UDC 512.5

B. Koşar, C. Nebiyev (Ondokuz Mayıs Univ., Turkey)

t-GENERALIZED SUPPLEMENTED MODULES

t-УЗАГАЛЬНЕНІ ДОПОВНЕНІ МОДУЛІ

In this paper, t-generalized supplemented modules are defined by starting from the generalized \oplus -supplemented modules. In addition, we present examples separating the t-generalized supplemented modules, supplemented modules, and generalized \oplus -supplemented modules and also show the equality of these modules for projective and finitely generated modules. Moreover, we define cofinitely t-generalized supplemented modules and give the characterization of these modules. Furthermore, for any ring R, we show that any finite direct sum of t-generalized supplemented R-modules is t-generalized supplemented and an arbitrary direct sum of cofinitely t-generalized supplemented R-modules is a cofinitely t-generalized supplemented module.

Доведено, що t-узагальнені доповнені модулі визначені на основі узагальнених \oplus -доповнених модулів. Крім того, наведено приклади, що відокремлюють t-узагальнені доповнені модулі, доповнені модулі та узагальнені \oplus -доповнені модулі, а також доведено рівність цих модулів для проективних та скінченнопороджених модулів. Також визначено кофінітно t-узагальнені доповнені модулі та наведено характеристику цих модулів. Більш того, для кожного кільця R доведено, що будь-яка скінченна пряма сума t-узагальнених доповнених R-модулів є t-узагальненою доповненою, а також будь-яка пряма сума кофінітно t-узагальнених доповнених R-модулів є кофінітно t-узагальненою доповненим R-модулем.

1. Introduction. Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$ and a proper submodule K of M by K < M. Let M be an R-module and $N \leq M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that M = N + K and $N \cap K = 0$, then N is called a *direct summand* of M and it is denoted by $M = N \oplus K$. For any module M we have $M = M \oplus 0$. Rad M indicates the radical of M. An *R*-module M is said to be *simple* if M have no proper submodules with distinct zero. Let M be an *R*-module. *M* is called a (*semi*) hollow module if every (*finitely generated*) proper submodule of *M* is small in M. M is called *local* module if M has a largest submodule, i.e., a proper submodule which contains all other proper submodules. A module M is called *distributive* [10] if for every submodules $K, L, N \text{ of } M, N + (K \cap L) = (N + K) \cap (N + L)$, or equivalently, $N \cap (K + L) = (N \cap K) + (N \cap L)$ holds. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement [12] of U in M. M is called a *supplemented* module if every submodule of M has a supplement. M is called \oplus -supplemented [6, 8] module if every submodule of M has a supplement that is a direct summand of M. Let M be an R-module and U, V be submodules of M. V is called a generalized supplement [2, 11, 13] of U in M if M = U + V and $U \cap V \leq \text{Rad } V$. M is called generalized supplemented or briefly GS-module if every submodule of M has a generalized supplement and clearly that every supplement submodule is a generalized supplement. M is called a generalized \oplus -supplemented [4, 5, 9, 10 module if every submodule of M has a generalized supplement that is a direct summand in M. In this paper we generalize these modules. A submodule N of an R-module M is called *cofinite* if M/N is finitely generated. M is called *cofinitely supplemented* [1] if every cofinite submodule of M has a supplement in M. M is called *semiperfect* module if every factor module of M has a projective cover.

In the next section, we will define t-generalized supplemented modules and examine the relationship between these modules, supplemented modules and generalized \oplus -supplemented modules. For any ring R, we will show that any finite direct sum of t-generalized supplemented modules is a t-generalized supplemented module and find conditions for t-generalized supplemented modules which make factor modules of these t-generalized supplemented modules.

In the last section, we will define cofinitely t-generalized supplemented modules and investigate the relationship with cofinitely supplemented modules. We also show that any direct sum of cofinitely t-generalized supplemented R-modules is also a cofinitely t-generalized supplemented R-module for any ring R.

Lemma 1.1. Let M be an R-module and N, K be submodules of M. If N + K has a generalized supplement X in M and $N \cap (K + X)$ has a generalized supplement Y in N, then X + Y is a generalized supplement of K in M.

