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ON THE SOLVABILITY OF A PROBLEM NONLOCAL IN TIME
FOR A SEMILINEAR MULTIDIMENSIONAL WAVE EQUATION

ПРО РОЗВ’ЯЗНIСТЬ НЕЛОКАЛЬНОЇ ЗА ЧАСОМ ЗАДАЧI
ДЛЯ НАПIВЛIНIЙНОГО БАГАТОВИМIРНОГО ХВИЛЬОВОГО РIВНЯННЯ

We study a nonlocal (in time) problem for semilinear multidimensional wave equations. The theorems on existence and
uniqueness of solutions of this problem are proved.

Вивчається нелокальна за часом задача для напiвлiнiйних багатовимiрних хвильових рiвнянь. Доведено теореми
про iснування та єдинiсть розв’язкiв цiєї задачi.

1. Introduction. In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical domain
DT = Ω × (0, T ), where Ω is a Lipschitz domain in Rn, consider a nonlocal problem of finding a
solution u(x, t) of the following equation:

Lλu :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2
i

+ λf(x, t, u) = F (x, t), (x, t) ∈ DT , (1.1)

satisfying the homogeneous boundary condition on the part of the boundary Γ := ∂Ω× (0, T ) of the
cylinder DT

u
∣∣
Γ
= 0, (1.2)

the initial condition

u(x, 0) = ϕ(x), x ∈ Ω, (1.3)

and the nonlocal condition

Kµut := ut(x, 0)− µut(x, T ) = ψ(x), x ∈ Ω, (1.4)

where f, F, ϕ and ψ are given functions; λ and µ are given nonzero constants and n ≥ 2.

To the study of nonlocal problems for partial differential equations there are devoted many papers.
When a nonlocal problem is posed for abstract evolution equations and hyperbolic partial differential
equations we would suggest the reader refer to works [1 – 15] and the references therein.

Note that the problem (1.1) – (1.4) in the work [15] is studied in the class of continuous functions
for the case of one spatial variable, i.e., for n = 1. The method of investigation given in the work [15],
based on the integral representation of the solution of corresponding linear problem, is useless for
multidimensional case, i.e., for n > 1. In this work the problem (1.1) – (1.4) in the multidimensional
case is studied in the Sobolev space W 1

2 (DT ), basing on expansions of the functions from the space
0
W 1

2(Ω) in the basis, consisting of eigenfunctions of spectral problem ∆w = λ̃w, w |∂Ω = 0 and
using embedding theorems in the Sobolev spaces. It must be noted also that if for n = 1 there is no
need of any restriction on the behavior of function f(x, t, u) with respect to variable u when u→∞,
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while in the case n > 1, we require of function f(x, t, u) that for u → ∞ it must have a growth
not exceeding polynomial. Moreover, for using the embedding theorems in the Sobolev spaces we
additionally require that the order of polynomial growth must be less than a certain value, which
depends of the dimension of the space.

Below, on the function f = f(x, t, u) we impose the following requirements:

f ∈ C(DT × R), |f(x, t, u)| ≤M1 +M2|u|α, (x, t, u) ∈ DT × R, (1.5)

where

0 ≤ α = const <
n+ 1

n− 1
. (1.6)

Remark 1.1. The embedding operator I : W 1
2 (DT ) → Lq(DT ) represents a linear continuous

compact operator for 1 < q <
2(n+ 1)

n− 1
,when n > 1 [16]. At the same time the Nemitski operatorN :

Lq(DT )→ L2(DT ), acting by the formula Nu = f(x, t, u) due to (1.5) is continuous and bounded

if q ≥ 2α [17]. Thus, since due to (1.6) we have 2α <
2(n+ 1)

n− 1
, then there exists the number q

such that 1 < q <
2(n+ 1)

n− 1
and q ≥ 2α. Therefore, in this case the operator

N0 = NI :
0
W 1

2(DT ,Γ)→ L2(DT ), (1.7)

where
0
W 1

2(DT ,Γ) := {w ∈ W 1
2 (DT ) : w |Γ = 0}, will be continuous and compact. Besides, from

u ∈
0
W 1

2(DT ,Γ) it follows that f(x, t, u) ∈ L2(DT ) and, if um → u in the space
0
W 1

2(DT ,Γ), then
f(x, t, um)→ f(x, t, u) in the space L2(DT ).

Definition 1.1. Let function f satisfy conditions (1.5) and (1.6), F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω) :=

:= {v ∈ W 1
2 (Ω) : v |∂Ω = 0}, ψ ∈ L2(Ω). We call a function u a generalized solution of prob-

lem (1.1) – (1.4), if u ∈
0
W 1

2(DT ,Γ) and there exists a sequence of functions um ∈
0
C 2(DT ,Γ) :=

:=
{
w ∈ C2(DT ) : w |Γ = 0

}
such that

lim
m→∞

‖um − u‖ 0
W 1

2(DT ,Γ)
= 0, lim

m→∞
‖Lλum − F‖L2(DT ) = 0, (1.8)

lim
m→∞

‖um |t=0 − ϕ‖ 0
W 1

2(Ω)
= 0, lim

m→∞
‖Kµumt − ψ‖L2(Ω) = 0. (1.9)

It is obvious that a classical solution u ∈ C2(DT ) of problem (1.1) – (1.4) represents a generalized
solution of this problem. It is easy to verify that a generalized solution of problem (1.1) – (1.4) is
a solution of problem (1.1) in the sense of the theory of distributions. Indeed, let Fm := Lλum,

ϕm := um |t=0, ψm := Kµumt. Multiplying the both sides of the equality Lλum = Fm by test

function w ∈ V :=
{
v ∈

0
W 1

2(DT ,Γ) : v(x, T )−µv(x, 0) = 0, x ∈ Ω
}

and integrating in the domain
DT , after simple transformations, connected with integration by parts and the equality w |Γ = 0, we
get ∫

Ω

[umt(x, T )w(x, T )− umt(x, 0)w(x, 0)]dx+
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+

∫
DT

[
−umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w

]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ V. (1.10)

Due toKµumt = ψm(x) andw(x, T )−µw(x, 0) = 0, x ∈ Ω, it is easy to see that umt(x, T )w(x, T )−
− umt(x, 0)w(x, 0) = umt(x, T )(w(x, T ) − µw(x, 0)) − ψm(x)w(x, 0) = −ψm(x)w(x, 0), x ∈ Ω.

