UDC 512.5

I. V. Protasov, S. V. Slobodianiuk (Kyiv Nat. Taras Shevchenko Univ.)

ULTRAFILTERS ON BALLEANS

УЛЬТРАФІЛЬТРИ НА БОЛЕАНАХ

A ballean (equivalently, a coarse structure) is an asymptotic counterpart of a uniform space. We introduce three ultrafilter satellites of a ballean (namely, corona, companion, and corona companion), evaluate the basic cardinal invariants of the corona and characterize the subsets of balleans in terms of companions.

Болеан (або груба структура) — це асимптотичний аналог рівномірного простору. За допомогою ультрафільтрів визначено три супутники болеанів (а саме, корону, компаньйон і коронний компаньйон), знайдено оцінки основних кардальних інваріантів корони та охарактеризовано підмножини болеанів за допомогою компаньйонів.

1. Introduction. A *ball structure* is a triple $\mathcal{B} = (X, P, B)$, where X, P are nonempty sets, $B: X \times P \to \mathcal{P}_X, x \in B(X, \alpha)$ for each $x \in X$ and $\alpha \in P, \mathcal{P}_X$ denotes the family of all subsets of X. The set X is called the *support* of \mathcal{B} , P is called the *set of radii* and $B(x, \alpha)$ is called a *ball of radius* α *around* x.

Given any $x \in X$, $A \subseteq X$, $\alpha \in P$, we set

$$B^*(x,\alpha) = \{ y \in X : x \in B(y,\alpha) \}, \ B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure $\mathcal{B} = (X, P, B)$ is called a *ballean* if for any $\alpha, \beta \in P$, there exist α', β' such that, for every $x \in X$,

$$B(x,\alpha) \subseteq B^*(x,\alpha'), \ B^*(x,\beta) \subseteq B(x,\beta');$$

for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma);$$

for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$.

A ballean \mathcal{B} on X can also be defined in terms of entourages of the diagonal Δ_X of $X \times X$ (in this case it is called a *coarse structure* [1]), and can be considered as an asymptotic counterpart of a uniform space. For our goals, we prefer the ball language from [2, 3].

Let $\mathcal{B} = (X, P, B), \mathcal{B}' = (X', P', B')$ be balleans. A mapping $f : X \to X'$ is called a \prec -mapping if, for every $\alpha \in P$, there exists $\alpha' \in P'$ such that, for every $x \in X, f(B(x, \alpha)) \subseteq B'(f(x), \alpha')$. If there exists a bijection $f : X \to X'$ such that f and f^{-1} are \prec -mappings, \mathcal{B} and \mathcal{B}' are called asymorphic and f is called an *asymorphism*.

For a ballean $\mathcal{B} = (X, P, B)$, a subset $Y \subseteq X$ is called *large* if there is $\alpha \in P$ such that $X = B(Y, \alpha)$. A subset V of X is called *bounded* if $V \subseteq B(x, \alpha)$ for some $x \in X$ and $\alpha \in P$. Each nonempty subset $Y \subseteq X$ determines a *subballean* $\mathcal{B}_Y = (Y, P, B_Y)$, where $B_Y(y, \alpha) = Y \cap B(y, \alpha)$.

We say that \mathcal{B} and \mathcal{B}' are *coarsely equivalent* if there exist large subset $Y \subseteq X$ and $Y' \subseteq X'$ such that the subballeans \mathcal{B}_Y and $\mathcal{B}'_{Y'}$ are asymorphic.

Given a ballean $\mathcal{B} = (X, P, B), x, y \in X$ and $\alpha \in P$, we say that x and y are α -path connected if there exists a finite sequence $x_0, \ldots, x_n, x_0 = x, x_n = y$ such that $x_{i+1} \in B(x_i, \alpha), x_i \in B(x_{i+1}, \alpha)$ for each $i \in \{0, ..., n-1\}$. For any $x \in X$ and $\alpha \in P$, we denote

$$B^{\sqcup}(x,\alpha) = \{y \in X : x, y \text{ are } \alpha\text{-path connected}\}.$$

The ballean $\mathcal{B}^{\Box} = (X, P, B^{\Box})$ is called a *cellularization* of \mathcal{B} . A ballean \mathcal{B} is called *cellular* if the identity mapping $id: X \to X$ is an asymorphism between \mathcal{B} and \mathcal{B}^{\Box} . By [3] (Theorem 3.1.3), \mathcal{B} is cellular if and only if \mathcal{B} is asymptotically zero-dimensional.

For a ballean $\mathcal{B} = (X, P, B)$, we use a natural preordering on P defined by the rule: $\alpha < \beta$ if and only if $B(x, \alpha) \subseteq B(x, \beta)$ for each $x \in X$. A subset $P' \subseteq P$ is called *cofinal* if for every $\alpha \in P$, there is $\alpha' \in P'$ such that $\alpha < \alpha'$. The minimal cardinality $cf\mathcal{B}$ of cofinal subsets of P is called *cofinality* of \mathcal{B} .