Proof. See [4], Lemma 3.2.

Lemma 1.2. Let M be a projective module. Consider the following conditions:

(i) *M* is a semiperfect module.

(ii) *M* is a generalized \oplus -supplemented module.

Then (i) \Rightarrow (ii) holds and if M is a finitely generated module then (ii) \Rightarrow (i) also holds.

Proof. See [10], Lemma 2.2.

2. t-Generalized supplemented modules.

Definition 2.1. Let M be an R-module. M is called a t-generalized supplemented module if every submodule of M has a generalized supplement which is also a supplement in M. Clearly generalized \oplus -supplemented modules are t-generalized supplemented. But the converse implication fails to be true. This will be shown in Example 2.4.

It is also clear that although every supplemented module is a *t*-generalized supplemented the converse of this statement is not always true. We will show this situation in Examples 2.1-2.3. Since hollow and local modules are supplemented, they are *t*-generalized supplemented modules.

It is well-known that every \oplus -supplemented module is generalized \oplus -supplemented (see [4], Example 3.11). Now we will give a situation when the converse is true.

Lemma 2.1. If M is a finitely generated R-module then M is generalized \oplus -supplemented if and only if M is \oplus -supplemented.

Proof. (\Rightarrow) Let N be a submodule of M. Since M is generalized \oplus -supplemented, there exists a generalized supplement K of N such that K is a direct summand in M. Hence there exists submodules K and L of M such that M = N + K, $N \cap K \leq \text{Rad} K$ and $M = K \oplus L$. Since M is finitely generated, we have K is finitely generated and $\text{Rad} K \ll K$. Therefore $N \cap K \ll K$ and K is a supplement of N in M. As a result M is \oplus -supplemented.

 (\Leftarrow) Clear.

The following lemma will be used to prove Theorem 2.1.

Lemma 2.2. Let M be an R-module with $M = M_1 \oplus M_2$ and K, L be submodules of M_1 such that K is a supplement of L in M_1 . Then K is a supplement of $M_2 + L$ in M.

Proof. Let $M_2 + L + N = M$ with $N \le K$. Hence $M_1 = M_1 \cap M = M_1 \cap (L + N + M_2) = L + N + (M_1 \cap M_2) = L + N$. Since $N \le K$ and K is a supplement of L in M_1 , we get N = K. Therefore K is a supplement of $M_2 + L$ in M.

Lemma 2.3. Let $M = M_1 \oplus M_2$. If K is a supplement submodule in M_1 and T is a supplement submodule in M_2 , then K + T is a supplement submodule in M.

Proof. Suppose that K is a supplement of U in M_1 and T is a supplement of V in M_2 . In this case $M_1 = U + K$, $U \cap K \ll K$ and $M_2 = V + T$, $V \cap T \ll T$. Since $M_1 = U + K$ and $M_2 = V + T$, $M = M_1 + M_2 = U + V + K + T$. It is easy to check that $(U + K + V) \cap T \ll T$ and $(V + T + U) \cap K \ll K$. Hence $(U + V) \cap (K + T) \subseteq (U + V + T) \cap K + (U + V + K) \cap T \ll K + T$. Therefore K + T is a supplement of U + V in M.

The next result generalizes Lemma 2.3 which is easily proved.

Corollary 2.1. Let $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$. For $1 \le i \le n$, if K_i is a supplement submodule in M_i , $K_1 + K_2 + \ldots + K_n$ is a supplement submodule in M.

Theorem 2.1. For any arbitrary ring R, the finite direct sum of t-generalized supplemented R-modules is t-generalized supplemented.

Proof. Let n be any positive integer, $\{M_i\}_{1 \le i \le n}$ be any finite collection of t-generalized supplemented R-modules and $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$. Assume that n = 2. Let $M = M_1 \oplus M_2$ and N be any submodule of M. Then $M = M_1 + M_2 + N$. Since M_2 is t-generalized supplemented, we can say that $M_2 \cap (M_1 + N)$ has a generalized supplement K in M_2 such that K is a supplement in M_2 . So K is a generalized supplement of $M_1 + N$ in M. Since M_1 is t-generalized supplemented, $M_1 \cap (K + N)$ has a generalized supplement L in M_1 such that L is a supplement in M_2 and L is a supplement in M_1 , then by Lemma 2.3 K + L is a supplement in M. Therefore M is t-generalized supplemented. The rest of the proof can be completed by induction on n.