Therefore, equality (1.10) takes the form

−
∫
Ω

ψm(x)w(x, 0)dx+

+

∫
DT

[
−umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w

]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ V. (1.11)

In view of (1.5), (1.6) according to Remark 1.1 we have f(x, t, um) → f(x, t, u) in the space

L2(DT ), when um → u in the space
0
W 1

2(DT ,Γ). Therefore, due to (1.8) and (1.9), passing to the
limit in equality (1.11) for m→∞, we get

−
∫
Ω

ψw(x, 0)dx+

∫
DT

[
−utwt +

n∑
i=1

uxiwxi + λf(x, t, u)w

]
dx dt =

∫
DT

Fwdx dt ∀w ∈ V.

(1.12)

Since C∞0 (DT ) ⊂ V, then from (1.12), integrating by parts, we have∫
DT

[
u2w + λf(x, t, u)w

]
dx dt =

∫
DT

Fw dx dt ∀w ∈ C∞0 (DT ), (1.13)

where 2 := ∂2/∂t2 −
∑n

i=1
∂2/∂x2

i , and C∞0 (DT ) is a space of finite infinitely differentiable
functions in DT . Equality (1.13), which is valid for any w ∈ C∞0 (DT ), means that a generalized
solution u of problem (1.1) – (1.4) is a solution of equation (1.1) in the sense of the theory of

distributions, besides, since the trace operator u → u |t=0 is well defined in the space
0
W 1

2(DT ,Γ),

and, particularly, is a continuous operator from the space
0
W 1

2(DT ,Γ) into the space L2(Ω×{t = 0}),
then due to (1.8) and (1.9) we receive that the initial condition (1.3) is fulfilled in the sense of the
trace theory, while the nonlocal condition (1.4) in the integral sense is taken into account in equality
(1.12), which is valid for all w ∈ V. Note also that if a generalized solution u belongs to the class
C2(DT ), then due to the standard reasoning, connected with the integral equality (1.12), which is
valid for any w ∈ V [16], we have that u is a classical solution of problem (1.1) – (1.4), satisfying
the equation (1.1), the boundary condition (1.2), the initial condition (1.3) and the nonlocal condition
(1.4) pointwisely.

Note that even in the linear case, i.e., for λ = 0, problem (1.1) – (1.4) is not always well-posed.
For example, when λ = 0 and |µ| = 1, the corresponding to (1.1) – (1.4) homogeneous problem may
have infinite number of linearly independent solutions (see Remark 3.2).

The work is organized in the following way. In Section 2 we single out the class of semilinear
equations (1.1), when for |µ| < 1 a priori estimate is valid for the generalized solution of prob-
lem (1.1) – (1.4). In Section 3 on the basis of a priori estimate, received in the previous section, the
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solvability of problem (1.1) – (1.4) is proved. Finally, in Section 4 we give the conditions imposed
on the data of the problem, which provide the uniqueness of the solution of this problem.

2. A priori estimate of the solution of problem (1.1) – (1.4). Let

g(x, t, u) =

u∫
0

f(x, t, s)ds, (x, t, u) ∈ DT × R. (2.1)

Consider the following conditions imposed on function g = g(x, t, u):

g(x, t, u) ≥ −M3, (x, t, u) ∈ DT × R, (2.2)

gt ∈ C(DT × R), gt(x, t, u) ≤M4, (x, t, u) ∈ DT × R, (2.3)

where Mi = const ≥ 0, i = 3, 4.

Let us consider some classes of functions f = f(x, t, u) frequently encountered in applications
and which satisfy conditions (1.5), (2.2) and (2.3) :

1. f(x, t, u) = f0(x, t)β(u), where f0,
∂

∂t
f0 ∈ C(DT ) and β ∈ C(R), |β(u)| ≤ M̃1 + M̃2|u|α,

M̃i = const ≥ 0, α = const ≥ 0. In this case g(x, t, u) = f0(x, t)

∫ u

0
β(s)ds and when f0 ≥ 0,

∂

∂t
f0 ≤ 0,

∫ u

0
β(s)ds ≥ −M, M = const ≥ 0, conditions (1.5), (2.2) and (2.3) will be fulfilled.

2. f(x, t, u) = f0(x, t)|u|α signu, where f0,
∂

∂t
f0 ∈ C(DT ) and α > 1. In this case g(x, t, u) =

= f0(x, t)
|u|α+1

α+ 1
and when f0 ≥ 0,

∂

∂t
f0 ≤ 0, conditions (1.5), (2.2) and (2.3) will be also fulfilled.

Lemma 2.1. Let λ > 0, |µ| < 1, F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω), ψ ∈ L2(Ω) and conditions (1.5),
(1.6), (2.2), (2.3) be fulfilled. Then for a generalized solution u of problem (1.1) – (1.4) the following
a priori estimate:

‖u‖ 0
W 1

2(DT ,Γ)
≤ c1‖F‖L2(DT ) + c2‖ϕ‖ 0

W 1
2(Ω)

+ c3‖ψ‖L2(Ω) + c4‖ϕ‖
α+1
2

0
W 1

2(Ω)
+ c5 (2.4)

is valid with nonnegative constants ci = ci(λ, µ,Ω, T,M1,M2,M3,M4) not depending on u, F, ϕ,
ψ, and ci > 0 for i < 4, whereas in the linear case, i.e., when λ = 0 the constants c4 = c5 = 0 and
due to (2.4) in this case we have the uniqueness of the solution of problem (1.1) – (1.4).

Proof. Let u be a generalized solution of problem (1.1) – (1.4). In view of Definition 1.1 there

exists a sequence of the functions um ∈
0
C 2(DT ,Γ) such that limit equalities (1.8), (1.9) are fulfilled.