A ballean \mathcal{B} is called *ordinal* if there exists a cofinal subset of P well-ordered by <. Up to asymorphism, we can replace P with some segment $[0, \gamma)$ of ordinals and, moreover, we can assume that γ is a regular cardinal. It is easy to see that every ordinal ballean of uncountable cofinality is cellular. More on cellular balleans can be found in [3] (Chapter 3).

Let $\mathcal{B} = (X, P, B)$ be a ballean. We say that two subsets Y, Z of X are asymptotically disjoint if, for every $\alpha \in P$, there exists a bounded subset V_{α} of X such that $B(Y \setminus V_{\alpha}, \alpha) \cap B(Z \setminus V_{\alpha}, \alpha) = \emptyset$. The subsets Y, Z are called asymptotically separated if to each $\alpha \in P$ one can assign a bounded subset V_{α} of X such that

$$\left(\bigcup_{\alpha\in P} B(Y\setminus V_{\alpha},\alpha)\right)\bigcap\left(\bigcup_{\alpha\in P} B(Z\setminus V_{\alpha},\alpha)\right)=\varnothing.$$

A ballean \mathcal{B} is called *normal* if any two asymptotically disjoint subsets of X are asymptotically separated. For normal balleans see [4] and [3] (Chapter 4). According to [3] (Chapter 4), every ordinal ballean is normal.

In Section 2 we give some examples of cellular and ordinal balleans. In Section 3 we introduce three ultrafilter satellites of a ballean: corona, ultracompanion and corona companion. In Section 4 we evaluate the basic cardinal invariants of coronas of ordinal balleans. In Section 5 we characterize the subsets of a ballean in terms of its ultracompanions and corona companions.

2. Examples.

Example 2.1. Each metric space (X, d) defines a metric ballean (X, \mathbb{R}^+, B_d) , where $B_d(x, r) = \{y \in X : d(x, y) \le r\}$. By [3] (Theorem 2.1.1), for a ballean \mathcal{B} , the following conditions are equivalent:

 \mathcal{B} is asymorphic to some metric ballean;

 \mathcal{B} is coarsely equivalent to some metric ballean;

 $cf\mathcal{B} \leq \aleph_0.$

Clearly, each metric ballean is ordinal. By [3] (Theorem 3.1.1), a metric ballean \mathcal{B} is cellular if and only if \mathcal{B} is asymorphic to a ballean of some ultrametric space.

Example 2.2. Every infinite cardinal κ defines the cardinal ballean $\overleftarrow{\kappa} = (\kappa, \kappa, \overleftarrow{B})$, where

$$\overleftrightarrow{B}(x,\alpha) = \{ y \in \kappa \colon x \le y \le x + \alpha \text{ or } y \le x \le y + \alpha \}.$$

For cardinal ballean see [5]. In particular [5] (Theorem 3), if $\kappa > \aleph_0$ then $\overleftarrow{\kappa}$ is cellular. Clearly, each cardinal ballean is ordinal.

Example 2.3. Let γ be a limit ordinal, $\{\mu_{\alpha} : \alpha < \gamma\}$ be a family of cardinals. A direct product $\otimes_{\alpha < \gamma} \mu_{\alpha}$ is a set of all γ -sequences $x = (x_{\alpha})_{\alpha < \gamma}$ such that $x_{\alpha} \in \mu_{\alpha}$ and $x_{\alpha} = 0$ for all but finitely many $\alpha < \gamma$. We consider a ballean

$$\mathcal{B} = (\otimes_{\alpha < \gamma} \mu_{\alpha}, [0, \gamma), B),$$

where $B(x,\beta) = \{y \in \bigotimes_{\alpha < \gamma} \mu_{\alpha} : y_{\alpha} = x_{\alpha} \text{ for every } \alpha \ge \beta\}$. Evidently, \mathcal{B} is ordinal and cellular. For decompositions of balleans into direct products see [6] and [7].

Example 2.4. Let G be a group. An ideal J in the Boolean algebra \mathcal{P}_G of all subsets of G is called a group *ideal* if J contains all finite subsets of G and if $A, B \in J$ then $AB^{-1} \in J$.

Now let X be a transitive G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$, and let J be a group ideal in G. We define a ballean $\mathcal{B}(G, X, J)$ as a triple (X, J, B), where $\mathcal{B}(x, A) = Ax \cup \{x\}$ for all $x \in X$, $A \in J$. By [8] (Theorem 1), every ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, J)$ for some group G of permutations of X and some ideal J of G. By [8] (Theorem 3), every cellular ballean \mathcal{B} with the support X is asymorphic to $\mathcal{B}(G, X, J)$ for some group G of permutations of X and some ideal J of S of G. By [8] (Theorem 3), every cellular ballean \mathcal{B} with the support X is asymorphic to $\mathcal{B}(G, X, J)$ for some group G of permutations of X and some ideal J of S of C. By [8] (Theorem 3), every cellular ballean \mathcal{B} with the support X is asymorphic to $\mathcal{B}(G, X, J)$ for some group G of permutations of X and some ideal J.