The relationship between the concepts "*t*-generalized supplemented" and "supplemented" is expressed in the following lemma.

Lemma 2.4. Let M be a finitely generated module. Then M is t-generalized supplemented if and only if M is supplemented.

Proof. (\Rightarrow) Let N be any submodule of M. Since M is t-generalized supplemented then there exists $K \leq M$ such that M = N + K, $N \cap K \subseteq \text{Rad } K$ and K is a supplement in M. Since M is finitely generated, we obtain $\text{Rad } M \ll M$. Hence $N \cap K \subseteq \text{Rad } K \subseteq \text{Rad } M \ll M$ and it follows that $N \cap K \ll K$. This means that K is a supplement of N in M and so M is supplemented.

 (\Leftarrow) Clear from definitions.

Lemma 2.5. Let M be an R-module. If $\operatorname{Rad} M = M$, then M is t-generalized supplemented.

Proof. Let N be any submodule of M. Since N + M = M and $N \cap M \subseteq M = \text{Rad} M$, we get that M is a generalized supplement of N. On the other hand M is a supplement of 0. Hence M is a t-generalized supplemented.

It is easy to see that every semihollow module is *t*-generalized supplemented. Now we give some examples of modules, which is *t*-generalized supplemented but not supplemented. Thus the following examples are given to separate the structures of *t*-generalized supplemented, supplemented and generalized \oplus -supplemented.

Example 2.1. Consider the \mathbb{Z} -module \mathbb{Q} . Since \mathbb{Q} has no maximal submodule, we have $\operatorname{Rad} \mathbb{Q} = \mathbb{Q}$. By Lemma 2.5, \mathbb{Q} is *t*-generalized supplemented module. But it is well known that \mathbb{Q} is not supplemented (see [3], Example 20.12).

Example 2.2. Let M be a non-torsion \mathbb{Z} -module with $\operatorname{Rad} M = M$. Since $\operatorname{Rad} M = M$ then M is t-generalized supplemented. But M is not supplemented [14].

Example 2.3. Consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}/p\mathbb{Z}$, for any prime p. In this case $\operatorname{Rad} M \neq M$. Moreover, M is t-generalized supplemented but not supplemented [4].

Example 2.4. Let R be a commutative local ring which is not a valuation ring. Let a and b be elements of R, where neither of them divides the other. By taking a suitable quotient ring, we may assume that $(a) \cap (b) = 0$ and am = bm = 0 where m is the maximal ideal of R. Let F be a free R-module with generators x_1, x_2 , and x_3, K be the submodule generated by $ax_1 - bx_2$ and M = F/K. Thus,

$$M = \frac{Rx_1 \oplus Rx_2 \oplus Rx_3}{R(ax_1 - bx_2)} = (R\,\overline{x_1} + R\,\overline{x_2}) \oplus R\,\overline{x_3}.$$

Here M is not \oplus -supplemented. But $F = Rx_1 \oplus Rx_2 \oplus Rx_3$ is completely \oplus -supplemented [6].

Since F is completely \oplus -supplemented, F is supplemented. Since a factor module of a supplemented module is supplemented, we have M is supplemented. So M is t-generalized supplemented. Separately, since M is finitely generated and not \oplus -supplemented, M is not generalized \oplus -supplemented by Lemma 2.1.

Lemma 2.6. Let $M = M_1 \oplus M_2$. Then M_2 is t-generalized supplemented if and only if for every submodule N/M_1 of M/M_1 , there exists a supplement K in M such that $K \leq M_2$, M = K + N and $N \cap K \subseteq \text{Rad } M$.