Set

Lλum = Fm, (x, t) ∈ DT , (2.5)

um |Γ = 0, (2.6)

um(x, 0) = ϕm(x), x ∈ Ω, (2.7)

Kµumt = ψm(x), x ∈ Ω. (2.8)
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Multiplying both sides of equation (2.5) by 2umt and integrating in the domain Dτ := DT ∩{t <
< τ}, 0 < τ ≤ T, due to (2.1), we obtain∫

Dτ

∂

∂t

(∂um
∂t

)2
dx dt− 2

∫
Dτ

n∑
i=1

∂2um
∂x2

i

∂um
∂t

dx dt+ 2λ

∫
Dτ

d

dt

(
g(x, t, um(x, t)

)
dx dt−

−2λ

∫
Dτ

gt(x, t, um(x, t))dx dt = 2

∫
Dτ

Fm
∂um
∂t

dx dt. (2.9)

Let ωτ := {(x, t) ∈ DT : x ∈ Ω, t = τ}, 0 ≤ τ ≤ T. Denote by ν := (νx1 , νx2 , . . . , νxn , νt)

the unit vector of the outer normal to ∂Dτ . Since νxi
∣∣
ωτ∪ω0

= 0, i = 1, . . . , n, νt
∣∣
Γτ=Γ∩{t≤τ} = 0,

νt
∣∣
ωτ

= 1, νt
∣∣
ω0

= −1, then, taking into account equalities (2.6) and integrating by parts, we have∫
Dτ

∂

∂t

(∂um
∂t

)2
dx dt =

∫
∂Dτ

(∂um
∂t

)2
νtds =

∫
ωτ

u2
mtdx−

∫
ω0

u2
mtdx, (2.10)

−2

∫
Dτ

∂2um
∂x2

i

∂um
∂t

dx dt =

∫
Dτ

[(u2
mxi)t − 2(umxiumt)xi ]dx dt =

=

∫
ωτ

u2
mxidx−

∫
ω0

u2
mxidx, i = 1, . . . , n, (2.11)

2λ

∫
Dτ

d

dt

(
g(x, t, um(x, t)

)
dxdt = 2λ

∫
∂Dτ

g(x, t, um(x, t))νtds =

= 2λ

∫
ωτ

g(x, t, um(x, t))dx− 2λ

∫
ω0

g(x, t, um(x, t))dx. (2.12)

In view of (2.10), (2.11), (2.12) from (2.9) we get∫
ωτ

[
u2
mt +

n∑
i=1

u2
mxi

]
dx =

∫
ω0

[
u2
mt +

n∑
i=1

u2
mxi

]
dx− 2λ

∫
ωτ

g(x, t, um(x, t))dx+

+2λ

∫
ω0

g(x, t, um(x, t))dx+ 2λ

∫
Dτ

gt(x, t, um(x, t))dx dt+ 2

∫
Dτ

Fmumtdx dt. (2.13)

Let

wm(τ) :=

∫
ωτ

[
u2
mt +

n∑
i=1

u2
mxi

]
dx. (2.14)

Since 2Fmumt ≤ ε−1F 2
m + εu2

mt for any ε = const > 0, then due to (2.2), (2.3) and (2.14) from
(2.13) it follows that
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wm(τ) ≤ wm(0) + 2λM3 mes Ω + 2λ

∫
ω0

|g(x, t, um(x, t))|dx+

+2λM4τ mes Ω + ε

∫
DT

u2
mtdx dt+ ε−1

∫
DT

F 2
mdx dt. (2.15)

Taking into account that

∫
Dτ

u2
mtdx dt =

τ∫
0

 ∫
ωs

u2
mtdx

ds ≤ τ∫
0

 ∫
ωs

[
u2
mt +

n∑
i=1

u2
mxi

]
dx

ds =

τ∫
0

wm(s)ds,

from (2.15) we obtain

wm(τ) ≤ ε
τ∫

0

wm(s)ds+ wm(0) + 2λ(M3 +M4τ) mes Ω+

+2λ

∫
ω0

|g(x, t, um(x, t))|dx+ ε−1

∫
Dτ

F 2
mdx dt, 0 < τ ≤ T. (2.16)

Because of Dτ ⊂ DT , 0 < τ ≤ T, then according to the Gronwall’s lemma [18] from (2.16) it
follows that

wm(τ) ≤

[
wm(0) + 2λ(M3 +M4T ) mes Ω+

+2λ

∫
ω0

|g(x, t, um(x, t))|dx+ ε−1

∫
DT

F 2
mdx dt

]
eετ , 0 < τ ≤ T. (2.17)

Using obvious inequality

|a+ b|2 = a2 + b2 + 2ab ≤ a2 + b2 + ε1a
2 + ε−1

1 b2 = (1 + ε1)a2 + (1 + ε−1
1 )b2,

which is valid for any ε1 > 0, from (2.8) we have

|umt(x, 0)|2 = |µumt(x, T ) + ψm(x)|2 ≤ |µ|2(1 + ε1)u2
mt(x, T ) + (1 + ε−1

1 )ψ2
m(x). (2.18)

From (2.18) we obtain ∫
ω0

u2
mtdx =

∫
Ω

|umt(x, 0)|2 dx ≤

≤ |µ|2(1 + ε1)

∫
Ω

u2
mt(x, T )dx+ (1 + ε−1

1 )

∫
Ω

ψ2
m(x) dx =
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= |µ|2(1 + ε1)

∫
ωT

u2
mtdx+ (1 + ε−1

1 )‖ψm‖2L2(Ω). (2.19)

In view of (2.7), (2.14) from (2.17) we get∫
ωT

u2
mtdx ≤ wm(T ) ≤

 ∫
ω0

n∑
i=1

ϕ2
mxidx+

∫
ω0

u2
mtdx+M5

eεT , (2.20)

where

M5 = 2λ(M3 +M4T ) mes Ω + 2λ

∫
ω0

|g(x, t, um(x, t))|dx+ ε−1

∫
DT

F 2
m dx dt. (2.21)

From (2.19) and (2.20) it follows that∫
ω0

u2
mtdx ≤ |µ|2(1 + ε1)

∫
ω0

n∑
i=1

ϕ2
mxidx+

∫
ω0

u2
mtdx+M5

eεT + (1 + ε−1
1 )‖ψm‖2L2(Ω). (2.22)

Because |µ| < 1, then positive constants ε and ε1 can be chosen so small that

µ1 = |µ|2(1 + ε1)eεT < 1. (2.23)

Due to (2.23) from (2.22) we obtain∫
ω0

u2
mtdx ≤ (1− µ1)−1

|µ|2(1 + ε1)

∫
ω0

n∑
i=1

ϕ2
mxidx+M5

eεT + (1 + ε−1
1 )‖ψm‖2L2(Ω)

 ≤
≤ (1− µ1)−1

[
|µ|2(1 + ε1)

