UDC 512.662

M. İşcan (Ataturk Univ., Erzurum, Turkey), **M. Özkan** (Gazi Univ., Ankara, Turkey)

ON FOUR DIMENSIONAL PARACOMPLEX STRUCTURES WITH NORDEN METRICS ПРО ЧОТИРИВИМІРНІ ПАРАКОМПЛЕКСНІ СТРУКТУРИ З МЕТРИКАМИ НОРДЕНА

We study the almost paracomplex structures with Norden metric on Walker 4-manifolds and try to find general solutions for the integrability of these structures on suitable local coordinates. We also discuss para-Kähler (paraholomorphic) conditions for these structures.

Вивчаються майже паракомплексні структури з метрикою Нордена на 4-многовидах Уолкера. Встановлено загальні розв'язки щодо інтегровності таких структур у відповідних локальних координатах. Також обговорюються паракелерові (параголоморфні) умови для таких структур.

1. Introduction. Let M_{2n} be a Riemannian manifold with a neutral metric, i.e., with a pseudo-Riemannian metric g of signature (n, n). We denote by $\Im_q^p(M_{2n})$ the set of all tensor fields of type (p, q) on M_{2n} . Manifolds, tensor fields and connections are always assumed to be differentiable and of class C^{∞} .

An almost paracomplex manifold is an almost product manifold (M_{2n}, φ) , $\varphi^2 = id$, such that the two eigenbundles T^+M_{2n} and T^-M_{2n} associated to the two eigenvalues +1 and -1 of φ , respectively, have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even. Considering the paracomplex structure φ , we obtain the following set of affinors on M_{2n} : $\{id, \varphi\}$, $\varphi^2 = id$, which form a bases of a representation of the algebra of order 2 over the field of real numbers R, which is called the algebra of paracomplex (or double) numbers and is denoted by $R(j) = \{a_0 + a_1j : j^2 = 1; a_0, a_1 \in R\}$. Obviously, it is associative, commutative and unitial, i.e., it admits principal unit 1. The canonical bases of this algebra has the form $\{1, j\}$.

Let (M_{2n}, φ) be an almost paracomplex manifold with almost paracomplex structure φ . For almost paracomplex structure the integrability is equivalent to the vanishing of the Nijenhuis tensor

$$N_{\varphi}(X,Y) = [\varphi X,\varphi Y] - \varphi[\varphi X,Y] - \varphi[X,\varphi Y] + [X,Y].$$

This structure is said to be integrable if the matrix $\varphi = (\varphi_j^i)$ is reduced to the constant form in a certain holonomic natural frame in a neighborhood U_x of every point $x \in M_{2n}$. On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we can introduce a torsion free linear connection such that $\nabla \varphi = 0$. A paracomplex manifold is an almost paracomplex manifold (M_{2n}, φ) such that the *G*-structure defined by the affinor field φ is integrable. We can give another-equivalent-definition of paracomplex manifold in terms of local homeomorphisms in the space $R^n(j) = \{(X^1, \ldots, X^n) : X^i \in R(j), i = 1, \ldots, n\}$ and paraholomorphic changes of charts in a way similar to [2] (see also [6]), i.e., a manifold M_{2n} with an integrable paracomplex structure φ is a real realization of the paraholomorphic manifold $M_n(R(j))$ over the algebra R(j). 1.1. Norden metrics. A metric g is a Norden metric [15] if

$$g(\varphi X, \varphi Y) = g(X, Y)$$

or equivalently

$$g(\varphi X, Y) = g(X, \varphi Y)$$

for any $X, Y \in \mathfrak{S}_0^1(M_{2n})$. Metrics of this kind have been also studied under the names: pure, anti-Hermitian and *B*-metric (see [5, 7, 12, 17, 23, 25]). If (M_{2n}, φ) is an almost paracomplex manifold with Norden metric g, we say that (M_{2n}, φ, g) is an almost para-Norden manifold. If φ is integrable, we say that (M_{2n}, φ, g) is a para-Norden manifold.

