UDC 517.96
C. S. Bagewadi, B. S. Anitha (Kuvempu Univ., Karnataka, India)

# INVARIANT SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS IHBAPIAHTHI ПIДМНОГОВИДИ ТРАНС-МНОГОВИДІВ САСАКЯНА 

We show the equivalence of totally geodesicity, recurrence, birecurrence, generalized birecurrence, Ricci-generalized birecurrence, parallelism, biparallelism, pseudoparallelism, bipseudoparallelism of $\sigma$ for the invariant submanifold $M$ of trans-Sasakian manifold $\widetilde{M}$.<br>Показано еквівалентність повної геодезичності, зворотності, подвійної зворотності, узагальненої подвійної зворотності, узагальненої подвійної зворотності Річчі, паралелізму, подвійного паралелізму, псевдопаралелізму та подвійного псевдопаралелізму $\sigma$ для інваріантного підмноговиду $M$ транс-многовиду Сасакяна $\widetilde{M}$.

1. Introduction. Let $M$ be an almost contact Riemannian manifold with a contact form $\eta$, the associated vector field $\xi$, a $(1,1)$-tensor field $\phi$ and the associated Riemannian metric $g$. Further an almost contact metric manifold is a contact metric manifold if $g(X, \phi Y)=d \eta(X, Y)$ for all $X, Y \in T M$. A K-contact manifold is a contact metric manifold while converse is true if the Lie derivative of $\phi$ in the character direction $\xi$ vanishes. A Sasakian manifold is always a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold. A contact metric manifold is Sasakian if $\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X$. Odd dimensional spheres and $C^{\star} \times R$ are examples of Sasakian manifolds.

In 1972, K. Kenmotsu [4] studied a class of contact Riemannian manifolds called Kenmotsu manifolds, which is not Sasakian. In fact Kenmotsu proved that a locally Kenmotsu manifold is a warped product $I \times{ }_{f} N$ of an interval $I$ and a Kahlerian manifold with a warping function $f(t)=s e^{t}$, where $S$ is a non-zero contact. Hyperbolic space is an example of Kenmotsu manifold.

In the Gray-Hervella classification of almost Hermitian manifolds [10], there appears a class $W_{4}$ of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds. An almost contact metric structure on a manifold $M$ is called a trans-Sasakian structure [11] if the product manifold $M \times R$ belongs to the class $W_{4}$. The class $C_{5} \oplus C_{6}$ [13] coincides with the class of trans-Sasakian structure of $(\alpha, \beta)$. The monkey saddle is an example of trans-Sasakian manifold. This class consists of both Sasakian and Kenmotsu structures. If $\alpha=1, \beta=0$, then the class reduces to Sasakian, where as if $\alpha=0, \beta=1$ their reduces to Kenmotsu. J. C. Marrero [11] has shown that trans-Sasakian manifolds for $n \geq 5$ do not exist. If $\alpha \neq 0, \beta=0$ then it is $\alpha$-Sasakian, if $\alpha=0$, $\beta \neq 0$ then it is $\beta$-Kenmotsu and if $\alpha=\beta=0$ then it is cosympletic.

The geometry of invariant submanifolds of trans-Sasakian manifolds is carried out by Aysel Turgut Vanli and Ramazan Sari [3] and they have shown that an invariant submanifold $M$ carries trans-Sasakian structure and established the equivalence of totally geodesicity of $M, \sigma$ is parallel, $\sigma$ is 2-parallel, $\sigma$ is semiparallel.

In this paper we extend the study and show that for invariant submanifolds of trans-Sasakian manifolds the equivalence of $M$, totally geodesic, when $\sigma$ is recurrent, 2-recurrent, generalized 2-recurrent, 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel, 2-Ricci-generalized pseudoparallel their equivalence. Finally it is concluded that the result of Aysel

Turgut Vanli and Ramazan Sari [3] and the above results proved are all equivalent to one another. We provide an example of trans-Sasakian manifold which is not totally geodesic.
2. Basic concepts. The covariant differential of the $p^{t h}$ order, $p \geq 1$ of a $(0, k)$-tensor field $T$, $k \geq 1$ denoted by $\nabla^{p} T$, defined on a Riemannian manifold ( $M, g$ ) with the Levi-Civita connection $\nabla$. The tensor T is said to be recurrent [15], if the following condition holds on $M$ :

$$
\begin{equation*}
(\nabla T)\left(X_{1}, \ldots, X_{k} ; X\right) T\left(Y_{1}, \ldots, Y_{k}\right)=(\nabla T)\left(Y_{1}, \ldots, Y_{k} ; X\right) T\left(X_{1}, \ldots, X_{k}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\left(\nabla^{2} T\right)\left(X_{1}, \ldots, X_{k} ; X, Y\right) T\left(Y_{1}, \ldots, Y_{k}\right)=\left(\nabla^{2} T\right)\left(Y_{1}, \ldots, Y_{k} ; X, Y\right) T\left(X_{1}, \ldots, X_{k}\right)
$$

respectively, where $X, Y, X_{1}, Y_{1}, \ldots, X_{k}, Y_{k} \in T M$. From (2.1) it follows that at a point $x \in M$, if the tensor $T$ is non-zero, then there exists a unique 1-form $\phi$, a $(0,2)$-tensor $\psi$, defined on a neighborhood $U$ of $x$ such that

$$
\begin{equation*}
\nabla T=T \otimes \phi, \quad \phi=d(\log \|T\|) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} T=T \otimes \psi \tag{2.3}
\end{equation*}
$$

respectively, hold on $U$, where $\|T\|$ denotes the norm of $T$ and $\|T\|^{2}=g(T, T)$. The tensor $T$ is said to be generalized 2-recurrent if