(
‖ϕm‖20

W 1
2(Ω)

+M5

)
eεT + (1 + ε−1

1 )‖ψm‖2L2(Ω)

]
. (2.24)

From (2.7), (2.14) and (2.24) it follows that

wm(0) =

∫
ω0

[
u2
mt +

n∑
i=1

ϕ2
mxi

]
dx ≤ ‖ϕm‖20

W 1
2(Ω)

+

+(1− µ1)−1

[
|µ|2(1 + ε1)

(
‖ϕm‖20

W 1
2(Ω)

+M5

)
eεT + (1 + ε−1

1 )‖ψm‖2L2(Ω)

]
. (2.25)

In view of (2.21), (2.25) from (2.17) we get

wm(τ) ≤

‖ϕm‖20W 1
2(Ω)

+ (1− µ1)−1 ×

×

|µ|2(1 + ε1)

‖ϕm‖20
W 1

2(Ω)
+ 2λ(M3 +M4T ) mes Ω +
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+ 2λ

∫
ω0

|g(x, t, um(x, t))|dx+ ε−1

∫
DT

F 2
mdx dt

eεT + (1 + ε−1
1 )‖ψm‖2L2(Ω

+

+ 2λ(M3 +M4T ) mes Ω + 2λ

∫
ω0

|g(x, t, um(x, t))|dx+ ε−1

∫
DT

F 2
mdx dt

 eεT =

= γ̃1‖Fm‖2L2(DT ) + γ̃2‖ϕm‖20
W 1

2(Ω)
+ γ̃3‖ψm‖2L2(Ω) + γ̃4

∫
ω0

|g(x, t, um(x, t))|dx+ γ̃5. (2.26)

Here

γ̃1 = ε−1eεT
[
(1− µ1)−1(1 + ε1)eεT + 1

]
,

γ̃2 = eεT
[
1 + (1− µ1)−1|µ|2(1 + ε1)

]
,

γ̃3 = (1− µ1)−1(1 + ε−1
1 )eεT ,

γ̃4 = 2λ[(1− µ1)−1|µ|2(1 + ε1) + 1]eεT ,

γ̃5 = 2λ(M3 +M4T ) mes Ω[(1− µ1)−1|µ|2(1 + ε1)eεT + 1]eεT .

(2.27)

Since for fixed τ the function um(x, τ) ∈
0
W 1

2(Ω), then due to the Friedrichs inequality [16] we
have ∫

ωτ

[
u2
m + u2

mt +
n∑
i=1

u2
mxi

]
dx ≤ c0wm(τ) = c0

∫
ωτ

[
u2
mt +

n∑
i=1

u2
mxi

]
dx, (2.28)

where positive constant c0 = c0(Ω) does not depend on um.
From (2.26) and (2.28) it follows

‖um‖20
W 1

2(DT ,Γ)
=

T∫
0

 ∫
ωτ

(
u2
m + u2

mt +
n∑
i=1

u2
mxi

)
dx

dτ ≤

≤
T∫

0

c0wm(τ)dτ ≤ c0T γ̃1‖Fm‖2L2(DT ) + c0T γ̃2‖ϕm‖20
W 1

2(Ω)
+ c0T γ̃3‖ψm‖2L2(Ω)+

+c0T γ̃4

∫
Ω

∣∣g(x, 0, um(x, 0))
∣∣dx+ c0T γ̃5. (2.29)

Due to (2.1), (1.5) we have

|g(x, 0, s)| ≤M6 +M7|s|α+1, (2.30)
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where M6 and M7 are some nonnegative constants. Taking into account (2.30) from (2.29) we get

‖um‖20
W 1

2(DT ,Γ)
≤ c0T γ̃1‖Fm‖2L2(DT ) + c0T γ̃2‖ϕm‖20

W 1
2(Ω)

+ c0T γ̃3‖ψm‖2L2(Ω)+

+c0T γ̃4M6 mes Ω + c0T γ̃4M7

∫
Ω

|um(x, 0)|α+1dx+ c0T γ̃5. (2.31)

Reasoning from Remark 1.1, concerning the space W 1
2 (Ω), in view of the equality dim Ω =

= dimDT − 1 = n show that the embedding operator I : W 1
2 (Ω) → Lq(Ω) is a linear continuous

compact operator for 1 < q <
2n

n− 2
, when n > 2 and for any q > 1 when n = 2 [16]. At the same

time the Nemitski operator N1 : Lq(Ω)→ L2(Ω), acting by the formula N1u = |u|
α+1
2 is continuous

and bounded if q ≥ 2
α+ 1

2
= α + 1 [17]. Thus, if α + 1 <

2n

n− 2
, i.e., α <

n+ 2

n− 2
, which is

fulfilled due to (1.6) since
n+ 1

n− 1
<
n+ 2

n− 2
, then there exists number q such that 1 < q <

2n

n− 2
and

q ≥ α+ 1. Therefore, in this case the operator

N2 = N1I : W 1
2 (Ω)→ L2(Ω)

will be continuous and compact. Thus due to (1.9), (2.7) it follows that

lim
m→∞

∫
Ω

|um(x, 0)|α+1dx =

∫
Ω

|ϕ(x)|α+1dx, (2.32)

and also [16] ∫
Ω

|ϕ(x)|α+1dx ≤ C1‖ϕ‖α+1
0
W 1

2(Ω)
(2.33)

with positive constant C1, not dependent on ϕ ∈
0
W 1

2(Ω).

In view of (1.8), (1.9), (2.5) – (2.8), (2.32) and (2.33), passing in (2.31) to the limit for m → ∞
we obtain

‖u‖20
W 1

2(DT ,Γ)
≤ c0T γ̃1‖F‖2L2(DT ) + c0T γ̃2‖ϕ‖20

W 1
2(Ω)

+ c0T γ̃3‖ψ‖2L2(Ω)+

+c0T γ̃4M7C1‖ϕ‖α+1
0
W 1

2(Ω)
+ c0T (γ̃5 + γ̃4M6 mes Ω). (2.34)

Taking the square root from the both sides of inequality (2.34) and using the obvious inequality(∑k

i=1
a2
i

)1/2
≤
∑k

i=1
|ai| we finally get

‖u‖ 0
W 1

2(DT ,Γ)
≤ c1‖F‖L2(DT ) + c2‖ϕ‖ 0

W 1
2(Ω)

+ c3‖ψ‖L2(Ω) + c4‖ϕ‖
α+1
2

0
W 1

2(Ω)
+ c5. (2.35)

Here
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c1 = (c0T γ̃1)1/2, c2 = (c0T γ̃2)1/2, c3 = (c0T γ̃3)1/2,

c4 = (c0T γ̃4M7C1)1/2, c5 = [c0T (γ̃5 + γ̃4M6 mes Ω)]1/2,

(2.36)

where γ̃i, 1 ≤ i ≤ 5, are defined in (2.27). In the linear case, i.e., for λ = 0, due to (2.27) the
constants γ̃4 = γ̃5 = 0 and from (2.36) it follows that in estimate (2.4) the constants c4 = c5 = 0.

