphism from Ra to M can be extended to R.

Proposition 6.3 is proved.

Theorem 6.2. The following statements are equivalent for a ring R:

(1) R is an I-regular ring.

(2) Every left R-module is I-F-injective.

(3) Every left R-module is I-P-injective.

(4) Every cyclic left R-module is I-P-injective.

(5) Every left R-module is I-flat.

(6) Every left R-module is I-P-flat.

(7) Every cyclic left R-module is I-P-flat.

(8) *R* is left I-semihereditary and left I-F-injective.

(9) *R* is left IPP and left I-P-injective.

Proof. $(2) \Rightarrow (3) \Rightarrow (4); (5) \Rightarrow (6) \Rightarrow (7); and (8) \Rightarrow (9) are obvious.$

 $(1) \Rightarrow (2), (5), (8)$. Assume (1). Then it is easy to prove by induction that every finitely generated left ideal in I is a direct summand of $_RR$, so (2), (5), (8) hold.

(4) \Rightarrow (1). Let $a \in I$. Then by (4), Ra is *I*-*P*-injective, so that Ra is a direct summand of $_RR$. And thus (1) follows.

 $(7) \Rightarrow (1)$. Let $a \in I$. Then by (5), R/Ra is *I*-*P*-flat. This follows that Ra is *I*-*P*-pure in R by Proposition 3.1(1). By Theorem 3.3(3), we have $Ra \cap aR = aRa$, and hence a = aba for some $b \in R$. Therefore, R is an *I*-regular ring.

(9) \Rightarrow (1). Let $a \in I$. Since R is left I-P-injective, $\mathbf{r}_R \mathbf{l}_R(a) = aR$ by Theorem 6.1(3). Since R is left IPP, Ra is projective, so $\mathbf{l}_R(a) = Re$ for some $e^2 = e \in R$. Thus, $aR = \mathbf{r}_R(Re) = (1 - e)R$ is a direct summand of R_R , and hence a is regular.

Theorem 6.2 is proved.

Corollary 6.2. The following statements are equivalent for a ring R:

- (1) R is a semiprimitive ring.
- (2) Every left R-module is J-F-injective.
- (3) Every left R-module is J-P-injective.
- (4) Every cyclic left R-module is J-P-injective.
- (5) Every left R-module is J-flat.
- (6) Every left R-module is J-P-flat.
- (7) Every cyclic left R-module is J-P-flat.
- (8) *R* is left *J*-semihereditary and left *J*-*F*-injective.
- (9) *R* is left JPP and left J-P-injective.

Corollary 6.3. *The following statements are equivalent for a ring* R:

- (1) R is a regular ring.
- (2) Every left R-module is F-injective.
- (3) Every left R-module is P-injective.
- (4) Every cyclic left R-module is P-injective.
- (5) Every left R-module is flat.

- (6) Every left R-module is P-flat.
- (7) Every cyclic left R-module is P-flat.
- (8) *R* is left semihereditary and left *F*-injective.
- (9) *R* is left *PP* and left *P*-injective.

Theorem 6.3. The following statements are equivalent for a ring R:

(1) R is a regular ring.

(2) *R* is a left *I*-semiregular *I*-regular ring.

Proof. (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (1). Let *M* be any left *R*-module. Since *R* is *I*-regular, by Theorem 6.2, *M* is *I*-*P*-injective. But *R* is left *I*-semiregular, by Theorem 2.2, *M* is *P*-injective. Hence, *R* is a regular ring by Corollary 6.3.

- 1. Ahmad S. n-Injective and n-flat modules // Communs Algebra. 2001. 29. P. 2039-2050.
- 2. Amin I., Yousif M., Zeyada N. Soc-injective rings and modules // Communs Algebra. 2005. 33. P. 4229-4250.
- Cheatham T. J., Stone D. R. Flat and projective character modules // Proc. Amer. Math. Soc. 1981. 81. P. 175–177.
- Chen J. L., Ding N. Q. A note on existence of envelopes and covers // Bull. Austral. Math. Soc. 1996. 54. P. 383–390.
- 5. Chen J. L., Ding N. Q. On n-coherent rings // Communs Algebra. 1996. 24. P. 3211-3216.
- Chen J. L., Ding N. Q., Li Y. L., Zhou Y. Q. On (m, n)-injectivity of modules // Communs Algebra. 2001. 29. P. 5589 – 5603.
- 7. Couchot F. Flat modules over valuation rings // J. Pure and Appl. Algebra. 2007. 211. P. 235-247.
- 8. Ding N. Q., Li Y. L., Mao L. X. J-coherent rings // J. Algebra and Appl. 2009. 8. P. 139-155.
- 9. Dobbs D. D. On n-flat modules over a commutative ring // Bull. Austral. Math. Soc. 1991. 43. P. 491-498.
- 10. Enochs E. E., Jenda O. M. G. Relative homological algebra. Berlin, New York: Walter de Gruyter, 2000.
- Gupta R. N. On f-injective modules and semihereditary rings // Proc. Nat. Inst. Sci. India A. 1969. 35. P. 323 – 328.
- 12. Holm H., Jørgensen P. Covers, precovers, and purity // Ill. J. Math. 2008. 52. P. 691 703.
- 13. Jøndrup S. P. p. rings and finitely generated flat ideals // Proc. Amer. Math. Soc. 1971. 28. P. 431-435.
- 14. Mahdou N. On Costa's conjecture // Communs Algebra. 2001. 29. P. 2775 2785.
- 15. Mao L. X. On P-coherent endomorphism rings // Proc. Indian Acad. Sci. Math. Sci. 2008. 118. P. 557-567.
- 16. Nicholson W. K., Yousif M. F. Principally injective rings // J. Algebra. 1995. 174. P. 77-93.
- 17. Nicholson W. K., Yousif M. F. Mininjective rings // J. Algebra. 1997. 187. P. 548-578.
- 18. Nicholson W. K., Yousif M. F. Weakly continuous and C2-rings // Communs Algebra. 2001. 29. P. 2429-2446.
- 19. Nicholson W. K., Yousif M. F. Quasi-Frobenius rings. Cambridge: Cambridge Univ. Press, 2003.
- 20. Stenström B. Rings of quotients. Berlin etc.: Springer-Verlag, 1975.
- 21. Wisbauer R. Foundations of module and ring theory. Reading: Gordon and Breach, 1991.
- Yousif M. F., Zhou Y. Q. Rings for which certain elements have the principal extension property // Algebra colloq. 2003. – 10. – P. 501–512.
- Zhang X. X., Chen J. L. On (m, n)-injective modules and (m, n)-coherent rings // Algebra colloq. 2005. 12. P. 149–160.
- 24. Zhang X. X., Chen J. L. On n-semihereditary and n-coherent rings // Int. Electron. J. Algebra. 2007. 1. P. 1-10.
- 25. Zhu Z. M., Tan Z. S. On n-semihereditary rings // Sci. Math. Jap. 2005. 62. P. 455-459.
- Zhu Z. M. Some results on MP-injectivity and MGP-injectivity of rings and modules // Ukr. Math. Zh. 2011. –
 63, № 10. P. 1426–1433.

Received 08.07.12

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6

786