In the case X = G, and the left regular action of G on X, we write (G, J) instead $\mathcal{B}(G, X, J)$.

3. Ultrafilters. Let $\mathcal{B} = (X, P, B)$ be an unbounded ballean. We endow X with the discrete topology and consider the Stone – Čech compactification βX of X. We take the points of βX to be the ultrafilters on X with the points of X identified with the principal ultrafilters on X. For every subset $A \subseteq X$, we put $\overline{A} = \{q \in \beta X : A \in q\}$. The topology of βX can be defined by stating that the family $\{\overline{A} : A \subseteq X\}$ is a base for the open sets. Let Y be a compact Hausdorff space. For a mapping $f : X \to Y$, f^{β} denotes the Stone – Čech extension of f onto βX .

We denote by $X_{\mathcal{B}}^{\sharp}$ the set of all ultrafilters on X whose members are unbounded in \mathcal{B} , and note that $X_{\mathcal{B}}^{\sharp}$ is a closed subset of βX .

Given any $r, q \in X_{\mathcal{B}}^{\sharp}$, we say that r, q are *parallel* (and write r||q) if there exists $\alpha \in P$ such that $\mathcal{B}(R, \alpha) \in q$ for every $R \in r$. By [4] (Lemma 4.1), || is an equivalence on $X_{\mathcal{B}}^{\sharp}$. We denote by \sim the minimal (by inclusion) closed (in $X_{\mathcal{B}}^{\sharp} \times X_{\mathcal{B}}^{\sharp}$) equivalence on X^{\sharp} such that $|| \subseteq \sim$. The quotient $X_{\mathcal{B}}^{\sharp}/\sim$ is a compact Hausdorff space. It is called the *corona* of \mathcal{B} and is denoted by $\check{X}_{\mathcal{B}}$. Let (X, d) be a metric space such that each closed ball in X is compact, $\mathcal{B} = \mathcal{B}(X, d)$. Then $\check{X}_{\mathcal{B}}$ coincides with the Higson's corona of (X, d) (see [9, p. 154]).

For every $p \in X_{\mathcal{B}}^{\sharp}$, we denote by \check{p} the class of the equivalence \sim , and say that two ultrafilters $p, q \in X_{\mathcal{B}}^{\sharp}$ are corona equivalent if $\check{p} = \check{q}$. To detect whether two ultrafilters $p, q \in X_{\mathcal{B}}^{\sharp}$ are corona equivalent we use the slowly oscillation functions.

A function $h: X \to [0, 1]$ is called \mathcal{B} -slowly oscillating if, for every $\varepsilon > 0$ and every $\alpha \in P$, there exists a bounded subset V of X such that

$$\operatorname{diam} h(B(x,\alpha)) < \varepsilon$$

for each $x \in X \setminus V$.

Proposition 3.1. Let $\mathcal{B} = (X, P, B)$ be an unbounded ballean, $q, r \in X_{\mathcal{B}}^{\sharp}$. Then $\check{q} = \check{r}$ if and only if $h^{\beta}(p) = h^{\beta}(q)$ for every \mathcal{B} -slowly oscillating function $h: X \to [0, 1]$.

Proof. See [9] (Proposition 1).

Proposition 3.2. Let $\mathcal{B} = (X, P, B)$ be an unbounded normal ballean, $q, r \in X_{\mathcal{B}}^{\sharp}$. Then $\check{q} = \check{r}$ if and only if for any $Q \in q$ and $R \in r$, there exists $\alpha \in P$ such that $B(Q, \alpha) \cap B(R, \alpha)$ is unbounded.

Proof. See [4] (Lemma 4.2).

Proposition 3.3. Let $\mathcal{B} = (X, P, B)$ be an unbounded normal ballean and let $q \in X^{\sharp}$. Then the family of subsets of the form

$$\left\{\check{r}\in\check{X}_{\mathcal{B}}\colon\bigcup_{\alpha\in Q}B(Q\setminus V_{\alpha},\alpha)\in r\right\},\$$

where $Q \in q$ and each subset V_{α} is bounded, is a base of the neighborhoods of the point \check{q} in $\check{X}_{\mathcal{B}}$. **Proof.** See [4, p. 15].

Proposition 3.4. Let $\mathcal{B} = (X, P, B)$ be a ballean, $Y \subseteq X$, $\alpha \in P$, $q \in X^{\sharp}$. If $B(Y, \alpha) \in q$, then there is $r \in Y^{\sharp}$ such that q||r.