Whence it follows the uniqueness of the solution of problem (1.1) – (1.4) in the linear case.
Lemma 2.1 is proved.
3. The existence of the solution of problem (1.1) – (1.4). For the existence of the solution of

problem (1.1) – (1.4) in the case |µ| < 1 we will use well known facts about the solvability of the
following linear mixed problem [16]:

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2
i

= F (x, t), (x, t) ∈ DT , (3.1)

u
∣∣
Γ

= 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ̃(x), x ∈ Ω, (3.2)

where F, ϕ and ψ̃ are given functions.

For F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω), ψ̃ ∈ L2(Ω) the unique generalized solution u of problem (3.1),
(3.2) (in the sense of equality (1.12) where f = 0, and the number µ = 0 in the definition of the
space V and u |t=0 = ϕ) from the class E2,1(DT ) with the norm [16]

‖v‖2E2,1(DT ) = sup
0≤τ≤T

∫
ωτ

[
u2 + u2

t +
n∑
i=1

u2
xi

]
dx

is given by formula [16]

u =
∞∑
k=1

ak cosµkt+ bk sinµkt+
1

µk

t∫
0

Fk(τ) sinµk(t− τ)dτ

ϕk(x), (3.3)

where λ̃k = −µ2
k, 0 < µ1 ≤ µ2 ≤ . . . , limk→∞ µk = ∞ are the eigenvalues, while ϕk ∈

0
W 1

2(Ω)

are the corresponding eigenfunctions of the spectral problem ∆w = λ̃w, w |∂Ω = 0 in the domain

Ω
(

∆ :=
∑n

i=1

∂2

∂x2
i

)
, simultaneously forming orthonormal basis in L2(Ω) and orthogonal basis in

0
W 1

2(Ω) in the sense of scalar product (v, w) 0
W 1

2(Ω)
=

∫
Ω

∑n

i=1
vxiwxidx [16], i.e.,

(ϕk, ϕl)L2(Ω) = δlk, (ϕk, ϕl) 0
W 1

2(Ω)
= −λkδlk, δlk =

1, l = k,

0, l 6= k.
(3.4)

Here

ak = (ϕ,ϕk)L2(Ω), bk = µ−1
k (ψ̃, ϕk)L2(Ω), k = 1, 2, . . . , (3.5)
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F (x, t) =
∞∑
k=1

Fk(t)ϕk(x), Fk(t) = (F,ϕk)L2(ωt), ωτ := DT ∩ {t = τ}, (3.6)

besides, for the solution u from (3.3) it is valid the following estimate [16, 19]:

‖u‖E2,1(DT ) ≤ γ(‖F‖L2(DT ) + ‖ϕ‖ 0
W 1

2(Ω)
+ ‖ψ̃‖L2(Ω)) (3.7)

with positive constant γ, not dependent on F, ϕ and ψ̃.
Let us consider the linear problem corresponding to (1.1) – (1.4), i.e., the case when λ = 0 :

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2
i

= F (x, t), (x, t) ∈ DT , (3.8)

u|Γ = 0, u(x, 0) = ϕ(x), Kµut = ψ(x), x ∈ Ω. (3.9)

Let us show that when |µ| < 1 for any F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω) and ψ ∈ L2(Ω) there exists a
unique generalized solution of problem (3.8), (3.9) in the sense of Definition 1.1 for λ = 0. Indeed, for

ϕ ∈
0
W 1

2(Ω) and ψ ∈ L2(Ω) there are valid the expansions ϕ =
∑∞

k=1
akϕk and ψ =

∑∞

k=1
dkϕk

in the spaces
0
W 1

2(Ω) and L2(Ω), respectively, where ak = (ϕ,ϕk)L2(Ω) and dk = (ψ,ϕk)L2(Ω) [16].
Therefore, setting

ϕm =
m∑
k=1

akϕk, ψm =
m∑
k=1

dkϕk, (3.10)

we have

lim
m→∞

‖ϕm − ϕ‖ 0
W 1

2(Ω)
= 0, lim

m→∞
‖ψm − ψ‖L2(Ω) = 0. (3.11)

Since the space of finite infinitely differentiable functions C∞0 (DT ) is dense in the space L2(DT ),

then for F ∈ L2(DT ) and any natural number m there exists a function Fm ∈ C∞0 (DT ) such that

‖Fm − F‖L2(DT ) <
1

m
. (3.12)

On the other hand, for function Fm in the space L2(DT ) there is valid the following expansion [16]:

Fm(x, t) =

∞∑
k=1

Fm,k(t)ϕk(x), Fm,k(t) = (Fm, ϕk)L2(Ω). (3.13)

Therefore, there exists a natural number lm such that limm→∞ lm =∞ and for

F̃m(x, t) =

lm∑
k=1

Fm,k(t)ϕk(x) (3.14)

the inequality
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‖F̃m − Fm‖L2(DT ) <
1

m
(3.15)

is valid. From (3.12) and (3.15) it follows

lim
m→∞

‖F̃m − F‖L2(DT ) = 0. (3.16)

The solution u = um of problem (3.1), (3.2) for ϕ = ϕlm , ψ̃ =
∑lm

k=1
d̃kϕk and F = F̃m, where

ϕlm and F̃m are defined in (3.10) and (3.14), is given by formula (3.3) which, due to (3.4) – (3.6),
takes the form

um =

lm∑
k=1

ak cosµkt+
d̃k
µk

sinµkt+
1

µk

t∫
0

Fm,k(τ) sinµk(t− τ)dτ

ϕk(x). (3.17)