1.2. Paraholomorphic (almost paraholomorphic) tensor fields. Let \tilde{t} be a paracomplex tensor field on $M_n(R(j))$. The real model of such a tensor field is a tensor field on M_{2n} of the same order that is independent of whether its vector or covector arguments is subject to the action of the affinor structure φ . Such tensor fields are said to be pure with respect to φ . They were studied by many authors (see, e.g., [12, 18, 19, 23–25, 27]). In particular, being applied to a (0, q)-tensor field ω , the purity means that for any $X_1, \ldots, X_q \in \mathfrak{S}_0^1(M_{2n})$, the following conditions should hold:

$$\omega(\varphi X_1, X_2, \dots, X_q) = \omega(X_1, \varphi X_2, \dots, X_q) = \dots = \omega(X_1, X_2, \dots, \varphi X_q).$$

We define an operator

$$\Phi_{\varphi} \colon \mathfrak{S}^0_a(M_{2n}) \to \mathfrak{S}^0_{a+1}(M_{2n})$$

applied to the pure tensor field ω by (see [27])

$$(\Phi_{\varphi}\omega)(X,Y_1,Y_2,\ldots,Y_q) = (\varphi X)(\omega(Y_1,Y_2,\ldots,Y_q)) - X(\omega(\varphi Y_1,Y_2,\ldots,Y_q)) + \\ +\omega((L_{Y_1}\varphi)X,Y_2,\ldots,Y_q) + \ldots + \omega(Y_1,Y_2,\ldots,(L_{Y_q}\varphi)X),$$

where L_Y denotes the Lie differentiation with respect to Y.

When φ is a paracomplex structure on M_{2n} and the tensor field $\Phi_{\varphi}\omega$ vanishes, the paracomplex tensor field $\overset{*}{\omega}$ on $M_n(R(j))$ is said to be paraholomorphic (see [12, 23, 27]). Thus a paraholomorphic tensor field $\overset{*}{\omega}$ on $M_n(R(j))$ is realized on M_{2n} in the form of a pure tensor field ω , such that

$$(\Phi_{\varphi}\omega)(X,Y_1,Y_2,\ldots,Y_q)=0$$

for any $X, Y_1, \ldots, Y_q \in \mathfrak{S}_0^1(M_{2n})$. Therefore such a tensor field ω on M_{2n} is also called paraholomorphic tensor field. When φ is an almost paracomplex structure on M_{2n} , a tensor field ω satisfying $\Phi_{\varphi}\omega = 0$ is said to be almost paraholomorphic.

1.3. Paraholomorphic Norden (para-Kähler – Norden) metrics. In a para-Norden manifold a para-Norden metric g is called a *paraholomorphic* if

$$(\Phi_{\varphi}g)(X,Y,Z) = 0 \tag{1}$$

for any $X, Y, Z \in \mathfrak{S}_0^1(M_{2n})$.

By setting $X = \partial_k$, $Y = \partial_i$, $Z = \partial_j$ in the equation (1), we see that the components $(\Phi_{\varphi}g)_{kij}$ of $\Phi_{\varphi}g$ with respect to a local coordinate system x^1, \ldots, x^n may be expressed as follows:

$$(\Phi_{\varphi}g)_{kij} = \varphi_k^m \partial_m g_{ij} - \varphi_i^m \partial_k g_{mj} + g_{mj} \left(\partial_i \varphi_k^m - \partial_k \varphi_i^m \right) + g_{im} \partial_j \varphi_k^m.$$

If (M_{2n}, φ, g) is a para-Norden manifold with paraholomorphic Norden metric g, we say that (M_{2n}, φ, g) is a *paraholomorphic Norden manifold*.

In some aspects, paraholomorphic Norden manifolds are similar to Kähler manifolds. The following theorem is analogue to the next known result: An almost Hermitian manifold is Kähler if and only if the almost complex structure is parallel with respect to the Levi–Civita connection.

Theorem 1 [21] (for complex version see [10]). For an almost paracomplex manifold with para-Norden metric g, the condition $\Phi_{\varphi}g = 0$ is equivalent to $\nabla \varphi = 0$, where ∇ is the Levi–Civita connection of g.

A para-Kähler–Norden manifold can be defined as a triple (M_{2n}, φ, g) which consists of a manifold M_{2n} endowed with an almost paracomplex structure φ and a pseudo-Riemannian metric g such that $\nabla \varphi = 0$, where ∇ is the Levi–Civita connection of g and the metric g is assumed to be para-Nordenian. Therefore, there exist a one-to-one correspondence between para-Kähler–Norden manifolds and para-Norden manifolds with a paraholomorphic metric. Recall that in such a manifold, the Riemannian curvature tensor is pure and paraholomorphic, also the curvature scalar is locally paraholomorphic function (see [10, 17]).