$$
\begin{aligned}
& \left(\left(\nabla^{2} T\right)\left(X_{1}, \ldots, X_{k} ; X, Y\right)-(\nabla T \otimes \phi)\left(X_{1}, \ldots, X_{k} ; X, Y\right)\right) T\left(Y_{1}, \ldots, Y_{k}\right)= \\
& =\left(\left(\nabla^{2} T\right)\left(Y_{1}, \ldots, Y_{k} ; X, Y\right)-(\nabla T \otimes \phi)\left(Y_{1}, \ldots, Y_{k} ; X, Y\right)\right) T\left(X_{1}, \ldots, X_{k}\right),
\end{aligned}
$$

holds on $M$, where $\phi$ is a 1 -form on $M$. From this it follows that at a point $x \in M$ if the tensor $T$ is non-zero, then there exists a unique $(0,2)$-tensor $\psi$, defined on a neighborhood $U$ of $x$, such that

$$
\begin{equation*}
\nabla^{2} T=\nabla T \otimes \phi+T \otimes \psi \tag{2.4}
\end{equation*}
$$

holds on $U$.
Let $f:(M, g) \rightarrow(\widetilde{M}, \widetilde{g})$ be an isometric immersion from an $n$-dimensional Riemannian manifold $(M, g)$ into $(n+d)$-dimensional Riemannian manifold $(\widetilde{M}, \widetilde{g}), n \geq 2, d \geq 1$. We denote by $\nabla$ and $\widetilde{\nabla}$ as Levi-Civita connection of $M^{n}$ and $\widetilde{M}^{n+d}$ respectively. Then the formulas of Gauss and Weingarten are given by

$$
\begin{align*}
& \widetilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y),  \tag{2.5}\\
& \widetilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N, \tag{2.6}
\end{align*}
$$

for any tangent vector fields $X, Y$ and the normal vector field $N$ on $M$, where $\sigma, A$ and $\nabla^{\perp}$ are the second fundamental form, the shape operator and the normal connection respectively. If the second fundamental form $\sigma$ is identically zero then the manifold is said to be totallygeodesic. The second fundamental form $\sigma$ and $A_{N}$ are related by

$$
\widetilde{g}(\sigma(X, Y), N)=g\left(A_{N} X, Y\right)
$$

for tangent vector fields $X, Y$. The first and second covariant derivatives of the second fundamental form $\sigma$ are given by

$$
\begin{gather*}
\left(\widetilde{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)  \tag{2.7}\\
\left(\widetilde{\nabla}^{2} \sigma\right)(Z, W, X, Y)=\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} \sigma\right)(Z, W)= \\
=\nabla_{X}^{\perp}\left(\left(\widetilde{\nabla}_{Y} \sigma\right)(Z, W)\right)-\left(\widetilde{\nabla}_{Y} \sigma\right)\left(\nabla_{X} Z, W\right)- \\
\quad-\left(\widetilde{\nabla}_{X} \sigma\right)\left(Z, \nabla_{Y} W\right)-\left(\widetilde{\nabla}_{\nabla_{X} Y} \sigma\right)(Z, W) \tag{2.8}
\end{gather*}
$$

respectively, where $\widetilde{\nabla}$ is called the van der Waerden - Bortolotti connection of $M$ [7]. If $\widetilde{\nabla} \sigma=0$, then $M$ is said to have parallel second fundamental form [7]. We next define endomorphisms $R(X, Y)$ and $X \wedge_{B} Y$ of $\chi(M)$ by

$$
\begin{gather*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z  \tag{2.9}\\
\left(X \wedge_{B} Y\right) Z=B(Y, Z) X-B(X, Z) Y
\end{gather*}
$$

respectively, where $X, Y, Z \in \chi(M)$ and $B$ is a symmetric ( 0,2 )-tensor.
Now, for a $(0, k)$-tensor field $T, k \geq 1$ and a $(0,2)$-tensor field $B$ on $(M, g)$, we define the tensor $Q(B, T)$ by

$$
\begin{gather*}
Q(B, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-\left(T\left(X \wedge_{B} Y\right) X_{1}, \ldots, X_{k}\right)-\ldots \\
\ldots-T\left(X_{1}, \ldots, X_{k-1}\left(X \wedge_{B} Y\right) X_{k}\right) \tag{2.10}
\end{gather*}
$$

Putting into the above formula $T=\sigma, \widetilde{\nabla} \sigma$ and $B=g, B=S$, we obtain the tensors $Q(g, \sigma)$, $Q(S, \sigma), Q(g, \widetilde{\nabla} \sigma)$ and $Q(S, \widetilde{\nabla} \sigma)$.

Definition 2.1. The immersion $f$ is said to be

$$
\begin{gather*}
\text { semiparallel [9] if } \quad \widetilde{R} \cdot \sigma=0,  \tag{2.11}\\
\text { 2-semiparallel [14] if } \quad \widetilde{R} \cdot \widetilde{\nabla} \sigma=0,  \tag{2.12}\\
\text { pseudoparallel [2] if } \widetilde{R} \cdot \sigma=L_{1} Q(g, \sigma),  \tag{2.13}\\
\text { 2-pseudoparallel [14] if } \widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{1} Q(g, \widetilde{\nabla} \sigma) \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\text { Ricci-generalized pseudoparallel [12] if } \widetilde{R} \cdot \sigma=L_{2} Q(S, \sigma) \tag{2.15}
\end{equation*}
$$

respectively, where $\widetilde{R}$ denotes the curvature tensor with respect to connection $\widetilde{\nabla}$ and $\widetilde{R}(X, Y) \sigma(U, V)=\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y}-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X}-\widetilde{\nabla}_{[X, Y]}\right) \sigma(U, V)$ and $(\widetilde{R}(X, Y) \widetilde{\nabla} \sigma)(U, V, W)=$ $=\widetilde{R}(X, Y)\left(\widetilde{\nabla}_{U} \sigma\right)(V, W)$. Here $L_{1}, L_{2}$ are functions depending on $\sigma$ and $\widetilde{\nabla} \sigma$.