Proof. For each $Q \in q$, we denote $S_Q = B(Q, \alpha) \cap Y$ and note that the family $\{S_Q : Q \in q\}$ is contained in some ultrafilter $r \in Y^{\sharp}$. Clearly, r||q.

Proposition 3.4 is proved.

We note that, for a cellular ballean $\mathcal{B} = (X, P, B)$, corona $\check{X}_{\mathcal{B}}$ coincides with its binary corona (see [3], Chapter 8) and hence $\check{X}_{\mathcal{B}}$ is zero-dimensional.

Let $\mathcal{B} = (X, P, B)$ be a ballean, $A \subseteq X$, $p \in X^{\sharp}$ and $\overline{p} = \{q \in X^{\sharp} : p || q\}$. A subset

$$\Delta_p(A) = \bar{\bar{p}} \cap A^{\sharp}$$

is called an *ultracompanion* of A. For ultracompanions of subsets of metric spaces, groups and G-spaces see [10-13].

Given a ballean $\mathcal{B} = (X, P, B)$ and a subset A of X, we say that the subset $\check{p} \cap A^{\sharp}$ is a corona companion of A.

4. Cardinal invariants. Given a ballean $\mathcal{B} = (X, P, B)$, a subset A of X is called

large if $X = B(A, \alpha)$ for some $\alpha \in P$;

small if $X \setminus B(A, \alpha)$ is large for every $\alpha \in P$;

thick if, for every $\alpha \in P$, there exists $a \in A$ such that $B(a, \alpha) \subseteq A$;

thin if, for every $\alpha \in P$, there exists a bounded subset V of X such that $B(a, \alpha) \cap B(a', \alpha) = \emptyset$ for all distinct $a, a' \in A \setminus V$.

We note that large, small, thick and thin subsets can be considered as asymptotic counterparts of dense, nowhere dense, open and discrete subsets of a uniform topological space. We use the following cardinal invariants of \mathcal{B} : asymptotic density, thickness and spread defined by

asden $\mathcal{B} = \min\{|L| : L \text{ is a large subset of } X\},\$

thick $\mathcal{B} = \sup\{|\mathcal{F}| : \mathcal{F} \text{ is a family of pairwise disjoint thick subsets of } X\},\$

spread $\mathcal{B} = \sup\{|Y|_{\mathcal{B}}: Y \text{ is a thin subset of } X\}$, where $|Y|_{\mathcal{B}} = \min\{|Y \setminus V|: V \text{ is a bounded subset of } X\}$.

Theorem 4.1. For every unbounded ordinal ballean \mathcal{B} with the support X, we have

asden
$$\mathcal{B}$$
 = thick \mathcal{B} = spread \mathcal{B} ,

and there exists a thin subset Y of X and a disjoint family \mathcal{F} of thick subsets of X such that $|Y|_{\mathcal{B}} = |Y| = \operatorname{asden} \mathcal{B} = |\mathcal{F}|.$

Proof. See [14] (Theorem 3.1) and [15] (Theorem 2.3).

Theorem 4.2. Let $\mathcal{B} = (X, P, B)$ be an unbounded ordinal ballean and let $\kappa = asdens \mathcal{B}$. Then $|\check{X}_{\mathcal{B}}| = 2^{2^{\kappa}}$.

Proof. Let Z be a large subset of X such that $|Z| = \kappa$. By Proposition 3.4, $\check{p} \cap Z^{\sharp} \neq \emptyset$ for each $p \in X^{\sharp}$. Hence, $|X_{\mathcal{B}}| \leq |Z^{\sharp}| \leq \beta Z = 2^{2^{\kappa}}$.

To verify the inequality $|\check{X}_{\mathcal{B}}| \ge 2^{2^{\kappa}}$, we use Theorem 4.1 to find a thin subset Y of X such that $|Y|_{\mathcal{B}} = |Y| = \kappa$. Since Y is thin and \mathcal{B} is normal, by Proposition 3.2, $\check{p} \ne \check{q}$ for any two distinct ultrafilters p, q from Y^{\sharp} . So it suffices to prove that $|Y^{\sharp}| = 2^{2^{\kappa}}$. We fix some $y_0 \in Y$ and consider two cases.

Case 1. There exists a cofinal subset $C = \{c_{\alpha} : \alpha < \lambda\}$ in P such that $|Y \cap (B(y_0, c_{\alpha+1}) \setminus B(y_0, c_{\alpha}))|$ and choose some ultrafilter p on C such that $\{c_{\beta} : \alpha < \beta < \lambda\} \in p$ for each $\alpha < \lambda$. If $q, q' \in \beta \kappa$ and $q \neq q'$ then

$$\operatorname{p-lim} f_{\alpha}(q) \neq \operatorname{p-lim} f_{\alpha}(q'),$$

so $|Y^{\sharp}| \ge \beta \kappa = 2^{2^{\kappa}}$.