Proof. (\Rightarrow) Assume that M_2 is t-generalized supplemented. Let $N/M_1 \leq M/M_1$. Since M_2 is t-generalized supplemented, there exists a generalized supplement module K of $N \cap M_2$ such that K is a supplement in M_2 . Hence there exists $K' \leq M_2$ such that $M_2 = N \cap M_2 + K$, $N \cap M_2 \cap K \subseteq \text{Rad } K$ and $M_2 = K + K'$, $K \cap K' \ll K$. The equality $M = M_1 + M_2$ implies that $M = M_1 + N \cap M_2 + K = N + K$. On the other hand $N \cap K \subseteq \text{Rad } M$. Since K is a supplement of K' in M_2 and $M = M_1 \oplus M_2$, we obtain that K is a supplement of $M_1 + K'$ in M by Lemma 2.2. Therefore K is a supplement in M.

(\Leftarrow) Suppose that M/M_1 satisfies hypothesis properties. Let $H \leq M_2$. Consider the submodule $(H \oplus M_1)/M_1 \leq M/M_1$. By hypothesis, there exists a supplement L in M such that $L \leq M_2$, $M = (L + H) \oplus M_1$ and $L \cap (H + M_1) \subseteq \text{Rad } M$. Since $L \cap H \leq L \cap (H + M_1) \subseteq \text{Rad } M$ and $L \cap H \leq L$, we have $L \cap H \leq L \cap \text{Rad } M = \text{Rad } L$. Hence L is a generalized supplement of H in M_2 .

Suppose that L is a supplement of T in M. In case M = T + L and $T \cap L \ll L$. Note that $M_2 = M_2 \cap M = M_2 \cap (L+T) = L + M_2 \cap T$. Since $M_2 \cap T \cap L \leq T \cap L \ll L$, it is easy to see that L is a supplement of $M_2 \cap T$ in M_2 .

The following theorem can be written as a consequence of Lemma 2.6.

Theorem 2.2. Let $M = M_1 \oplus M_2$ be a t-generalized supplemented module and $K \cap M_2$ be a supplement in M for every supplement K in M with $M = K + M_2$. Then M_2 is t-generalized supplemented.

Proof. Assume that $N/M_1 \leq M/M_1$. Consider the submodule $N \cap M_2$ of M. Since M is t-generalized supplemented, there exists a generalized supplement K' of $N \cap M_2$ such that K' is a supplement in M, i.e., there exists a supplement K' in M such that $M = (N \cap M_2) + K'$ and $(N \cap M_2) \cap K' \leq \text{Rad } K'$. Since $M = (N \cap M_2) + K'$, we get $M = M_2 + K'$. Let $K = M_2 \cap K'$. Then $M_2 = (N \cap M_2) + (M_2 \cap K') = (N \cap M_2) + K$. From $M = M_1 + M_2$ and $M_1 \leq N$, we have $M = N + M_2 = N + (N \cap M_2) + (M_2 \cap K') = N + K$. Since $M = M_2 + K'$ and K' is a

1494

supplement in $M, K = K' \cap M_2$ is a supplement in M by hypothesis. Therefore M_2 is t-generalized supplemented by Lemma 2.6.

Now we will investigate some conditions which will ensure that a factor module of a (distributive) *t*-generalized supplemented module is *t*-generalized supplemented.

Lemma 2.7. Let M be a t-generalized supplemented module and $N \leq M$. If (N + K)/N is a supplement submodule in M/N for every supplement submodule K in M, then M/N is a t-generalized supplemented.

Proof. For any submodule X of M containing N, since M is t-generalized supplemented, there exists $D' \leq M$ such that M = X + D = D + D', $X \cap D \leq \text{Rad } D$ and $D \cap D' \ll D$ for some submodule D of M. Since M = X + D and $N \leq X$, M/N = (X + D) / N = X/N + (D + N) / N. Note that $X \cap D \leq \text{Rad } D$, $X/N \cap (D + N)/N = (X \cap D + N) / N \leq (\text{Rad } D + N) / N \leq (\text{Rad } D + N) / N$. This implies that (D + N)/N is a generalized supplement of X/N in M/N. On the other hand, D is a supplement in M and (D + N)/N is a supplement in M/N by hypothesis. Therefore (D + N)/N is a generalized supplement of X/N in M/N is a supplement in M/N. Hence M/N is t-generalized supplemented.

Theorem 2.3. Let M be a distributive t-generalized supplemented module. Then for every submodule N of M, M/N is t-generalized supplemented.