For determination of the coefficients d̃k let us substitute the right-hand side of expression (3.17) into
the equality Kµumt = ψlm(x), where ψlm is defined in (3.10). Consequently, taking into account
that the system of functions {ϕk(x)} represents a basis in L2(Ω) and 1− µ cosµkT 6= 0 for |µ| < 1,

we obtain the following formulas:

d̃k =
1

1− µ cosµkT

(ϕlm , ϕk)L2(Ω) − akµµk sinµkT +

+ µ

T∫
0

Fm,k(τ) cosµk(T − τ)dτ

, k = 1, . . . , lm. (3.18)

Below we assume that the Lipschitz domain Ω is such that eigenfunctions ϕk ∈ C2(Ω), k ≥ 1. For
example, this will take place if ∂Ω ∈ C [n/2]+3 [19]. This fact will also take place in the case of a piece-
wisely smooth Lipschitz domain, e.g., for the parallelepiped Ω = {x ∈ Rn : |xi| < ai, i = 1, . . . , n}
the correspondent eigenfunctions ϕk ∈ C∞(Ω) [20]. Therefore, since Fm ∈ C∞0 (DT ), then due
to (3.13) the function Fm,k ∈ C2([0, T ]), and consequently the function um from (3.17) belongs to
the space C2(DT ). Further, since ϕk|∂Ω = 0, then due to (3.17) we have um |Γ = 0, and thereby

um ∈
0
C 2(DT ,Γ), m = 1, 2, . . . .

According to the construction the function um from (3.17) satisfies the following equalities:

um |Γ = 0, L0um = F̃m, um(x, 0) = ϕlm(x), Kµumt = ψlm(x), x ∈ Ω, (3.19)

and thereby

(um − uk)|Γ = 0, L0(um − uk) = F̃m − F̃k, (um − uk)(x, 0) = (ϕlm − ϕlk)(x),

Kµ(umt − ukt) = (ψlm − ψlk)(x), x ∈ Ω.

Therefore, from a priori estimate (2.4), where for λ = 0 the coefficients c4 = c5 = 0, we obtain

‖um − uk‖ 0
W 1

2(DT ,Γ)
≤ c1‖F̃m − F̃k‖L2(DT ) + c2‖ϕlm − ϕlk‖ 0

W 1
2(Ω)

+ c3‖ψlm − ψlk‖L2(Ω). (3.20)
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In view of (3.11) and (3.16) from (3.20) it follows that the sequence um ∈
0
C 2(DT ,Γ) is

fundamental in the complete space
0
W 1

2(DT ,Γ). Therefore, there exists a function u ∈
0
W 1

2(DT ,Γ)

such that due to (3.11), (3.16) and (3.19) there are valid the limit equalities (1.8), (1.9) for λ = 0.

The last means that the function u is a generalized solution of problem (3.8), (3.9). The uniqueness
of this solution follows from a priori estimate (2.4) where the constants c4 = c5 = 0 for λ = 0.

Therefore, for the solution u of problem (3.8), (3.9) we have u = L−1
0 (F,ϕ, ψ), where L−1

0 :

L2(DT )×
0
W 1

2(Ω)× L2(Ω)→
0
W 1

2(DT ,Γ), which norm due to (2.4) can be estimated as follows:

‖L−1
0 ‖

L2(DT )×
0
W 1

2(Ω)×L2(Ω)→
0
W 1

2(DT ,Γ)
≤ γ0 = max(c1, c2, c3). (3.21)

Due to the linearity of the operator L−1
0 : L2(DT )×

0
W 1

2(Ω)× L2(Ω)→
0
W 1

2(DT ,Γ) we have a
representation

L−1
0 (F,ϕ, ψ) = L−1

0 (F, 0, 0) + L−1
0 (0, ϕ, 0) + L−1

0 (0, 0, ψ) = L−1
01 (F ) + L−1

02 (ϕ) + L−1
03 (ψ),

(3.22)

where L−1
01 : L2(DT )→

0
W 1

2(DT ,Γ), L−1
02 :

0
W 1

2(Ω)→
0
W 1

2(DT ,Γ) and L−1
03 : L2(Ω)→

0
W 1

2(DT ,Γ)

are linear continuous operators, besides, according to (3.21)

‖L−1
01 ‖

L2(DT )→
0
W 1

2(DT ,Γ)
≤ γ0, ‖L−1

02 ‖ 0
W 1

2(Ω)→
0
W 1

2(DT ,Γ)
≤ γ0,

‖L−1
03 ‖

L2(Ω)→
0
W 1

2(DT ,Γ)
≤ γ0.

(3.23)

Remark 3.1. Note, that for F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω), ψ ∈ L2(Ω), due to (1.5), (1.6), (3.21) –

(3.23) and Remark 1.1 the function u ∈
0
W 1

2(DT ,Γ) is a generalized solution of problem (1.1) – (1.4)
if and only if, when u is a solution of the functional equation

u = L−1
01 (−λf(x, t, u)) + L−1

01 (F ) + L−1
02 (ϕ) + L−1

03 (ψ) (3.24)

in the space
0
W 1

2(DT ,Γ).

Rewrite equation (3.24) in the form

u = A0u := −λL−1
01 (N0u) + L−1

01 (F ) + L−1
02 (ϕ) + L−1

03 (ψ), (3.25)

where the operator N0 :
0
W 1

2(DT ,Γ) → L2(DT ) from (1.7), according to Remark 1.1 is continuous

and compact operator. Therefore, due to (3.23) the operator A0 :
0
W 1

2(DT ,Γ) →
0
W 1

2(DT ,Γ) from
(3.25) is also continuous and compact. At the same time, according to Lemma 2.1 and (2.36) for
any parameter τ ∈ [0, 1] and for any solution u of the equation u = τA0u with the parameter τ it
is valid the same a priori estimate (2.4) with nonnegative constants ci, not dependent on u, F, ϕ, ψ
and τ. Therefore, due to the Schaefer’s fixed point theorem [21], equation (3.25), and therefore, due

to Remark 3.1 problem (1.1) – (1.4) has at least one solution u ∈
0
W 1

2(DT ,Γ). Thus, we have proved
the following theorem.
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Theorem 3.1. Let λ > 0, |µ| < 1, F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω), ψ ∈ L2(Ω), conditions (1.5),
(1.6), (2.2), (2.3) be fulfilled. Then problem (1.1) – (1.4) has at least one generalized solution.