Case 2. There exists $\beta \in P$ such that $|Y \cap (B(y_0, \alpha) \setminus B(y_0, \beta))| < \kappa$ for each $\alpha > \beta$. We put $Z = Y \setminus B(y_0, \beta)$ and note that $|Z| = \kappa$. By the choice of β , Z^{\sharp} coincides with the set of all uniform ultrafilters on Z so $|Z^{\sharp}| = 2^{2^{\kappa}}$.

Theorem 4.2 is proved.

Let κ be an infinite cardinal, ϕ be a uniform ultrafilter on κ . We consider a ballean $\mathcal{B} = (\kappa, \phi, B)$, where, for any $F \in \phi$, $B(x, F) = \{x\}$ if $x \in F$ and $B(x, F) = X \setminus F$ if $x \notin F$. Clearly, \mathcal{B} is normal but $\kappa^{\sharp} = \{\phi\}$ so $\check{\kappa}_{\mathcal{B}}$ is a singleton. On the other hand $asdens \mathcal{B} = \kappa$. So Theorem 4.2 does not hold for \mathcal{B} .

Recall that the *Souslin number* s(X) of a topological space X is the supremum of cardinalities of disjoint families of open subsets of X.

Let κ be an infinite cardinal. A family \mathcal{F} of subsets of κ is called *almost disjoint* if $|F| = \kappa$ for every $F \in \mathcal{F}$, and $|F' \cap F| < \kappa$ for all distinct $F, F' \in \mathcal{F}$. For $\kappa = \aleph_0$, there is an almost disjoint family of cardinality c. Baumgartner [16] proved that, for each κ , there is an almost disjoint family of cardinality κ^+ , and it is independent of ZFC that if $\kappa = \aleph_1$ then there is no almost disjoint families of cardinality 2^{κ} .

Proposition 4.1. Let κ be an infinite cardinal, $\mathcal{B} = (X, \kappa, P)$ be an unbounded ordinal ballean. Assume that there exists a subset $Y = \{y_{\alpha} : \alpha < \kappa\}$ of X such that

$$B(B(y_{\alpha}, \alpha), \alpha) \cap B(B(y_{\beta}, \beta), \beta) = \emptyset$$

for all $\alpha < \beta < \kappa$. If \mathcal{F} is an almost disjoint family of subsets of κ , then

$$s(\check{X}_{\mathcal{B}}) \ge |\mathcal{F}|.$$

Proof. For each $F \in \mathcal{F}$, we put

$$Y_F = \bigcup_{\alpha \in F} B(y_\alpha, \alpha), \ Z_F = \{\check{q} \colon Y_F \in q\}.$$

Applying Propositions 3.2 and 3.3 we conclude that $\{Z_F : F \in \mathcal{F}\}\$ is a disjoint family of subsets of \check{X}_B and each Z_F has a nonempty interior.

Proposition 4.1 is proved.

Recall that the *density* den X of a topological space X is the smallest cardinality of dense subset of X.

Proposition 4.2. For every unbounded ballean $\mathcal{B} = (X, P, B)$, we have

$$\operatorname{den}(\check{X}_{\mathcal{B}}) \leq 2^{\operatorname{asden} X}.$$

Proof. We take a large subset L of X of cardinality asden X and denote by \mathcal{F} the family of all unbounded subsets of L. For each $F \in \mathcal{F}$, we pick $q_F \in X^{\sharp}$ such that $F \in q_F$. Then $\{\check{q}_F : F \in \mathcal{F}\}$ is a dense subset of $\check{X}_{\mathcal{B}}$ and $|\{\check{q}_F : F \in \mathcal{F}\}| \leq 2^{|L|}$.

Proposition 4.2 is proved.

Theorem 4.3. For every infinite cardinal κ , we have asden $\overleftarrow{\kappa} = \kappa$ and

$$\kappa^+ \le (\check{\kappa}) \le \operatorname{den}(\check{\kappa}) \le 2^{\kappa},$$

where $\check{\kappa}$ is the corona of $\overleftarrow{\kappa}$.

Proof. By the definition of κ , each large subset of κ has cardinality κ . By Proposition 4.2, den($\tilde{\kappa}$) $\leq 2^{\kappa}$. In view of Proposition 4.1 and the Baumgartner theorem it suffices to construct corresponding subset Y.

We put $y_0 = 1$ and define a set $Y = \{y_\alpha : \alpha < \kappa\}$ recursively by $y_{\alpha+1} = y_\alpha + y_\alpha + y_\alpha + y_\alpha$ and $y_\beta = \sup\{y_\alpha : \alpha < \beta\}$ for every limit ordinal β .

Theorem 4.3 is proved.

For $\kappa = \aleph_0$, Proposition 4.1 gives more strong result

$$s(\aleph_0) = \operatorname{den}(\aleph_0) = \mathfrak{c}.$$

Recall that a character $\chi(x)$ of a topological space X at the point x is the minimal cardinality of bases of neighborhoods of x.