Proof. Let D be a supplement submodule in M. Then there exists $D' \leq M$ such that M = D+D'and $D \cap D' \ll D$. Since M = D + D', we can write that M/N = (D+N)/N + (D'+N)/N. From M is distributive, $N + (D \cap D') = (N + D) \cap (N + D')$. This implies that $(D + N)/N \cap (D' + N)/N = [(D + N) \cap (D' + N)]/N = (N + (D \cap D'))/N$. Note that $D \cap D' \ll D$. So, we get $(D+N)/N \cap (D'+N)/N = (D \cap D' + N)/N \ll (D+N)/N$. Hence for every supplement submodule D in M, (D + N)/N is a supplement submodule in M/N. Therefore by Lemma 2.7 M/N is t-generalized supplemented.

3. Cofinitely t-generalized supplemented modules.

Definition 3.1. Let M be an R-module. We say that M is called cofinitely t-generalized supplemented module if every cofinite submodule of M has a generalized supplement such that it is a supplement in M.

Clearly every cofinitely generalized \oplus -supplemented modules are cofinitely *t*-generalized supplemented.

Lemma 3.1. Let M be a finitely generated module. Then M is t-generalized supplemented if and only if M is cofinitely t-generalized supplemented.

Proof. Since M is finitely generated, the proof is clear.

Lemma 3.2. Let M be an R-module and Rad $M \ll M$. Then M is cofinitely t-generalized supplemented if and only if M is cofinitely supplemented.

Proof. (\Rightarrow) Let N be any cofinite submodule of M. Since M is cofinitely t-generalized supplemented, there exists $K \leq M$ such that M = N + K, $N \cap K \subseteq \text{Rad } K$ and K is a supplement in M. Since $N \cap K \subseteq \text{Rad } K \subseteq \text{Rad } M$ and $\text{Rad } M \ll M$, $N \cap K \ll M$. Hence we get $N \cap K \ll K$. So K is a supplement of N in M. Therefore M is cofinitely supplemented.

 (\Leftarrow) Since M is cofinitely supplemented, for any cofinite submodule N of M, there exists $K \leq M$ such that M = N + K and $N \cap K \ll K$. From $N \cap K \subseteq \text{Rad } K$, K is a generalized supplement of N in M. Therefore M is cofinitely t-generalized supplemented.

As a result of Lemma 3.2, we can obtain the following corollary.

Corollary 3.1. Let M be a finitely generated R-module. M is cofinitely t-generalized supplemented if and only if M is cofinitely supplemented. The Corollary 2.1 together with Lemma 2.2 gives the following important theorem.

Theorem 3.1. For any ring R, the arbitrary direct sum of cofinitely t-generalized supplemented R-modules is cofinitely t-generalized supplemented.

Proof. Let $\{M_i\}_{i \in I}$ be any collection of cofinitely *t*-generalized supplemented *R*-modules and $M = \bigoplus_{i \in I} M_i$. Let *N* be any cofinite submodule of *M*. In this case *M*/*N* is finitely generated and there exists $k \in \mathbb{Z}^+$, $x_i \in M$, $1 \le i \le k$, such that $M/N = \langle \{x_1 + N, x_2 + N, \dots, x_k + N\} \rangle$. So $M = Rx_1 + Rx_2 + \dots + Rx_k + N$. In here, there exists finitely subset $F = \{i_1, i_2, \dots, i_n\}$ of *I* such that $x_i \in \bigoplus_{j \in F} M_j$ for every $1 \le i \le k$. Hence it is clear that $M = M_{i_1} + \left(N + \sum_{j=2}^n M_{i_j}\right)$ has trivially a generalized supplement 0 in *M*. Consider the submodule $M_{i_1} \cap \left(N + \sum_{j=2}^n M_{i_j}\right) \le M_{i_1}$. Since $M_{i_1} / \left[M_{i_1} \cap \left(N + \sum_{j=2}^n M_{i_j}\right)\right] \cong M / \left(N + \sum_{j=2}^n M_{i_j}\right) \cong (M/N) / \left(\left(N + \sum_{j=2}^n M_{i_j}\right)/N\right), M_{i_1} \cap \left(N + \sum_{j=2}^n M_{i_j}\right)$ is a cofinite submodule of M_{i_1} . From M_{i_1} is cofinitely *t*-generalized supplement in M_{i_1} . By Lemma 1.1, S_{i_1} is a generalized supplement $S_{i_1} + S_{i_2} + \ldots + S_{i_n}$ such that S_{i_j} is a supplement in $M_{i_1} \oplus M_{i_2} \oplus \ldots \oplus M_{i_n}$. Since $M_{i_1} \oplus M_{i_2} \oplus \ldots \oplus M_{i_n}$. Since $M_{i_1} \oplus M_{i_2} \oplus \ldots \oplus M_{i_n}$ is direct summand of *M*, then by Lemma 2.2, $S_{i_1} + S_{i_2} + \ldots + S_{i_n}$ is a supplement in *M*. Since $M_{i_1} \oplus M_{i_2} \oplus \ldots \oplus M_{i_n}$ is cofinitely *t*-generalized supplemented.