Remark 3.2. Note that for |µ| = 1, even in the linear case, i.e., for f = 0, the homogeneous
problem corresponding to (1.1) – (1.4) may have finite or even infinite number of linearly independent
solutions. Indeed, in the case µ = 1 denote by Λ(1) the set of points µk from (3.3), for which the ratio
µkT

2π
is a natural number, i.e., Λ(1) =

{
µk :

µkT

2π
∈ N

}
. If we search for a solution of problem (3.8),

(3.9) in the form of representation (3.3), then for determination of unknown coefficients bk,contained
in it, let us substitute the right-hand side of this representation into the equality Kµut = ψ(x). As a
result we have

µk(1− µ cosµkT )bk = (ψ,ϕk)L2(Ω) − akµk sinµkT +

T∫
0

Fk(τ) cosµk(T − τ)dτ. (3.26)

It is obvious, that when Λ(1) 6= ∅ and µk ∈ Λ(1), µ = 1 we have 1− cosµkT = 0 and for F = 0,

ϕ = ψ = 0 and thereby for ak = 0, Fk(τ) = 0 equality (3.26) will be satisfied by any number
bk. Therefore, in accordance with (3.3) the function uk(x, t) = C sinµktϕk(x), C = const 6= 0,

satisfies the homogeneous problem corresponding to (3.8), (3.9). Analogously, in the case µ = −1

denote by Λ(−1) the set of points µk from (3.3) for which the ratio
µkT

π
is odd integer number. In

this case 1 − µ cosµkT = 0 for µk ∈ Λ(−1), µ = −1 and the function uk(x, t) = C sinµktϕk(x),

C = const 6= 0, is a nontrivial solution of the homogeneous problem corresponding to (3.8), (3.9).
For example, when n = 2, Ω = (0, 1) × (0, 1) the eigenvalues and eigenfunctions of the Laplace
operator ∆ are [20]

λk = −π2(k2
1 + k2

2), ϕk(x1, x2) = sin k1π1x1 sin k2πx2, k = (k1, k2),

i.e., µk = π
√
k2

1 + k2
2. For k1 = p2−q2, k2 = 2pq, where p and q are any integer numbers we obtain

µk = π(p2 + q2) [22]. In this case for
T

2
∈ N we have

µkT

2π
= (p2 + q2)

T

2
∈ N and according to the

said above, when µ = 1 the homogeneous problem corresponding to (3.8), (3.9) has infinite number
of linearly independent solutions

up,q(x, t) = sinπ(p2 + q2)t sinπ(p2 − q2)x1 sin 2πpqx2 ∀p, q ∈ N. (3.27)

Analogously, when µ = −1 the solutions of the homogeneous problem corresponding to (3.8), (3.9)
in the case when p is an even number, while q and T odd numbers, are the functions from (3.27).

4. The uniqueness of the solution of problem (1.1) – (1.4). On the function f in equation (1.1)
let us impose the following additional requirements:

f, f ′u ∈ C(DT × R), |f ′u(x, t, u)| ≤ a+ b|u|γ , (x, t, u) ∈ DT × R, (4.1)

where a, b, γ = const ≥ 0.

It is obvious that from (4.1) we have condition (1.5) for α = γ + 1 and when γ <
2

n− 1
we get

α = γ + 1 <
n+ 1

n− 1
and, therefore, condition (1.6) is fulfilled.
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Theorem 4.1. Let |µ| < 1, F ∈ L2(DT ), ϕ ∈
0
W 1

2(Ω), ψ ∈ L2(Ω) and condition (4.1) be

fulfilled for γ <
2

n− 1
, and also hold conditions (2.2), (2.3). Then there exists a positive number

λ0 = λ0(F, f, ϕ, ψ, µ,DT ) such that for 0 < λ < λ0 problem (1.1) – (1.4) can not have more than
one generalized solution.

Proof. Indeed, suppose that problem (1.1) – (1.4) has two different generalized solutions u1 and

u2. According to Definition 1.1 there exist sequences of functions ujk ∈
0
C 2(DT ,Γ), j = 1, 2, such

that

lim
k→∞

‖ujk − uj‖ 0
W 1

2(DT ,Γ)
= 0, lim

k→∞
‖Lλujk − F‖L2(DT ) = 0, (4.2)

lim
k→∞

‖ujk|t=0 − ϕ‖ 0
W 1

2(Ω)
= 0, lim

k→∞
‖Kµujkt − ψ‖L2(Ω) = 0, j = 1, 2. (4.3)

Let

w := u2 − u1, wk := u2k − u1k, Fk := Lλu2k − Lλu1k, (4.4)

gk := λ(f(x, t, u1k)− f(x, t, u2k)). (4.5)

In view of (4.2), (4.3) and (4.4) it is easy to see that

lim
k→∞

‖wk − w‖ 0
W 1

2(DT ,Γ)
= 0, lim

k→∞
‖Fk‖L2(DT ) = 0, (4.6)

lim
k→∞

‖wk|t=0‖ 0
W 1

2(Ω)
= 0, lim

k→∞
‖Kµwkt‖L2(Ω) = 0. (4.7)

In view of (4.4), (4.5) the function wk ∈
0
C 2(DT ,Γ) satisfies the following equalities:

∂2wk
∂t2

−
n∑
i=1

∂2wk
∂x2

i

=
(
Fk + gk

)
(x, t), (x, t) ∈ DT , (4.8)

wk |Γ = 0, (4.9)

wk(x, 0) = ϕ̃k(x), x ∈ Ω, (4.10)

Kµwkt := wkt(x, 0)− µwkt(x, T ) = ψ̃k(x), x ∈ Ω, (4.11)

where ϕ̃k(x) := u2k(x, 0)− u1k(x, 0), ψ̃k(x) := Kµu2kt −Kµu1kt.