Remark 1. We know that the integrability of the almost paracomplex structure φ is equivalent to the existing a torsion-free affine connection with respect to which the equation $\nabla \varphi = 0$ holds. Since the Levi-Civita connection ∇ of g is a torsion-free affine connection, we have: if $\Phi_{\varphi}g = 0$, then φ is integrable. Thus, almost para-Norden manifold with conditions $\Phi_{\varphi}g = 0$ and $N_{\varphi} \neq 0$, i.e., almost paraholomorphic Norden manifolds (analogues of the almost para-Kähler manifolds with closed para-Kähler form) does not exist.

2. Walker metrics in dimension four. A neutral metric g on a 4-manifold M_4 is said to be Walker metric if there exists a 2-dimensional null distribution D on M_4 , which is parallel with respect to g. For such metrics a canonical form has been obtained by Walker [26], showing the existence of suitable coordinates (x^1, x^2, x^3, x^4) around any point of M_4 where the metric expresses as

$$g = (g_{ij}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a & c \\ 0 & 1 & c & b \end{pmatrix},$$

for some functions a, b and c depending on the coordinates (x^1, x^2, x^3, x^4) . Note that D == span $\{\partial_1, \partial_2\} \left(\partial_i = \frac{\partial}{\partial x^i}\right)$. For an application of such a 4-dimensional Walker metric (see [9]). Since the observation of the existence of almost paracomplex structures on Walker 4-manifolds in a paper [20], the Walker 4-manifolds have been intensively studied, e.g., [1, 3, 4, 8, 13, 14, 16, 20, 22].

As in a resent paper [15], we shall study throughout this paper the following Walker metrics of restricted type (c = 0):

$$g = (g_{ij}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a & 0 \\ 0 & 1 & 0 & b \end{pmatrix}.$$
 (2)

3. Almost paracomplex structure φ in the case of c = 0. A natural way to construct of an almost paracomplex structure φ on a neutral 4-manifold is as follows: choose a local orthonormal basis $\{e_i\}$, $i = 1, \ldots, 4$, so that with respect to the basis the neutral metric becomes the standard form

$$g = (g(e_i, e_j)) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

and then define φ by

$$\varphi e_1 = e_2, \quad \varphi e_2 = e_1, \quad \varphi e_3 = e_4, \quad \varphi e_4 = e_3.$$
 (3)

We consider the Walker metrics with c = 0 as follows:

$$g = (g_{ij}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a & 0 \\ 0 & 1 & 0 & b \end{pmatrix},$$
(4)

where a and b are functions of suitable coordinates (x^1, x^2, x^3, x^4) around any point of M_4 . In this case, we find a local orthonormal basis $\{e_1, e_2, e_3, e_4\}$ [14] ((14)), as follows:

$$e_{1} = \frac{1}{\sqrt[4]{a^{2} + 4}} \left\{ \frac{1}{2} (\sqrt{a^{2} + 4} - a)\partial_{1} + \partial_{3} \right\},$$

$$e_{2} = \frac{1}{\sqrt[4]{b^{2} + 4}} \left\{ \frac{1}{2} (\sqrt{b^{2} + 4} - b)\partial_{2} + \partial_{4} \right\},$$

$$e_{3} = \frac{1}{\sqrt[4]{a^{2} + 4}} \left\{ -\frac{1}{2} (\sqrt{a^{2} + 4} + a)\partial_{1} + \partial_{3} \right\},$$

$$e_{4} = \frac{1}{\sqrt[4]{b^{2} + 4}} \left\{ -\frac{1}{2} (\sqrt{b^{2} + 4} + b)\partial_{2} + \partial_{4} \right\}.$$
(5)

For the Walker metric (2) with c = 0, the dual basis $\{e^1, e^2, e^3, e^4\}$ of 1-forms to the basis (5) of vectors is given by [14] ((19))

$$e^{1} = \frac{1}{\sqrt[4]{a^{2} + 4}} \left\{ dx^{1} + \frac{1}{2}(\sqrt{a^{2} + 4} + a)dx^{3} \right\},$$