Now we introduce the definition of 2-Ricci-generalized pseudoparallel.
Definition 2.2. The immersion $f$ is said to be 2-Ricci-generalized pseudoparallel if

$$
\begin{equation*}
\widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{2} Q(S, \widetilde{\nabla} \sigma), \tag{2.16}
\end{equation*}
$$

where $L_{2}$ is a function depending on $\widetilde{\nabla} \sigma$.
From the Gauss and Weingarten formulas, we obtain

$$
\begin{equation*}
(\widetilde{R}(X, Y) Z)^{T}=R(X, Y) Z+A_{\sigma_{(X, Z)}} Y-A_{\sigma_{(Y, Z)}} X \tag{2.17}
\end{equation*}
$$

By (2.11), we have

$$
\begin{equation*}
(\widetilde{R}(X, Y) \cdot \sigma)(U, V)=R^{\perp}(X, Y) \sigma(U, V)-\sigma(R(X, Y) U, V)-\sigma(U, R(X, Y) V) \tag{2.18}
\end{equation*}
$$

for all vector fields $X, Y, U$ and $V$ tangent to $M$, where

$$
\begin{equation*}
R^{\perp}(X, Y)=\left[\nabla_{X}^{\perp}, \nabla_{Y}^{\perp}\right]-\nabla_{[X, Y]}^{\perp} . \tag{2.19}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{gather*}
(\widetilde{R}(X, Y) \cdot \widetilde{\nabla} \sigma)(U, V, W)=R^{\perp}(X, Y)(\widetilde{\nabla} \sigma)(U, V, W)-(\widetilde{\nabla} \sigma)(R(X, Y) U, V, W)- \\
-(\widetilde{\nabla} \sigma)(U, R(X, Y) V, W)-(\widetilde{\nabla} \sigma)(U, V, R(X, Y) W), \tag{2.20}
\end{gather*}
$$

for all vector fields $X, Y, U, V, W$ tangent to $M$, where $(\widetilde{\nabla} \sigma)(U, V, W)=\left(\widetilde{\nabla}_{U} \sigma\right)(V, W)[1]$.
3. Preliminaries. Let $M$ be a $n=(2 m+1)$-dimensional almost contact metric manifold with an almost contact metric structure $(\phi, \xi, \eta, g)$, where $\phi$ is a $(1,1)$-tensor field, $\xi$ is a vector field, $\eta$ is a 1 -form and g is the associated Riemannian metric such that [5],

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \eta \circ \phi=0, \quad \phi \xi=0,  \tag{3.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \xi)=\eta(X), \quad g(\phi X, Y)=-g(X, \phi Y) \tag{3.2}
\end{gather*}
$$

for all vector fields $X, Y$ on $\widetilde{M}$.
An almost contact metric structure $(\phi, \xi, \eta, g)$ on $M$ is called a trans-Sasakian structure [13] if $(M \times R, J, G)$ belongs to the class $W_{4}[10]$, where $J$ is the almost complex structure on $M \times R$ defined by $J(X, \lambda d / d t)=(\phi X-\lambda \xi, \eta(X) d / d t)$ for all vector fields $X$ on $M$ and smooth function $\lambda$ on $M \times R$ and $G$ is the product metric on $M \times R$. This may be expressed by the condition [6]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{3.3}
\end{equation*}
$$

for some smooth functions $\alpha$ and $\beta$ on $M$ and we say that the trans-Sasakian structure is of type $(\alpha, \beta)$.

Let $M$ be a trans-Sasakian manifold. From (3.3), it is easy to see that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{3.4}
\end{equation*}
$$

If $\alpha=1, \beta=0$ it reduces to Sasakian manifold.
If $\alpha=0, \beta=1$ it reduces to Kenmotsu manifold.

In an $n$-dimensional trans-Sasakian manifold, we have

$$
\begin{gather*}
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) X-\eta(X) Y\}+2 \alpha \beta\{\eta(Y) \phi(X)-\eta(X) \phi(Y)\}+ \\
+\left\{(Y \alpha) \phi X-(X \alpha) \phi Y+(Y \beta) \phi^{2} X-(X \beta) \phi^{2} Y\right\}  \tag{3.5}\\
R(\xi, X) Y=\left(\alpha^{2}-\beta^{2}\right)\{g(X, Y) \xi-\eta(Y) X\}+(\xi \beta) \eta(Y)\{-X+\eta(X) \xi\}  \tag{3.6}\\
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\{\eta(X) \xi-X\}  \tag{3.7}\\
2 \alpha \beta+\xi \alpha=0  \tag{3.8}\\
S(X, \xi)=\left((n-1)\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(n-2) X \beta-(\phi X) \alpha  \tag{3.9}\\
Q \xi=\left((n-1)\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \xi-(n-2) \operatorname{grad} \beta+\phi(\operatorname{grad} \alpha) . \tag{3.10}
\end{gather*}
$$

Further, in a trans-Sasakian manifold of type $(\alpha, \beta)$, we have

$$
\begin{equation*}
\phi(\operatorname{grad} \alpha)=(n-2) \operatorname{grad} \beta \tag{3.11}
\end{equation*}
$$

Using (3.11) the equations (3.5) - (3.7), (3.9) and (3.10) reduce to

$$
\begin{gather*}
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) X-\eta(X) Y\}  \tag{3.12}\\
R(\xi, X) Y=\left(\alpha^{2}-\beta^{2}\right)\{g(X, Y) \xi-\eta(Y) X\}  \tag{3.13}\\
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}\right)\{\eta(X) \xi-X\}  \tag{3.14}\\
S(X, \xi)=(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(X)  \tag{3.15}\\
Q \xi=(n-1)\left(\alpha^{2}-\beta^{2}\right) \xi \tag{3.16}
\end{gather*}
$$

respectively.
A submanifold $M$ of a trans-Sasakian manifold $\widetilde{M}$ is called an invariant submanifold of $\widetilde{M}$, if for each $x \in M, \phi\left(T_{x} M\right) \subset T_{x} M$. As a consequence, $\xi$ becomes tangent to $M$. In an invariant submanifold of a trans-Sasakian manifold

$$
\begin{equation*}
\sigma(X, \xi)=0 \tag{3.17}
\end{equation*}
$$

for any vector $X$ tangent to $M$.
4. Recurrent invariant submanifolds of trans-Sasakian manifolds. We consider invariant submanifold of a trans-Sasakian manifold satisfying the conditions $\sigma$ is recurrent, 2-recurrent, generalized 2-recurrent and $M$ has parallel third fundamental form. As a result of this we state the following theorem.

