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A NOTE ON A BOUND OF ADAN-BANTE*

ОДНЕ ЗАУВАЖЕННЯ ЩОДО ГРАНИЦI АДАН-БАНТE

Let G be a finite solvable group and let χ be a nonlinear irreducible (complex) character of G. Also let η(χ) be the number
of nonprincipal irreducible constituents of χχ̄, where χ̄ denotes the complex conjugate of χ. Adan-Bante proved that there
exist constants C and D such that dl (G/ kerχ) ≤ Cη(χ) +D. In the present work, we establish a bound lower than the
Adan-Bante bound for η(χ) > 2.

Нехай G — скiнченна розв’язна група, а χ — нелiнiйний незвiдний (комплексний) характер групи G. Також нехай
η(χ) — число неголовних незвiдних складових χχ̄, де χ̄ позначає величину, комплексно спряжену до χ. Як доведено
Адан-Банте, iснують сталi C та D такi, що dl (G/ kerχ) ≤ Cη(χ) +D. В данiй роботi встановлено оцiнку нижчу,
нiж оцiнка Адан-Банте для η(χ) > 2.

Let G be a finite solvable group and χ be a nonlinear irreducible (complex) character of G. Let η(χ)

be the number of nonprincipal irreducible constituents of χχ̄, where χ̄ means the complex conjugate
of χ. In her paper [1], E. Adan-Bante utilized a key lemma to yield a bound for the derived length of
G/ kerχ. That is the following lemma.

Lemma 1. Let n > 1 be an integer and N = {1, 2, . . .} be the set of all positive integers. Define

p(n) = max{n1n2 . . . ns | n1, n2, . . . , ns ∈ N and n1 + n2 + . . .+ ns = n}.

Hence

p(n) ≤ 2n−1.

Adan-Bante’s inequality above can be improved slightly. In fact, we have the following lemma.
Lemma 1′. Let n > 1 be an integer and N = {1, 2, . . .} be the set of all positive integers. Define

p(n) = max{n1n2 . . . ns | n1, n2, . . . , ns ∈ N and n1 + n2 + . . .+ ns = n}.

Then

p(n) =


3n/3, n ≡ 0 (mod 3),

4 · 3(n−4)/3, n ≡ 1 (mod 3),

2 · 3(n−2)/3, n ≡ 2 (mod 3).

Hence

p(n) ≤ 3n/3.

Proof. By the relation of congruence, then for n ≥ 2 we have that one of the following:

n ≡ 0 (mod 3), n ≡ 1 (mod 3), or n ≡ 2 (mod 3).
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By the definition of p(n) and computation, it follows that

n = 2, p(n) = 2, n = 5, p(n) = 2 · 3,

n = 3, p(n) = 3, n = 6, p(n) = 3 · 3,

n = 4, p(n) = 4, n = 7, p(n) = 4 · 3.

We prove that the factors of p(n) are 2 or 3.

Let n = m1 +m2 + . . .+mt, t ≥ 1, such that

p(n) = m1m2 . . .mt.

We assert that
(i) mi > 1 for every i = 1, 2, . . . , t.

Otherwise, it is no loss to assume that m1 = 1. Thus,

(1 +m2)m3 . . .mt > m1m2m3 . . .mt = p(n),

a contradiction.
(ii) mi ≤ 4 for each i = 1, 2, . . . , t.

Otherwise, it is no loss to assume that m1 > 4 and then

2 · (m1 − 2) > m1.

Hence,

2 · (m1 − 2)m2m3 . . .mt > m1m2m3 . . .mt = p(n),

a contradiction.
So, mi, i = 1, 2, . . . , t, are 2 or 3 since 4 = 2 · 2 and then

p(n) = 2a3b,

where a, b are nonnegative integers and 2a+ 3b = n.

Now, since 2 · 2 · 2 < 3 · 3, it follows that the number of factor 3 in p(n) should be as many as
possible. That is,

0 ≤ a ≤ 2.

Therefore, we have that

p(n) =


3n/3, n ≡ 0 (mod 3),

4 · 3n−4/3, n ≡ 1(mod 3),

2 · 3n−2/3, n ≡ 2(mod 3).

It follows that

p(n) ≤ 3n/3.

Lemma 1′ is proved.
Utilizing the inequality p(n) ≤ 3n/3 in Adan-Bante’s proof in [1], we have that the bound of

Adan-Bante can be improved as follows.
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Theorem 1. Let G be a finite solvable group and χ ∈ Irr (G), where Irr (G) denotes the set of
irreducible characters of G. Then there exists a constant c such that

dl (G/ kerχ) ≤ cη(χ) + 1.

Remark. In particular, if χ ∈ Irr(G) is faithful, we would have that dl (G) ≤ cη(χ) + 1. Note
that E. Adan-Bante has studied the finite solvable groups with η(χ) ≤ 2 in [2, 3].

Keller [4] obtained that there exist universal constants C1 and C2 such that dl (G) ≤
≤ C1 log (m(G,V)) + C2 for any finite solvable group G acting faithfully and irreducibly on a
finite vector space V. In fact, the author proved the result with log = log2, C1 = 24 and C2 = 364.

And the author says in [4] that these constants are far from being best possible. Notice that the
constants C and D in [1] are related to the constants in [4]. Actually, C = C1 log 2 + C2 + 1 and
D = 1− C1 log 2 (By the way, that Adan-Bante wrote D = 1 + C1 log 2 in [1] is a typo). Also, our

constant c =
log 3

3
C1 + C2 + 1. If η(χ) > 2, that is, η(χ) ≥ 3, and since

3 >
log 2

log 2− log 3

3

,

then we have that cη(χ) + 1 < Cη(χ) + D. So our bound is lower than Adan-Bante’s if η(χ) > 2.

(It can be seen that the specific values of C1 and C2 are not used in the comparison.)
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