Theorem 3.2. Let *M* be a projective and finitely generated *R*-module. Then the following assertions are equivalent:

- (i) *M* is a semiperfect module,
- (ii) M is generalized \oplus -supplemented,
- (iii) *M* is cofinitely generalized \oplus -supplemented,
- (iv) M is t-generalized supplemented,
- (v) *M* is cofinitely *t*-generalized supplemented.

Proof. (i) \Leftrightarrow (ii) Clear by Lemma 1.2.

(ii) \Rightarrow (iv) Clear from definitions.

(iv) \Rightarrow (ii) Since *M* is *t*-generalized supplemented and finitely generated, by Lemma 2.4 *M* is supplemented. On the other hand, since *M* is projective then *M* is \oplus -supplemented. Hence *M* is generalized \oplus -supplemented.

Since M is finitely generated then (ii) \Leftrightarrow (iii) and (iv) \Leftrightarrow (v) are clear.

The following remark shows that a cofinitely *t*-generalized supplemented module need not to be cofinitely generalized \oplus -supplemented.

Remark 3.1. In Example 2.2, from M is t-generalized supplemented, M is cofinitely t-generalized supplemented. But since M is finitely generated and not generalized \oplus -supplemented, M is not cofinitely generalized \oplus -supplemented.

- Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. 2001. – 29, № 6. – P. 2389–2405.
- Büyükaşık E., Lomp C. On a recent generalization of semiperfect rings // Bull. Austral. Math. Soc. 2008. 78, № 2. - P. 317-325.

t-GENERALIZED SUPPLEMENTED MODULES

- 3. Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules. Frontiers in mathematics. Basel: Birkhäuser, 2006.
- 4. *Çalışıcı H., Türkmen E.* Generalized ⊕-supplemented modules // Algebra and Discrete Math. 2010. 10. P. 10–18.
- 5. *Ecevit Ş., Koşan M. T., Tribak R.* Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules // Algebra Colloq. 2012. 19, № 4. P. 637–648.
- Idelhadj A., Tribak R. On some properties of ⊕-supplemented modules // Int. J. Math. Sci. 2003. 69. P. 4373 4387.
- 7. Kasch F. Modules and rings // London Math. Soc. Monogaphs. London: Acad. Press Inc., 1982. 17.
- 8. Mohamed S. H., Müller B. J. Continuous and discrete modules // London Math. Soc. Lect. Note Ser. 1990. 147.
- Talebi Y., Hamzekolaei A. R. M., Tütüncü D. K. On Rad ⊕-supplemented modules // Hadronic J. 2009. 32. P. 505–512.
- 10. Talebi Y., Mahmoudi A. On Rad ⊕-supplemented modules // Thai J. Math. 2011. 9, № 2. P. 373 381.
- 11. Wang Y., Ding N. Generalized supplemented modules // Taiwan. J. Math. 2006. **10**, № 6. **P**. 1589–1601.
- 12. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- 13. Xue W. Characterizations of semiperfect and perfect rings // Publ. Mat. 1996. 40, № 1. P. 115-125.
- 14. Zöschinger H. Komplementierte moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42-56.

Received 03.07.13