M. İŞCAN, M. ÖZKAN

$$e^{2} = \frac{1}{\sqrt[4]{b^{2}+4}} \left\{ dx^{2} + \frac{1}{2}(\sqrt{b^{2}+4}+b)dx^{4} \right\},$$

$$e^{3} = -\frac{1}{\sqrt[4]{a^{2}+4}} \left\{ dx^{1} - \frac{1}{2}(\sqrt{a^{2}+4}-a)dx^{3} \right\},$$

$$e^{4} = -\frac{1}{\sqrt[4]{b^{2}+4}} \left\{ dx^{2} - \frac{1}{2}(\sqrt{b^{2}+4}-b)dx^{4} \right\}.$$

We now put $K = \sqrt[4]{(b^2+4)/(a^2+4)}$. The almost paracomplex structures defined by (3) is written explicitly as follows:

$$\varphi = e_1 \otimes e^2 + e_2 \otimes e^1 + e_3 \otimes e^4 + e_4 \otimes e^3 = \begin{pmatrix} 0 & \frac{1}{K} & 0 & \frac{1}{2} \left(\frac{b}{K} - aK \right) \\ K & 0 & \frac{1}{2} \left(aK - \frac{b}{K} \right) & 0 \\ 0 & 0 & 0 & K \\ 0 & 0 & 0 & K \\ 0 & 0 & \frac{1}{K} & 0 \end{pmatrix},$$
(6)

where these matrices are written with respect to the coordinate basis. In this case, the triple (M_4, φ, g) is called almost para-Norden – Walker manifold.

4. φ -Integrability (para-Norden structures). If we write as $\varphi \partial_i = \sum_{j=1}^4 \varphi_i^j \partial_j$, then from (6) we can read off the nonzero components φ_i^j as follows:

$$\varphi_{1}^{2} = K, \qquad \varphi_{2}^{1} = \frac{1}{K}, \qquad \varphi_{3}^{2} = \frac{1}{2} \left(aK - \frac{b}{K} \right),$$

$$\varphi_{3}^{4} = \frac{1}{K}, \qquad \varphi_{4}^{1} = \frac{1}{2} \left(\frac{b}{K} - aK \right), \qquad \varphi_{4}^{3} = K.$$
(7)

The almost paracomplex structure φ is integrable if and only if the torsion of φ (Nijenhuis tensor) vanishes, or equivalently the following components:

$$(N_{\varphi})^{i}_{jk} = \varphi^{m}_{j} \partial_{m} \varphi^{i}_{k} - \varphi^{m}_{k} \partial_{m} \varphi^{i}_{j} - \varphi^{i}_{m} \partial_{j} \varphi^{m}_{k} + \varphi^{i}_{m} \partial_{k} \varphi^{m}_{j}$$

all vanish (cf. [12, p. 124]), where φ_i^j are given by (7). By explicit calculation, we find the φ -integrability condition as follows.

Theorem 2. The almost paracomplex structure φ on almost para-Norden – Walker manifolds is integrable if and only if the following PDE's hold:

$$K_1 = 0, \quad K_2 = 0, \quad K^2 a_1 - b_1 - 2KK_3 = 0, \quad K^2 a_2 - b_2 - \frac{2}{K}K_4 = 0.$$
 (8)

ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1

36

In this note, we will try to find the general solutions according to suitable local coordinates for the PDE's in above theorem.

Theorem 3. The almost paracomplex structure φ on almost para-Norden – Walker manifolds is integrable if and only if a and b satisfy one of the following:

type $\varphi_A : K = \{(b^2 + 4)/(a^2 + 4)\}^{1/4} (= C)$ is constant, and

$$a = a(x^3, x^4), \qquad b = b(x^3, x^4),$$

type $\varphi_B: a(x^1, x^2, x^3, x^4) = b(x^1, x^2, x^3, x^4)$ (necessarily K = 1),

and either $a_1 \neq 0$ or $a_2 \neq 0$,

type φ_C : $K = \{(b^2 + 4)/(a^2 + 4)\}^{1/4}$ *is not constant, and*

$$a(x^{1}, x^{2}, x^{3}, x^{4}) = \psi^{-2} \left(\psi L + \phi - \frac{\psi^{4} - 1}{\psi L + \phi} \right),$$

$$b(x^{1}, x^{2}, x^{3}, x^{4}) = -\psi L - \phi - \frac{\psi^{4} - 1}{\psi L + \phi},$$
(9)

with

$$L = L\left(x^{1}, x^{2}, x^{3}, x^{4}\right) = \psi_{3}x^{1} + \psi^{-2}\psi_{4}x^{2},$$
(10)