Theorem 4.1. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then $\sigma$ is recurrent if and only if it is totally geodesic.

Proof. Let $\sigma$ be recurrent, from (2.2) and we get

$$
\left(\widetilde{\nabla}_{X} \sigma\right)(Y, Z)=\phi(X) \sigma(Y, Z),
$$

where $\phi$ is a 1-form on $M$ and in view of (2.7) and taking $Z=\xi$ in the above equation, we have

$$
\begin{equation*}
\nabla_{X}^{\perp} \sigma(Y, \xi)-\sigma\left(\nabla_{X} Y, \xi\right)-\sigma\left(Y, \nabla_{X} \xi\right)=\phi(X) \sigma(Y, \xi) \tag{4.1}
\end{equation*}
$$

Using (3.4), (3.17) in (4.1), we obtain $\left(\alpha^{2}+\beta^{2}\right) \sigma(X, Y)=0$. Since $\alpha$ and $\beta$ are not simultaneously zero. Hence $\left(\alpha^{2}+\beta^{2}\right) \neq 0$ and $\sigma(X, Y)=0$. Thus $M$ is totally geodesic. The converse statement is trivial.

Theorem 4.1 is proved.
Theorem 4.2. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then $M$ has parallel third fundamental form if and only if it is totally geodesic.

Proof. Let $M$ has parallel third fundamental form. Then we obtain

$$
\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} \sigma\right)(Z, W)=0
$$

Taking $W=\xi$ and using (2.8) in the above equation, we have

$$
\begin{equation*}
\nabla_{X}^{\frac{1}{X}}\left(\left(\widetilde{\nabla}_{Y} \sigma\right)(Z, \xi)\right)-\left(\widetilde{\nabla}_{Y} \sigma\right)\left(\nabla_{X} Z, \xi\right)-\left(\widetilde{\nabla}_{X} \sigma\right)\left(Z, \nabla_{Y} \xi\right)-\left(\widetilde{\nabla}_{\nabla_{X} Y} \sigma\right)(Z, \xi)=0 \tag{4.2}
\end{equation*}
$$

By virtue of (2.7) in (4.2) and using (3.17), we get

$$
\begin{align*}
& 2 \nabla_{X}^{\frac{1}{X}} \alpha \sigma(Z, \phi Y)-2 \nabla_{X}^{\frac{1}{X}} \beta \sigma(Z, Y)-2 \alpha \sigma\left(\nabla_{X} Z, \phi Y\right)+2 \beta \sigma\left(\nabla_{X} Z, Y\right)-\sigma\left(Z, \nabla_{X} \alpha \phi Y\right)+ \\
& \quad+\sigma\left(Z, \nabla_{X} \beta Y\right)-\sigma\left(Z, \nabla_{X} \beta \eta(Y) \xi\right)-\alpha \sigma\left(Z, \phi \nabla_{X} Y\right)+\beta \sigma\left(Z, \nabla_{X} Y\right) . \tag{4.3}
\end{align*}
$$

Putting $Y=\xi$ and using (3.4), (3.17) in (4.3), we get $\left(\alpha^{2}+\beta^{2}\right)^{2} \sigma(X, Z)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, then $\sigma(X, Z)=0$. Thus $M$ is totally geodesic. The converse statement is trivial.

Theorem 4.2 is proved.
Corollary 4.1. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then $\sigma$ is 2 -recurrent if and only if it is totally geodesic.

Proof. Let $\sigma$ be 2-recurrent, from (2.3), we have

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} \sigma\right)(Z, W)=\sigma(Z, W) \phi(X, Y) . \tag{4.4}
\end{equation*}
$$

Taking $W=\xi$ in (4.4) and using the proof of the Theorem 4.2, we get $\left(\alpha^{2}+\beta^{2}\right)^{2} \sigma(X, Z)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, then $\sigma(X, Z)=0$. Thus $M$ is totally geodesic. The converse statement is trivial.

Corollary 4.1 is proved.
Theorem 4.3. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then $\sigma$ is generalized 2 -recurrent if and only if it is totally geodesic.

Proof. Let $\sigma$ be generalized 2-recurrent, from (2.4), we obtain

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} \sigma\right)(Z, W)=\psi(X, Y) \sigma(Z, W)+\phi(X)\left(\widetilde{\nabla}_{Y} \sigma\right)(Z, W) \tag{4.5}
\end{equation*}
$$

where $\psi$ and $\phi$ are 2-recurrent and 1-form respectively. Taking $W=\xi$ in (4.5) and using (3.17), we get

$$
\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} \sigma\right)(Z, \xi)=\phi(X)\left(\widetilde{\nabla}_{Y} \sigma\right)(Z, \xi)
$$

By virtue of (2.7) and (2.8) in above equation and in view of (3.17), we have

$$
\begin{gathered}
2 \nabla_{X}^{\perp} \alpha \sigma(Z, \phi Y)-2 \nabla_{X}^{\frac{1}{X}} \beta \sigma(Z, Y)-2 \alpha \sigma\left(\nabla_{X} Z, \phi Y\right)+2 \beta \sigma\left(\nabla_{X} Z, Y\right)- \\
-\sigma\left(Z, \nabla_{X} \alpha \phi Y\right)+\sigma\left(Z, \nabla_{X} \beta Y\right)-\sigma\left(Z, \nabla_{X} \beta \eta(Y) \xi\right)-\alpha \sigma\left(Z, \phi \nabla_{X} Y\right)+\beta \sigma\left(Z, \nabla_{X} Y\right)= \\
=\{\alpha \sigma(Z, \phi Y)-\beta \sigma(Z, Y)\} .
\end{gathered}
$$

Putting $Y=\xi$ and using (3.4), (3.17) in the above equation, we obtain $\left(\alpha^{2}+\beta^{2}\right)^{2} \sigma(X, Z)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, then $\sigma(X, Z)=0$. Thus $M$ is totally geodesic. The converse statement is trivial.