For a metric space X, \dot{X} denotes the corona of corresponding metric ballean. Under CH, if X is a countable ultrametric space then, by [17], \check{X} is homeomorphic to $\omega^* = \beta \omega \setminus \omega$. By [18], this statement is independent of ZFC.

Theorem 4.4. Let X be an unbounded metric space, $\kappa = \operatorname{asden} \check{X}$. Then $|\check{X}| = 2^{2^{\kappa}}$ and

$$\mathfrak{c} \cdot \kappa \le s(\check{X}) \le \operatorname{den}(\check{X}) \le 2^{\kappa}.$$

Proof. In view of Theorem 4.2 and Proposition 4.2, it suffices to verify only $\mathfrak{c} \cdot \kappa \leq s(\check{X})$. The inequality $\mathfrak{c} \leq s(\check{X})$ follows directly from Proposition 4.1. To prove $\kappa \leq s(\check{X})$, we use Theorem 3.1 and choose a disjoint family \mathcal{F} of thick subsets of X such that $|\mathcal{F}| = \kappa$. For each $F \in \mathcal{F}$, use Proposition 3.3 to find a subset $X_F \subseteq F$ such that projections $p \mapsto \check{p}$ of $\{X_F^{\sharp} : F \in \mathcal{F}\}$ to corona are pairwise disjoint with nonempty interior.

Theorem 4.4 is proved.

Corollary **4.1.** *For an unbounded countable metric space X we have*

$$\operatorname{den}(\check{X}) = s(\check{X}) = \mathfrak{c}.$$

5. Companions.

Theorem 5.1. Let \mathcal{B} be a ballean with the support X. For a subset A of X, the following statements hold:

(i) A is large if and only if $\Delta_p(A) \neq \emptyset$ for each $p \in X^{\sharp}$;

(ii) A is thick if and only if $\overline{p} = \Delta_p(A)$ for some $p \in X^{\sharp}$;

(iii) A is prethick if and only if there exist $p \in X^{\sharp}$ and $\alpha \in P$ such that $\overline{p} = \Delta_p(B(A, \alpha))$;

(iv) A is thin if and only if $\Delta_p(A) \leq 1$ for each $p \in X^{\sharp}$.

Proof. The theorem is proved in [10] (Theorems 4.1, 4.2, 4.3) for metric balleans, but the proof can be easily adopted to the general case.

Given $p \in X^{\sharp}$, we say [10] that a subset $S \subseteq \overline{p}$ is *ultrabounded with respect to* p if there is $\alpha \in P$ such that, for each $q \in S$ and every $Q \in q$, we have $B(Q, \alpha) \in p$.

We say that a subset A of X is

sparse if $\Delta_p(A)$ is ultrabounded for each $p \in X^{\sharp}$;

scattered if, for every $Y \subseteq A$, there is $p \in Y^{\sharp}$ such that $\Delta_p(Y)$ is ultrabounded.

To prove Theorems 5.2 and 5.3, one can adopt the arguments from [10] and [12].

Theorem 5.2. Let $\mathcal{B} = (X, P, B)$ be an unbounded ordinal ballean. For a subset A of X, the following statements are equivalent:

- (i) A is sparse;
- (ii) for every unbounded subset Y of A, there exists $\beta \in P$ such that, for every $\alpha \in P$, we have

$$\{y \in Y : B_A(y, \alpha) \setminus B_A(y, \beta) = \emptyset\} \neq \emptyset.$$

Theorem 5.3. Let $\mathcal{B} = (X, P, B)$ be an unbounded ordinal ballean. For a subset A of X, the following statements are equivalent:

- (i) A is scattered;
- (ii) for every unbounded subset Y of A, there exists $\beta \in P$ such that, for every $\alpha \in P$, we have

$$\{y \in Y : B_Y(y, \alpha) \setminus B_Y(y, \beta) = \emptyset\} \neq \emptyset.$$

A ballean $\mathcal{B} = (X, P, B)$ is called *uniformly locally finite* if, for every $\alpha \in P$, there exists a natural number $n(\alpha)$ such that $|B(x, \alpha)| \leq n_{\alpha}$ for every $x \in X$. By [8] (Theorem 6), for every locally finite ballean $\mathcal{B} = (X, P, B)$, there exists a group G of permutations of X such that \mathcal{B} is asymorphic to the ballean $\mathcal{B}(G, X, \mathfrak{F}_G)$ (see Example 2.4), where \mathfrak{F}_G is the ideal of finite subsets of G.

The following statement is a part of Theorem 5.4 from [13].

Theorem 5.4. Let $\mathcal{B} = (X, P, B)$ be a uniformly locally finite ballean with the support X. A subset A of X is scattered if and only if $\Delta_p(A)$ is discrete for each $p \in X^{\sharp}$.