for a and b functions defined according to suitable coordinates values of (x^1, x^2, x^3, x^4) , $\psi = \psi(x^3, x^4)$ and $\phi = \phi(x^3, x^4)$ are smooth functions of x^3 and x^4 such that $\psi(x^3, x^4) \neq 0$ and $\phi(x^3, x^4) \neq 0$ for suitable points (x^3, x^4) , and $x^1 \neq -\frac{\psi_4}{\psi^2 \psi_3} x^2 - \frac{\phi}{\psi \psi_3}$ must be satisfied for suitable points (x^1, x^2) . Moreover, the function K depends only on x^3 , x^4 , and coincides with ψ .

We shall prove this theorem in three steps.

Proof. The first step: From the former two equations in (8), we must note that $K = \{(b^2+4)/(a^2+4)\}^{1/4}$ does not depend on x^1 , x^2 , and further that the latter two can be written as follows:

$$(K^2a - b)_1 = 2KK_3, \quad (K^2a - b)_2 = \frac{2}{K}K_4.$$
 (11)

Integrating these equations with respect to x^1 and x^2 , respectively, we have

$$K^{2}a - b = 2KK_{3}x^{1} + p^{A}(x^{2}, x^{3}, x^{4}),$$

$$K^{2}a - b = \frac{2}{K}K_{4}x^{2} + p^{B}(x^{1}, x^{3}, x^{4}),$$
(12)

where p^A and p^B are arbitrary functions of x^2 , x^3 , x^4 and of x^1 , x^3 , x^4 , respectively. Differentiating the former equation by x^2 , then we have $(K^2a - b)_2 = p_2^A(x^2, x^3, x^4) = \frac{2}{K}K_4$, and hence $p^A(x^2, x^3, x^4) = \frac{2}{K}K_4x^2 + q^A(x^3, x^4)$. For p^B , similarly we can write $p^B(x^1, x^3, x^4) =$ $= 2KK_3x^1 + q^B(x^3, x^4)$. Using these p^A and p^B in (12), we see that q^A and q^B coincide with each

other, and denote them by $2f(x^3, x^4)$. In fact, we obtain

$$K^{2}a - b = 2KK_{3}x^{1} + \frac{2}{K}K_{4}x^{2} + 2f(x^{3}, x^{4}).$$
(13)

From the relation $K = \left\{ (b^2 + 4)/(a^2 + 4) \right\}^{1/4}$, we get

$$(K^4)_1 = 0 \Rightarrow bb_1(a^2 + 4) = aa_1(b^2 + 4),$$

 $(K^4)_2 = 0 \Rightarrow bb_2(a^2 + 4) = aa_2(b^2 + 4),$

and hence

$$K^4 = \frac{b^2 + 4}{a^2 + 4} = \frac{bb_1}{aa_1} = \frac{bb_2}{aa_2}.$$
(14)

(End of the first step.)

In the subsequent steps of the proof, we divide the situation into two cases as follows: *Case* I: K is constant.

Case II: K depends only on x^3 and x^4 .

The second step: We consider here the first Case I: K is constant, denoted by K = C, i.e., $C^4(a^2 + 4) = b^2 + 4$. In this case, the equations (11) reduce to

$$(C^{2}a - b)_{i} = (C^{2}a \pm \sqrt{C^{4}(a^{2} + 4) - 4})_{i} = 0, \quad i = 1, 2.$$

There are two types of solutions to these equations as follows:

i) $C^2a - b = 0$, where a and b can be functions of x^1 , x^2 , x^3 and x^4 , or

ii) $a_1 = a_2 = b_1 = b_2 = 0$.

For i), in fact, the relation $C^2a - b = 0$ together with $C^4(a^2 + 4) = b^2 + 4$ implies that K = C = 1, and that $a(x^1, x^2, x^3, x^4) = b(x^1, x^2, x^3, x^4)$ which is of type φ_B .

It is easy to see that if $C^2a - b \neq 0$, then there is another possibility of the second case ii) $a_1 = a_2 = b_1 = b_2 = 0$. Therefore, if K is constant (K = C) (including K = 1), then $a = a(x^3, x^4)$ and $b = b(x^3, x^4)$ are solutions to (8). Such solutions are of type φ_A . Here, we must note that such a and b are subject to a relation $C^4(a^2 + 4) = b^2 + 4$. (End of the second step.)