Theorem 4.3 is proved.
5. 2-Semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci-generalized pseudoparallel invariant submanifolds of trans-Sasakian manifolds. We consider invariant submanifolds of trans-Sasakian manifolds satisfying the conditions $\widetilde{R} \cdot \widetilde{\nabla} \sigma=0$, $\widetilde{R} \cdot \sigma=L_{1} Q(g, \sigma), \widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{1} Q(g, \widetilde{\nabla} \sigma) \widetilde{R} \cdot \sigma=L_{2} Q(S, \sigma)$ and $\widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{2} Q(S, \widetilde{\nabla} \sigma)$.

Theorem 5.1. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the submanifold $M$ is 2-semiparallel if and only if it is totally geodesic.

Proof. Let $M$ be 2 -semiparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma=0$. Put $X=V=\xi$ in (2.20), we get

$$
\begin{gather*}
R^{\perp}(\xi, Y)(\widetilde{\nabla} \sigma)(U, \xi, W)-(\widetilde{\nabla} \sigma)(R(\xi, Y) U, \xi, W)- \\
-(\widetilde{\nabla} \sigma)(U, R(\xi, Y) \xi, W)-(\widetilde{\nabla} \sigma)(U, \xi, R(\xi, Y) W)=0 . \tag{5.1}
\end{gather*}
$$

In view of (2.7), (3.4), (3.13), (3.14) and (3.17), we have the following equalities:

$$
\begin{gather*}
(\widetilde{\nabla} \sigma)(U, \xi, W)=\left(\widetilde{\nabla}_{U} \sigma\right)(\xi, W)= \\
=\nabla_{U}^{\perp} \sigma(\xi, W)-\sigma\left(\nabla_{U} \xi, W\right)-\sigma\left(\xi, \nabla_{U} W\right)= \\
=\alpha \sigma(\phi U, W)-\beta \sigma(U, W),  \tag{5.2}\\
(\widetilde{\nabla} \sigma)(R(\xi, Y) U, \xi, W)=\left(\widetilde{\nabla}_{R(\xi, Y) U} \sigma\right)(\xi, W)= \\
=\nabla_{R}^{\perp}(\xi, Y) U \\
=-\alpha(\xi, W)-\sigma\left(\nabla_{R(\xi, Y) U} \xi, W\right)-\sigma\left(\xi, \nabla_{R(\xi, Y) U} W\right)=  \tag{5.3}\\
(\widetilde{\nabla} \sigma)(U, R(\xi, Y) \xi, W)=\left(\widetilde{\nabla}_{U} \sigma\right)(R(\xi, Y) \xi, W)= \\
=\nabla_{U}^{\perp} \sigma(R(\xi, Y) \xi, W)-\sigma\left(\nabla_{U} R(\xi, Y) \xi, W\right)-\sigma\left(R(\xi, Y) \xi, \nabla_{U} W\right)= \\
=\nabla_{U}^{\frac{1}{U} \sigma}\left(\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)-\sigma\left(\nabla_{U}\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)+ \\
+\left(\alpha^{2}-\beta^{2}\right) \sigma\left(Y, \nabla_{U} W\right) \tag{5.4}
\end{gather*}
$$

and

$$
\begin{gather*}
(\widetilde{\nabla} \sigma)(U, \xi, R(\xi, Y) W)=\left(\widetilde{\nabla}_{U} \sigma\right)(\xi, R(\xi, Y) W)= \\
=\nabla_{U}^{\frac{1}{U}} \sigma(\xi, R(\xi, Y) W)-\sigma\left(\nabla_{U} \xi, R(\xi, Y) W\right)-\sigma\left(\xi, \nabla_{U} R(\xi, Y) W\right)= \\
=-\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(\phi U, Y)+\beta\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(U, Y) . \tag{5.5}
\end{gather*}
$$

Substituting (5.2) - (5.5) into (5.1), we obtain

$$
\begin{align*}
& R^{\perp}(\xi, Y)\{\alpha \sigma(\phi U, W)-\beta \sigma(U, W)\}+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(\phi Y, W)- \\
& -\beta\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(Y, W)-\nabla_{U}^{\perp} \sigma\left(\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)+ \\
& +\sigma\left(\nabla_{U}\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)-\left(\alpha^{2}-\beta^{2}\right) \sigma\left(Y, \nabla_{U} W\right)+ \\
& \quad+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(\phi U, Y)-\beta\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(U, Y)=0 . \tag{5.6}
\end{align*}
$$

Taking $W=\xi$ and using (3.4), (3.17) in (5.6), we get $\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{2}+\beta^{2}\right) \sigma(U, Y)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, hence if $\alpha \neq \pm \beta$ and then $\sigma(U, Y)=0$, i.e., $M$ is totally geodesic. The converse statement is trivial.

Theorem 5.1 is proved.
Theorem 5.2. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the submanifold $M$ is pseudoparallel if and only if it is totally geodesic.

Proof. Let $M$ be pseudoparallel $\widetilde{R} \cdot \sigma=L_{1} Q(g, \sigma)$. Put $X=V=\xi$ in (2.10), (2.18) and adding, we get

$$
\begin{gather*}
R^{\perp}(\xi, Y) \sigma(U, \xi)-\sigma(R(\xi, Y) U, \xi)-\sigma(U, R(\xi, Y) \xi)= \\
=-L_{1}\{g(\xi, \xi) \sigma(U, Y)-g(\xi, U) \sigma(\xi, Y)+g(\xi, Y) \sigma(\xi, U)-g(Y, U) \sigma(\xi, \xi)\} . \tag{5.7}
\end{gather*}
$$

Using (3.14) and (3.17) in (5.7), we get $\left[\left(\alpha^{2}-\beta^{2}\right)+L_{1}\right] \sigma(U, Y)=0$. If $L_{1} \neq-\left(\alpha^{2}-\beta^{2}\right)$ and $\alpha \neq \pm \beta$, then $\sigma(U, Y)=0$, i.e., $M$ is totally geodesic. The converse statement is trivial.