Now we discuss a possibility generalization of Theorem 5.4 to arbitrary balleans. Let $\mathcal{B} = (X, P, B)$ be a ballean. For $p \in X^{\sharp}$ and $\alpha \in P$, we set

$$B(p,\alpha) = \{q \in X^{\sharp} \colon B(P',\alpha) \in q \text{ for each } P' \in p\}$$

and note that $\bar{\bar{p}} = \bigcup_{\alpha \in P} B(p, \alpha)$ and each subset $B(p, \alpha)$ is closed in $\bar{\bar{p}}$.

We say that a point $p \in X^{\sharp}$ is *ball isolated* if there exists $P' \in p$ and $\alpha \in P$ such that if $q \in \overline{p}$ and $P' \in q$ then $q \in B(p, \alpha)$. Applying Proposition 3.4, it is easy to verify that if p is ball isolated then each point $q \in \overline{p}$ is ball isolated. If \mathcal{B} is uniformly locally finite then p is ball isolated if and only if p is an isolated point of the subset \overline{p} of X^{\sharp} .

Theorem 5.5. Let $\mathcal{B} = (X, P, B)$ be a ballean, A be a subset of X. If each point $p \in A^{\sharp}$ is ball isolated, then A is scattered.

1704

ULTRAFILTERS ON BALLEANS

Proof. We say that a subset $F \subseteq X^{\sharp}$ is *invariant* if $p \in F$ and $q \parallel p$ imply $q \in F$.

We take an arbitrary unbounded subset Y of A, denote by \mathfrak{F} the family of all closed invariant subsets of X^{\sharp} and put

$$\mathfrak{F}_Y = \{ F \in Y^\sharp \colon F \in \mathfrak{F} \}.$$

By the Zorn lemma, there is a minimal by inclusion element $M \in \mathfrak{F}_Y$. We take an arbitrary $p \in M$ and show that $\Delta_p(Y)$ is ultrabounded. Assume the contrary and choose $q \in cl\bar{p}$ such that $q \notin B(p, \alpha')$ for each $\alpha' \in P$. Since $q \in M$, by the minimality of M, $p \in cl(\bar{q})$. By the assumption, p is ball isolated. We choose corresponding $P' \in p$ and $\alpha \in P$. We pick $q' \in \bar{q}$ such that $P' \in q'$. Since q' ||q, there is $\beta \in P$ such that $q \in B(q', \beta)$ so $B(P', \beta) \in q$.

If $p' \in B(P', \beta)$ then, by Proposition 3.4, there is $p'' \in P'$ such that $p'' \in B(p', \beta)$. We choose $\gamma \in P$ such that $B(B(x, \alpha), \beta) \subseteq B(x, \gamma)$ for each $x \in X$. Then $q \in clB(p, \gamma)$ and $q \in B(p, \gamma)$, contradicting the choice of q.

Theorem 5.5 is proved.

Question 5.1. Let A be a scattered subset of X. Is every point $p \in A^{\sharp}$ ball isolated? By Theorem 5.4, this is so for each uniformly locally finite balleans but the question is open even for metric balleans.

Recall that a topological space X is scattered if each nonempty subset Y of X has an isolated point in Y.

Question 5.2. Let \mathcal{B} be a ballean with the support $X, A \subseteq X$. Assume that each subspace $\Delta_p(A), p \in A^{\sharp}$ is sparse in X^{\sharp} . Is A a sparse subset of \mathcal{B} ? By Theorem 5.4 and [8] (Theorem 6), this is so for every uniformly locally finite ballean because in this case each $\Delta_p(A)$ is discrete.

Given a ballean $\mathcal{B} = (X, P, B)$ and a subset A of X, we remind that a subset $\check{p} \cap A^{\sharp}$ is a corona p-companion of A and characterize a size of A in terms of corona companions.

Theorem 5.6. Let $\mathcal{B} = (X, P, B)$ be an unbounded ordinal ballean, $A \subseteq X$. Then the following statements hold:

(i) A is large if and only if $\check{p} \cap A^{\sharp} \neq \emptyset$ for each $p \in X^{\sharp}$;

(ii) A is thick if and only if there exists $p \in X^{\sharp}$ such that $\check{p} \subseteq A^{\sharp}$;

(iii) A is thin if and only if $|\check{p} \cap A^{\sharp}| \leq 1$ for each $p \in X^{\sharp}$.

Proof. (ii) Assume that A is thick. We may suppose that P is an infinite regular cardinal κ . We choose a κ -sequence $\{y_{\alpha} : \alpha < \kappa\}$ in A such that $B(y_{\alpha}, \alpha) \subseteq A$ and $B(y_{\alpha}, \alpha) \cap B(y_{\beta}, \beta) = \emptyset$ for each $\alpha < \beta < \kappa$. Then we pick an arbitrary ultrafilter $p \in X^{\sharp}$ such that $\{y_{\alpha} : \alpha < \kappa\} \in p$. By Proposition 3.2, we have $\check{p} \in A^{\sharp}$.