The third step: In this final step, we consider the Case II: K is independent of x^1 and x^2 . From (14), we have $K^2aa_1 = \frac{1}{K^2}bb_1$, and add $-ba_1$ both sides of it. Then, we have

$$(K^2a - b)a_1 = -\frac{b}{K^2}(K^2a - b)_1.$$

From the former equation in (11), we obtain

$$(K^{2}a - b)a_{1} = -\frac{2K_{3}}{K}b = \frac{2K_{3}}{K}\left\{-K^{2}a + (K^{2}a - b)\right\}.$$

Using (13), we get

$$\left(KK_3x^1 + \frac{1}{K}K_4x^2 + f\right)a_1 + KK_3a = \frac{2K_3}{K}\left(KK_3x^1 + \frac{1}{K}K_4x^2 + f\right).$$
 (15)

From a similar calculation, we have an analogous equation for x^2 as follows:

$$\left(KK_3x^1 + \frac{1}{K}K_4x^2 + f\right)a_2 + \frac{1}{K}K_4a = \frac{2K_4}{K^3}\left(KK_3x^1 + \frac{1}{K}K_4x^2 + f\right).$$
 (16)

At this stage, we recall that for a function y(t) of single argument t, an ODE of the form

$$(\alpha t + \beta) \frac{dy(t)}{dt} + \alpha y(t) = \gamma t + \delta \quad (\alpha, \ \beta, \gamma, \ \delta - \text{constants})$$

has a solution $y(t) = \frac{\frac{1}{2}\gamma t^2 + \delta t + \alpha C}{\alpha t + \beta}$ (C - constant). If we regard the equation (15) as such an ODE with respect to x^1 , with x^2 , x^3 , x^4 as parameters, then we have its solution as follows:

$$a = \frac{K_3^2 (x^1)^2 + \frac{2K_3K_4}{K^2} x^1 x^2 + \frac{2}{K} K_3 f x^1 + K K_3 h^A (x^2, x^3, x^4)}{K K_3 x^1 + \frac{1}{K} K_4 x^2 + f}.$$

In a similar way, we can obtain a solution to (16) as follows:

$$a = \frac{\frac{1}{K^4} K_4^2 (x^2)^2 + \frac{2K_3K_4}{K^2} x^1 x^2 + \frac{2}{K^3} K_4 f x^2 + \frac{K_4}{K} h^B (x^1, x^3, x^4)}{KK_3 x^1 + \frac{1}{K} K_4 x^2 + f}.$$

In the above two equations, h^A and h^B are arbitrary functions of x^2 , x^3 , x^4 and of x^1 , x^3 , x^4 , respectively. Comparing the above two solutions for a, we have

$$KK_{3}h^{A}(x^{2}, x^{3}, x^{4}) = \frac{1}{K^{4}}K_{4}^{2}(x^{2})^{2} + \frac{2}{K^{3}}K_{4}fx^{2} + h(x^{3}, x^{4}),$$
$$\frac{K_{4}}{K}h^{B}(x^{1}, x^{3}, x^{4}) = \frac{2}{K}K_{3}fx^{1} + K_{3}^{2}(x^{1})^{2} + h(x^{3}, x^{4}),$$

where $h(x^3, x^4)$ is an arbitrary function of x^3, x^4 . Therefore, we see that a is written as

$$a = \frac{K_3^2 (x^1)^2 + \frac{2K_3K_4}{K^2} x^1 x^2 + \frac{1}{K^4} K_4^2 (x^2)^2 + \frac{2}{K} K_3 f x^1 + \frac{2}{K^3} K_4 f x^2 + h}{KK_3 x^1 + \frac{1}{K} K_4 x^2 + f} = \frac{1}{K^2} \left(KK_3 x^1 + \frac{1}{K} K_4 x^2 + f - \frac{f^2 - K^2 h}{KK_3 x^1 + \frac{1}{K} K_4 x^2 + f} \right).$$

From this expression for a, we can obtain, with (13), the explicit form of the function b as well as a:

$$b = K^{2}a - 2KK_{3}x^{1} - \frac{2}{K}K_{4}x^{2} - 2f(x^{3}, x^{4}) =$$

M. İŞCAN, M. ÖZKAN

$$= -KK_3x^1 - \frac{1}{K}K_4x^2 - f - \frac{f^2 - K^2h}{KK_3x^1 + \frac{1}{K}K_4x^2 + f}$$