Theorem 5.2 is proved.
Theorem 5.3. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the submanifold $M$ is 2-pseudoparallel if and only if it is totally geodesic.

Proof. Let $M$ be 2-pseudoparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{1} Q(g, \widetilde{\nabla} \sigma)$. Put $X=V=\xi$ in (2.10), (2.20) and adding, in view of (3.1) and (3.17), we get

$$
\begin{gathered}
R^{\perp}(\xi, Y)(\widetilde{\nabla} \sigma)(U, \xi, W)-(\widetilde{\nabla} \sigma)(R(\xi, Y) U, \xi, W)- \\
-(\widetilde{\nabla} \sigma)(U, R(\xi, Y) \xi, W)-(\widetilde{\nabla} \sigma)(U, \xi, R(\xi, Y) W)= \\
=-L_{1}\left[\eta(W)\left\{\nabla \nabla_{\xi}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{\xi} Y, U\right)-\sigma\left(Y, \nabla_{\xi} U\right)\right\}-\right. \\
-\nabla_{W}^{\perp} \sigma(Y, U)+\sigma\left(\nabla_{W} Y, U\right)+\sigma\left(Y, \nabla_{W} U\right)-\eta(Y)\left\{\nabla_{\xi}^{\perp} \sigma(W, U)-\sigma\left(\nabla_{\xi} W, U\right)-\right. \\
\text { ISSN 1027-3190. Yкр. мат. журри, 2015, т. 67, № } 10
\end{gathered}
$$

$$
\begin{equation*}
\left.\left.-\sigma\left(W, \nabla_{\xi} U\right)\right\}-\eta(U)\left\{\nabla_{\xi}^{\perp} \sigma(Y, W)-\sigma\left(\nabla_{\xi} Y, W\right)-\sigma\left(Y, \nabla_{\xi} W\right)\right\}\right] . \tag{5.8}
\end{equation*}
$$

Substituting (5.2) -(5.5) into (5.8), we obtain

$$
\begin{gather*}
R^{\perp}(\xi, Y)\{\alpha \sigma(\phi U, W)-\beta \sigma(U, W)\}+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(\phi Y, W)- \\
-\beta\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(Y, W)-\nabla_{U}^{\perp} \sigma\left(\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)+ \\
+\sigma\left(\nabla_{U}\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)-\left(\alpha^{2}-\beta^{2}\right) \sigma\left(Y, \nabla_{U} W\right)+ \\
+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(\phi U, Y)-\beta\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(U, Y)= \\
=-L_{1}\left[\eta(W)\left\{\nabla_{\xi}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{\xi} Y, U\right)-\sigma\left(Y, \nabla_{\xi} U\right)\right\}-\right. \\
-\nabla_{W}^{\perp} \sigma(Y, U)+\sigma\left(\nabla_{W} Y, U\right)+\sigma\left(Y, \nabla_{W} U\right)- \\
-\eta(Y)\left\{\nabla_{\xi}^{\perp} \sigma(W, U)-\sigma\left(\nabla_{\xi} W, U\right)-\sigma\left(W, \nabla_{\xi} U\right)\right\}- \\
\left.-\eta(U)\left\{\nabla_{\xi}^{\perp} \sigma(Y, W)-\sigma\left(\nabla_{\xi} Y, W\right)-\sigma\left(Y, \nabla_{\xi} W\right)\right\}\right] . \tag{5.9}
\end{gather*}
$$

Taking $W=\xi$ and using (3.4), (3.17) in (5.9), we get $\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{2}+\beta^{2}\right) \sigma(U, Y)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, hence if $\alpha \neq \pm \beta$ and then $\sigma(U, Y)=0$, i.e., $M$ is totally geodesic. The converse statement is trivial.

Theorem 5.3 is proved.
Theorem 5.4. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the submanifold $M$ is Ricci-generalized pseudoparallel if and only if it is totally geodesic.

Proof. Let $M$ be Ricci-generalized pseudoparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{2} Q(S, \sigma)$. Put $X=V=\xi$ in (2.10), (2.18) and adding, we get

$$
\begin{gather*}
R^{\perp}(\xi, Y) \sigma(U, \xi)-\sigma(R(\xi, Y) U, \xi)-\sigma(U, R(\xi, Y) \xi)= \\
=-L_{2}\{S(\xi, \xi) \sigma(U, Y)-S(\xi, U) \sigma(\xi, Y)+S(\xi, Y) \sigma(\xi, U)-S(Y, U) \sigma(\xi, \xi)\} . \tag{5.10}
\end{gather*}
$$

Using (3.14), (3.15) and (3.17) in (5.10), we have $\left(\alpha^{2}-\beta^{2}\right)\left[1+L_{2}(n-1)\right] \sigma(U, Y)=0$. If $\alpha \neq \pm \beta$ and $L_{2} \neq-\frac{1}{n-1}$, then $\sigma(U, Y)=0$, i.e., $M$ is totally geodesic. The converse statement is trivial.

Theorem 5.5. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the submanifold $M$ is 2-Ricci-generalized pseudoparallel, if and only if it is totally geodesic.