First let us estimate the function gk from (4.5). Taking into account the obvious inequality
|d1 + d2|γ ≤ 2γ max(|d1|γ , |d2|γ) ≤ 2γ(|d1|γ + |d2|γ) for γ ≥ 0, due to (4.1) we have

|f(x, t, u2k)− f(x, t, u1k)| =

∣∣∣∣∣∣(u2k − u1k)

1∫
0

f ′u(x, t, u1k + τ(u2k − u1k))dτ

∣∣∣∣∣∣ ≤
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≤ |u2k − u1k|
1∫

0

(a+ b|(1− τ)u1k + τu2k|γ)dτ ≤ a|u2k − u1k|+

+2γb|u2k − u1k|(|u1k|γ + |u2k|γ) = a|wk|+ 2γb|wk|(|u1k|γ + |u2k|γ). (4.12)

In view of (4.5) from (4.12) we obtain

‖gk‖L2(DT ) ≤ λa‖wk‖L2(DT ) + λ2γb‖ |wk|(|u1k|γ + |u2k|γ)‖L2(DT ) ≤

≤ λa‖wk‖L2(DT ) + λ2γb‖wk‖Lp(DT )‖(|u1k|γ + |u2k|γ)‖Lq(DT ). (4.13)

Here we used the Hölder’s inequality [23]

‖v1v2‖Lr(DT ) ≤ ‖v1‖Lp(DT )‖v2‖Lq(DT ),

where
1

p
+

1

q
=

1

r
and in the capacity of p, q and r we take

p = 2
n+ 1

n− 1
, q = n+ 1, r = 2. (4.14)

Since dimDT = n + 1, then according to the Sobolev embedding theorem [17] for 1 ≤ p ≤

≤ 2(n+ 1)

n− 1
we get

‖v‖Lp(DT ) ≤ Cp‖v‖W 1
2 (DT ) ∀v ∈W 1

2 (DT ) (4.15)

with positive constant Cp, not dependent on v ∈W 1
2 (DT ).

Due to the condition of the theorem γ <
2

n− 1
and, therefore, γ(n+ 1) <

2(n+ 1)

n− 1
. Thus, due

to (4.14) from (4.15) we have

‖wk‖Lp(DT ) ≤ Cp‖wk‖W 1
2 (DT ), p =

2(n+ 1)

n− 1
, k ≥ 1, (4.16)

‖(|u1k|γ + |u2k|γ)‖Lq(DT ) ≤ ‖ |u1k|γ‖Lq(DT ) + ‖ |u2k|γ‖Lq(DT ) =

= ‖u1k‖γLγ(n+1)(DT ) + ‖u2k‖γLγ(n+1)(DT ) ≤ C
γ
γ(n+1)

(
‖u1k‖γW 1

2 (DT )
+ ‖u2k‖γW 1

2 (DT )

)
. (4.17)

In view of the first equality of (4.2) there exists a natural number k0 such that for k ≥ k0 we
obtain

‖uik‖γW 1
2 (DT )

≤ ‖ui‖γW 1
2 (DT )

+ 1, i = 1, 2, k ≥ k0. (4.18)

Further, in view of (4.16), (4.17) and (4.18) from (4.13) we get

‖gk‖L2(DT ) ≤ λa‖wk‖L2(DT ) + λ2γbCpC
γ
γ(n+1)(‖u1‖γW 1

2 (DT )
+

+‖u2‖γW 1
2 (DT )

+ 2)‖wk‖W 1
2 (DT ) ≤ λM8‖wk‖W 1

2 (DT ), (4.19)
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where we have used the inequality ‖wk‖L2(DT ) ≤ ‖wk‖W 1
2 (DT ),

M8 = a+ 2γbCpC
γ
γ(n+1)

(
‖u1‖γW 1

2 (DT )
+ ‖u2‖γW 1

2 (DT )
+ 2
)
, p = 2

n+ 1

n− 1
. (4.20)

Since a priori estimate (2.4) is valid for λ = 0, then due to (2.27) and (2.36) in this estimate
c4 = c5 = 0, and thereby for the solution wk of problem (4.8) – (4.11) the following estimate:

‖wk‖ 0
W 1

2(DT ,Γ)
≤ c0

1‖Fk + gk‖L2(DT ) + c0
2‖ϕ̃k‖ 0

W 1
2(Ω)

+ c0
3‖ψ̃k‖L2(Ω) (4.21)

is valid, where the constants c0
1, c

0
2, c

0
3 do not depend on λ.

Because of ‖wk‖ 0
W 1

2(DT ,Γ)
= ‖wk‖W 1

2 (DT ) and due to (4.19) from (4.21) we have

‖wk‖ 0
W 1

2(DT ,Γ)
≤ c0

1‖Fk‖L2(DT ) + λc0
1M8‖wk‖ 0

W 1
2(DT ,Γ)

+ c0
2‖ϕ̃k‖ 0

W 1
2(Ω)

+ c0
3‖ψ̃k‖L2(Ω). (4.22)

Note that since for u1 and u2 it is valid a priori estimate (2.4), then the constant M8 from (4.20)
will depend on λ, F, f, ϕ, ψ, DT , besides, due to (2.27) and (2.36) the value of M8 continuously
depends on λ for λ ≥ 0 and

0 ≤ lim
λ→0+

M8 = M0
8 < +∞. (4.23)

Due to (4.23) there exists a positive number λ0 = λ0(F, f, ϕ, ψ, µ,DT ) such that for

0 < λ < λ0 (4.24)

we obtain λc0
1M8 < 1. Indeed, let us fix arbitrarily a positive number ε1. Then, due to (4.23), there

exists a positive number λ1, such that 0 ≤ M8 < M0
8 + ε1 for 0 ≤ λ < λ1. It is obvious that

for λ0 = min
(
λ1, (c

0
1(M0

8 + ε1))−1
)

the condition λc0
1M8 < 1 will be fulfilled. Therefore, in the

case (4.24) from (4.22) we get

‖wk‖ 0
W 1

2(DT ,Γ)
≤ (1− λc0

1M8)−1

[
c0

1‖Fk‖L2(DT ) + c0
2‖ϕ̃k‖ 0

W 1
2(Ω)

+ c0
3‖ψ̃k‖L2(Ω)

]
, k ≥ k0.

(4.25)

From (4.2) and (4.4) it follows that limk→∞ ‖wk‖ 0
W 1

2(DT ,Γ)
= ‖u2 − u1‖ 0

W 1
2(DT ,Γ)

. On the other

hand due to (4.6), (4.7) and (4.10), (4.11) from (4.25) we have limk→∞ ‖wk‖ 0
W 1

2(DT ,Γ)
= 0. Thus

‖u2 − u1‖ 0
W 1

2(DT ,Γ)
= 0, i.e., u2 = u1, which leads to contradiction.

Theorem 4.1 is proved.
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