These expressions for a and b contain two arbitrary functions f and h of x^3 and x^4 . Taking into account of $K = \{(b^2 + 4)/(a^2 + 4)\}^{1/4}$ for the above solutions a and b, we can see that there is a relation among f, h and K as follows:

$$f^2 - K^2 h = K^4 - 1.$$

At the final stage of the proof, we will arrange the expressions for a, b so that they look simple. Keeping the last expression in mind, we can regard K as one of arbitrary functions with arguments x^3 , x^4 , instead of h. Then, we denote $K(x^3, x^4)$ by a new symbol $\psi = \psi(x^3, x^4)$, and also put $\phi = \phi(x^3, x^4) = f(x^3, x^4)$. If we write $L = K_3 x^1 + \frac{1}{K^2} K_4 x^2 = \psi_3 x^1 + \psi^{-2} \psi_4 x^2$ as in (10), we have arrived at the desired expressions as in (9). Also, for a and b functions defined according to suitable coordinates values of $(x^1, x^2, x^3, x^4), \psi = \psi(x^3, x^4)$ and $\phi = \phi(x^3, x^4)$ must be smooth functions of x^3 and x^4 such that $\psi(x^3, x^4) \neq 0$ and $\phi(x^3, x^4) \neq 0$ for suitable points (x^3, x^4) , and $x^1 \neq -\frac{\psi_4}{\psi^2 \psi_3}x^2 - \frac{\phi}{\psi \psi_3}$ must be satisfied for suitable points (x^1, x^2) . Such a case is classified as type φ_C . (End of the third step.)

Theorem 3 is proved.

5. Paraholomorphic Norden-Walker (para-Kähler-Norden-Walker) metrics on (M_4, φ, g) . Let (M_4, φ, g) be an almost para-Norden-Walker manifold. If

$$(\Phi_{\varphi}g)_{kij} = \varphi_k^m \partial_m g_{ij} - \varphi_i^m \partial_k g_{mj} + g_{mj} (\partial_i \varphi_k^m - \partial_k \varphi_i^m) + g_{im} \partial_j \varphi_k^m = 0,$$
(17)

then by virtue of Theorem 1 φ is integrable and the triple (M_4, φ, g) is called a paraholomorphic Norden–Walker or a para-Kähler–Norden–Walker manifold. Taking account of Remark 1, we see that almost para-Kähler–Norden–Walker manifold with condition $\Phi_{\varphi}g = 0$ and $N_{\varphi} \neq 0$ does not exist.

We will write (4) and (7) in (17). By explicit calculation, we have the following theorem.

Theorem 4. The triple (M_4, φ, g) is para-Kähler – Norden – Walker if and only if the following PDEs hold:

$$K_1 = 0$$
, $K_2 = 0$, $a_2 = a_4 = b_1 = b_3 = 0$, $Ka_1 - 2K_3 = 0$, $Kb_2 + 2K_4 = 0$.

Remark 2. In a recent paper [20], a proper almost paracomplex structure on a Walker 4-manifold is defined and analyzed. The almost paracomplex structure φ defined in (6) coincides with that defined in [20] ((3)) in each of the cases (a) c = 0 and a = b, and case (b) c = 0 and a = -b. Note that in the former case (a), φ is integrable (cf. [20], Theorem 2). In fact, such happens in the following two situations:

i)
$$a(x^3, x^4) = b(x^3, x^4)$$
 in type φ_A (in Theorem 3),
ii) $a(x^1, x^2, x^3, x^4) = b(x^1, x^2, x^3, x^4)$ in type φ_B (in Theorem 3).

- Bonome A., Castro R., Hervella L. M., Matsushita Y. Construction of Norden structures on neutral 4-manifolds // JP J. Geom. Top. – 2005. – 5, № 2. – P. 121–140.
- Cruceanu V., Fortuny P., Gadea P. M. A survey on paracomplex geometry // Rocky Mountain J. Math. 1996. 26, № 1. – P. 83 – 115.

ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1

40

ON FOUR DIMENSIONAL PARACOMPLEX STRUCTURES WITH NORDEN METRICS

- Davidov J., Díaz-Ramos J. C., García-Río E., Matsushita Y., Muškarov O., Vázquez-Lorenzo R. Almost Kähler Walker 4-manifolds // J. Geom. Phys. – 2007. – 57. – P. 1075–1088.
- Davidov J., Díaz-Ramos J. C., García-Río E., Matsushita Y., Muškarov O., Vázquez-Lorenzo R. Hermitian Walker 4-manifolds // J. Geom. Phys. – 2008. – 58. – P. 307 – 323.
- 5. *Etayo F., Santamaria R.* (J2 = ±1)-metric manifolds // Publ. Math. Debrecen. 2000. **57**, № 3-4. P. 435–444.
- 6. Gadea P. M., Grifone J., Munoz Masque J. Manifolds modelled over free modules over the double numbers // Acta Math. hung. 2003. 100, № 3. P. 187–203.
- Ganchev G. T., Borisov A. V. Note on the almost complex manifolds with a Norden metric // C. R. Acad. Bulg. Sci. 1986. – 39, № 5. – P. 31–34.
- García-Río E., Haze S., Katayama N., Matsushita Y. Symplectic, Hermitian and Kahler structures on Walker 4manifolds // J. Geom. – 2008. – 90. – P. 56–65.
- Ghanam R., Thompson G. The holonomy Lie algebras of neutral metrics in dimension four // J. Math. Phys. 2001. 42. – P. 2266–2284.
- Iscan M., Salimov A. A. On K\u00e4hler Norden manifolds // Proc. Indian Acad. Sci. Math. Sci. 2009. 119, № 1. P. 71 – 80.
- 11. Kobayashi S., Nomizu K. Foundations of differential geometry II. New York; London: John Wiley, 1969.
- Kruchkovich G. I. Hypercomplex structure on a manifold, I // Tr. Sem. Vect. Tens. Anal., Moscow Univ. 1972. 16. – P. 174–201.
- Matsushita Y. Four-dimensional Walker metrics and symplectic structure // J. Geom. Phys. 2004. 52. P. 89–99; Erratum, J. Geom. Phys. – 2007. – 57. – P. 729.
- 14. Matsushita Y. Walker 4-manifolds with proper almost complex structure // J. Geom. Phys. 2005. 55. P. 385 398.
- 15. Norden A. P. On a certain class of four-dimensional A-spaces // Iz. Vuzov. 1960. 4. P. 145-157.
- 16. Özkan M., İşcan M. Some properties of para-Kähler Walker metrics // Ann. pol. math. 2014. 112. P. 115–125.
- Salimov A. A. Almost analyticity of a Riemannian metric and integrability of a structure (in Russian) // Trudy Geom. Sem. Kazan. Univ. – 1983. – 15. – P. 72–78.
- Salimov A. A. Generalized Yano-Ako operator and the complete lift of tensor fields // Tensor (N. S.). 1994. 55, № 2. - P. 142-146.
- Salimov A. A. Lifts of poly-affinor structures on pure sections of a tensor bundle // Russian Math. (Iz. Vuzov). 1996. – 40, № 10. – P. 52–59.
- Salimov A. A., Iscan M., Akbulut K. Notes on para-Norden Walker 4-manifolds // Int. J. Geom. Methods Mod. Phys. 2010. – 7, № 8. – P. 1331–1347.
- Salimov A. A., Iscan M., Etayo F. Paraholomorphic B-manifold and its properties // Top. Appl. 2007. 154. P. 925–933.
- Salimov A. A., Iscan M. Some properties of Norden-Walker metrics // Kodai Math. J. 2010. 33, № 2. -P. 283-293.
- 23. Tachibana S. Analytic tensor and its generalization // Tôhoku Math. J. 1960. 12, № 2. P. 208–221.
- 24. Vishnevskii V. V., Shirokov A. P., Shurygin V. V. Spaces over algebras. Kazan: Kazan Gos. Univ., 1985 (in Russian).
- Vishnevskii V. V. Integrable affinor structures and their plural interpretations // J. Math. Sci. 2002. 108, № 2. P. 151–187.
- 26. Walker A. G. Canonical form for a Riemannian space with a parallel field of null planes // Quart. J. Math. Oxford. 1950. 1, № 2. P. 69–79.
- Yano K., Ako M. On certain operators associated with tensor fields // Kodai Math. Sem. Rep. 1968. 20. P. 414–436.

Received 21.11.12, after revision – 22.04.14