Proof. Let $M$ be 2-Ricci-generalized pseudoparallel $\widetilde{R} \cdot \widetilde{\nabla} \sigma=L_{2} Q(S, \widetilde{\nabla} \sigma)$. Put $X=V=\xi$ in (2.10), (2.20) and adding, in view of (3.15) and (3.17) we obtain

$$
\begin{gathered}
R^{\perp}(\xi, Y)(\widetilde{\nabla} \sigma)(U, \xi, W)-(\widetilde{\nabla} \sigma)(R(\xi, Y) U, \xi, W)- \\
-(\widetilde{\nabla} \sigma)(U, R(\xi, Y) \xi, W)-(\widetilde{\nabla} \sigma)(U, \xi, R(\xi, Y) W)= \\
=-L_{2}\left[(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(W)\left\{\nabla_{\xi}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{\xi} Y, U\right)-\sigma\left(Y, \nabla_{\xi} U\right)\right\}-\right.
\end{gathered}
$$

$$
\begin{gather*}
-(n-1)\left(\alpha^{2}-\beta^{2}\right)\left\{\nabla_{W}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{W} Y, U\right)-\sigma\left(Y, \nabla_{W} U\right)\right\}- \\
-(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(Y)\left\{\nabla_{\xi}^{\perp} \sigma(W, U)-\sigma\left(\nabla_{\xi} W, U\right)-\sigma\left(W, \nabla_{\xi} U\right)\right\}- \\
\left.-(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(U)\left\{\nabla_{\xi}^{\perp} \sigma(Y, W)-\sigma\left(\nabla_{\xi} Y, W\right)-\sigma\left(Y, \nabla_{\xi} W\right)\right\}\right] \tag{5.11}
\end{gather*}
$$

Substituting (5.2) - (5.5) into (5.11), we have

$$
\begin{gather*}
R^{\perp}(\xi, Y)\{\alpha \sigma(\phi U, W)-\beta \sigma(U, W)\}+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(\phi Y, W)- \\
-\beta\left(\alpha^{2}-\beta^{2}\right) \eta(U) \sigma(Y, W)-\nabla_{U}^{\perp} \sigma\left(\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)+ \\
+\sigma\left(\nabla_{U}\left(\alpha^{2}-\beta^{2}\right)\{\eta(Y) \xi-Y\}, W\right)-\left(\alpha^{2}-\beta^{2}\right) \sigma\left(Y, \nabla_{U} W\right)+ \\
+\alpha\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(\phi U, Y)-\beta\left(\alpha^{2}-\beta^{2}\right) \eta(W) \sigma(U, Y)= \\
=-L_{2}\left[(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(W)\left\{\nabla_{\xi}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{\xi} Y, U\right)-\sigma\left(Y, \nabla_{\xi} U\right)\right\}-\right. \\
-(n-1)\left(\alpha^{2}-\beta^{2}\right)\left\{\nabla_{W}^{\perp} \sigma(Y, U)-\sigma\left(\nabla_{W} Y, U\right)-\sigma\left(Y, \nabla_{W} U\right)\right\}- \\
-(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(Y)\left\{\nabla_{\xi}^{\perp} \sigma(W, U)-\sigma\left(\nabla_{\xi} W, U\right)-\sigma\left(W, \nabla_{\xi} U\right)\right\}- \\
\left.-(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(U)\left\{\nabla_{\xi}^{\perp} \sigma(Y, W)-\sigma\left(\nabla_{\xi} Y, W\right)-\sigma\left(Y, \nabla_{\xi} W\right)\right\}\right] . \tag{5.12}
\end{gather*}
$$

Taking $W=\xi$ and using (3.4), (3.15), (3.17) in (5.12), we get $\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{2}+\beta^{2}\right) \sigma(U, Y)=0$. Since $\left(\alpha^{2}+\beta^{2}\right) \neq 0$, hence if $\alpha \neq \pm \beta$ and then $\sigma(U, Y)=0$. i.e., $M$ is totally geodesic. The converse statement is trivial.

Theorem 5.5 is proved.
Using Theorems 4.1 to $4.3,5.1$ to 5.5, Corollary 4.1 and the result of [3], we have the following result.

Corollary 5.1. Let $M$ be an invariant submanifold of a trans-Sasakian manifold $\widetilde{M}$. Then the following statements are equivalent:
(1) $\sigma$ is parallel;
(2) $\sigma$ is 2-parallel;
(3) $\sigma$ is recurrent;
(4) $\sigma$ is 2-recurrent;
(5) $\sigma$ is generalized 2-recurrent;
(6) $M$ has parallel third fundamental form;
(7) $M$ is semiparallel;
(8) $M$ is 2-semiparallel, if $\alpha \neq \pm \beta$;
(9) $M$ is pseudoparallel, if $L_{1} \neq-\left(\alpha^{2}-\beta^{2}\right)$ and $\alpha \neq \pm \beta$;
(10) $M$ is 2-pseudoparallel, if $\alpha \neq \pm \beta$;
(11) $M$ is Ricci-generalized pseudoparallel, if $L_{2} \neq-\frac{1}{n-1}$ and $\alpha \neq \pm \beta$;
(12) $M$ is 2-Ricci-generalized pseudoparallel, if $\alpha \neq \pm \beta$;
(13) $M$ is totally geodesic.

Example of trans-Sasakian manifold. We consider the 3-dimensional manifold $M=$ $=\left\{(x, y, z) \in R^{3}: x \neq 0, y \neq 0\right\}$, where $(x, y, z)$ are the standard coordinates in $R^{3}$. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be linearly independent global frame field on $M$ given by

$$
E_{1}=\frac{e^{z}}{x}\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}\right), \quad E_{2}=\frac{e^{z}}{y} \frac{\partial}{\partial y}, \quad E_{3}=\frac{\partial}{\partial z} .
$$

Let $g$ be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(E_{1}, E_{2}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{3}\right)=0, \\
& g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1 .
\end{aligned}
$$

The ( $\phi, \xi, \eta$ ) is given by

$$
\begin{gathered}
\eta=d z-y d x, \quad \xi=E_{3}=\frac{\partial}{\partial z}, \\
\phi E_{1}=E_{2}, \quad \phi E_{2}=-E_{1}, \quad \phi E_{3}=0 .
\end{gathered}
$$

The linearity property of $\phi$ and $g$ yields that

$$
\begin{gathered}
\eta\left(E_{3}\right)=1, \quad \phi^{2} U=-U+\eta(U) E_{3}, \\
g(\phi U, \phi W)=g(U, W)-\eta(U) \eta(W),
\end{gathered}
$$

for any vector fields $U, W$ on $M$. By definition of Lie bracket, we have

$$
\left[E_{1}, E_{2}\right]=y \frac{e^{z}}{x} E_{2}-\frac{e^{2 z}}{x y} E_{3}, \quad\left[E_{1}, E_{3}\right]=-E_{1}, \quad\left[E_{2}, E_{3}\right]=-E_{2}
$$