Suppose that $\check{p} \subseteq A^{\sharp}$ for some $p \in X^{\sharp}$. Given any $\alpha < \kappa$, there is $P \in p$ such that $B(P, \alpha) \in A$, because otherwise, by Proposition 3.4, we can find $q \in X^{\sharp}$ such that p||q and $X \setminus A \in q$ so $\bar{p} \notin A^{\sharp}$. Hence A is thick.

(i) It suffices to observe that A is large if and only if $X \setminus A$ is not thick and apply (ii).

(iii) Assume that there are two distinct ultrafilters $p, q \in X^{\sharp}$ such that $p \sim q$ and $A \in p$, $A \in q$. We choose $P \in p$, $Q \in q$ such that $P \subseteq A$, $Q \subseteq A$ and $P \cap Q = \emptyset$. By Proposition 3.2, there is $\alpha < \kappa$ such that $B(P, \alpha) \cap Q$ is unbounded. It follows that A is not thin.

If A is not thin, one can choose $\gamma < \kappa$ and two κ -sequences $\{x_{\alpha} : \alpha < \kappa\}$ and $\{y_{\alpha} : \alpha < \kappa\}$ such that $x_{\alpha} \neq y_{\alpha}, y_{\alpha} \in B(x_{\alpha}, \gamma)$ and $B(x_{\alpha}, \gamma) \cap B(x_{\beta}, \gamma) = \emptyset$ for all $\alpha < \beta < \kappa$. We take an ultrafilter $p \in X^{\sharp}$ such that $\{x_{\alpha} : \alpha < \kappa\} \in p$ and use Proposition 3.4 to find $q \in X^{\sharp}$ such that $q \mid \mid p$ and $\{y_{\alpha} : \alpha < \kappa\} \in q$. Then $\{p, q\} \subseteq \check{p} \cap A^{\sharp}$.

Theorem 5.6 is proved.

Let G be an uncountable Abelian group, $\mathcal{B} = (G, [G]^{\langle \aleph_0})$. By [9] (Proposition 4), the corona $\check{G}_{\mathcal{B}}$ is a singleton so Theorem 4.2 does not hold for \mathcal{B} .

Question 5.3. Is Theorem 5.6 true for every unbounded normal ballean?

- 1. Roe J. Lectures on coarse geometry. Providence, R.I.: Amer. Math. Soc., 2003.
- 2. Protasov I., Banakh T. Ball structures and colorings of groups and graphs // Math. Stud. Monogr. Ser. 2003. 11.
- 3. Protasov I., Zarichnyi M. General asymptology // Math. Stud. Monogr. Ser. 2007. Vol. 12.
- 4. Protasov I. V. Normal ball structures // Math. Stud. 2003. 20. P. 3-16.
- Petrenko O., Protasov I. V., Slobodianiuk S. Asymptotic structures of cardinals // Appl. Gen. and Top. 2014. 15. P. 137 – 146.
- 6. Protasov I. V., Tsvietkova A. Decomposition of cellular balleans // Topology Proc. 2010. 36. P. 1-7.
- 7. Banakh T., Protasov I., Repovs D., Slobodianiuk S. Classifying homogeneous cellular ordinal balleans. Preprint (http:axiv.org/abs/1409.3910).
- 8. Petrenko O., Protasov I.V. Balleans and G-spaces // Ukr. Math. J. 2012. 64, № 3. P. 344-350.
- 9. Protasov I. V. Coronas of balleans // Top. and Appl. 2005. 146. P. 149-161.
- 10. Protasov I. V. Ultrafilters on metric spaces // Top. and Appl. 2014. 164. P. 207-214.
- Protasov I., Slobodianiuk S. Ultracompanions of subsets of groups // Comment. math. Univ. Carol. 2014. 55. P. 257–265.
- 12. Banakh T., Protasov I., Slobodianiuk S. Scattered subsets of groups // Ukr. Math. J. 2015. 67, № 3. P. 304-312.
- Protasov I., Slobodianiuk S. On the subset combinatorics of G-spaces // Algebra and Discrete Math. 2014. 15, № 1. – P. 98–109.
- 14. Protasov I. V. Cellularity and density of balleans // Appl. Gen. and Top. 2007. 8. P. 283-291.
- 15. Filali M., Protasov I.V. Spread of balleans // Appl. Gen. and Top. 2008. 9. P. 169-175.
- Baumgartner J. Almost-disjoint sets, the dense set problem and the partition calculus // Ann. Math. Logic. 1976. 9. – P. 401–439.
- 17. Protasov I.V. Coronas of ultrametric spaces // Comment. math. Univ. carol. 2011. 52. P. 303-307.
- Banakh T., Chervak O., Zdomsky L. On character of points in the Higson corona of a metric space // Comment. math. Univ. carol. – 2013. – 50. – P. 159–178.

Received 28.08.14