Let $\nabla$ be the Levi-Civita connection with respect to above metric $g$ is given by Koszula formula

$$
\begin{gathered}
2 g\left(\nabla_{X} Y, Z\right)=X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y))- \\
-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) .
\end{gathered}
$$

Then we get

$$
\begin{gathered}
\nabla_{E_{1}} E_{1}=E_{3}, \quad \nabla_{E_{1}} E_{2}=-\frac{e^{2 z}}{2 x y} E_{3}, \quad \nabla_{E_{1}} E_{3}=-E_{1}+\frac{e^{2 z}}{2 x y} E_{2}, \\
\nabla_{E_{2}} E_{1}=-y \frac{e^{z}}{x} E_{2}+\frac{e^{2 z}}{2 x y} E_{3}, \quad \nabla_{E_{2}} E_{2}=y \frac{e^{z}}{x} E_{1}+E_{3}, \quad \nabla_{E_{2}} E_{3}=-\frac{e^{2 z}}{2 x y} E_{1}-E_{2}, \\
\nabla_{E_{3}} E_{1}=\frac{e^{2 z}}{2 x y} E_{2}, \quad \nabla_{E_{3}} E_{2}=-\frac{e^{2 z}}{2 x y} E_{1}, \quad \nabla_{E_{3}} E_{3}=0 .
\end{gathered}
$$

The tangent vectors $X$ and $Y$ to $M$ are expressed as linear combination of $E_{1}, E_{2}, E_{3}$, i.e., $X=$ $=a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}$ and $Y=b_{1} E_{1}+b_{2} E_{2}+b_{3} E_{3}$, where $a_{i}$ and $b_{j}$ are scalars. Clearly $(\phi, \xi, \eta, g)$ and $X, Y$ satisfy equations (3.1), (3.2), (3.3) and (3.4) with $\alpha=-\frac{e^{2 z}}{2 x y}$ and $\beta=-1$. Thus $M$ is a trans-Sasakian manifold. In particular we consider the example of monkey saddle given by

$$
M=\left\{(x, y, z) \in R^{3}: z=x^{3}-3 x y^{2}\right\}
$$

By the above $x \neq 0, y \neq 0 \Rightarrow z \neq 0$ and $M=R^{3}-\{0\}$. We show that though $\alpha \neq-\beta, M$ is not totally geodesic. For if $X$ is a patch defined by $X(u, v)=\left(u, v, u^{3}-3 u v^{2}\right)$ then any tangent vector $V$ to the monkey saddle is given by $V=C_{1} X_{u}+C_{2} X_{v}$, where $X_{u}=\left(1,0,3 u-3 v^{2}\right)$ and $X_{v}=(0,1,-6 u v) . M$ will not be totally geodesic, if $\nabla_{V} V \neq 0$. On verification we can see that $\nabla_{V} V \neq 0$. Hence $M$ is not totally geodesic.

Conclusion. From the above discussion we conclude that $\alpha \neq \pm \beta$ is only a necessary condition but not a sufficient condition. Hence it needs further investigation.

1. Arslan K., Lumiste U., Murathan C., Ozgur C. 2-Semi-parallel surfaces in space forms. I. Two particular cases // Proc. Eston. Acad. Sci. Phys. Math. - 2000. - 49, № 3. - P. 139-148.
2. Asperti A. C., Lobos G. A., Mercuri F. Pseudo-parallel immersions in space forms // Math. Contemp. - 1999. - 17. P. 59-70.
3. Aysel Turgut Vanli, Ramazan Sari. Invariant submanifolds of trans-Sasakian manifolds // Different. Geom.-Dynam. Systems. - 2010. - 12. - P. 177-288.
4. Bagewadi C. S., Prasad V. S. Invariant submanifolds of Kenmotsu manifolds // Kuvempu Univ. Sci. J. - 2001. - 1, № 1. - P. 92-97.
5. Blair D. E. Contact manifolds in Riemannian geometry // Lect. Notes Math. - 1976. - 509.
6. Blair D. E., Oubina J. A. Conformal and related changes of metric on the product of two almost contact metric manifolds // Publ. Math. - 1990. - 34, № 1. - P. 199-207.
7. Chen B. Y. Geometry of submanifolds and its applications. - Tokyo: Sci. Univ. Tokyo, 1981.
8. Chinea D., Prestelo P. S. Invariant submanifolds of a trans-Sasakian manifolds // Publ. Math. Debrecen. - 1991. 38, № 1-2. - P. 103-109.
9. Deprez J. Semi-parallel surfaces in the Euclidean space // J. Geometry. - 1985. - 25. - P. 192-200.
10. Gray A., Hervella L. M. The sixteen classes of almost Hermitian manifolds and their linear invariants // Ann. mat. pura ed appl. - 1980. - 123, № 4. - P. 35-58.
11. Marrero J. C. The local structure of trans-Sasakian manifolds // Ann. mat. pura ed appl. - 1992. - 4, № 162. P. $77-86$.
12. Murathan C., Arslan K., Ezentas R. Ricci generalized pseudo-parallel immersions // Differential Geometry and its Applications. - Prague: Matfyzpress, 2005. - P. 99-108.
13. Oubina J. A. New classes of almost contact metric structures // Publ. Math. Debrecen. - 1985. - 32. - P. 187-193.
14. Ozgur C., Murathan C. On invariant submanifolds of Lorentzian para-Sasakian manifolds // Arab. J. Sci. Eng. A. 2008. - 34, № 2. - P. 177-185.
15. Roter $W$. On conformally recurrent Ricci-recurrent manifolds // Colloq. Math. - 1982. - 46, № 1. - P. $45-57$.
16. Shaikh A. A., Baishya K. K., Eyasmin. On D-homothetic deformation of trans-Sasakian structure // Demonstr. math. 2008. - 41, № 1. - P. 171-188.
17. Yano K., Kon M. Structures on manifolds. - World Sci. Publ., 1984.
