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CONVERGENCE OF MULTIPLE FOURIER SERIES OF FUNCTIONS
OF BOUNDED GENERALIZED VARIATION*

ЗБIЖНIСТЬ КРАТНИХ РЯДIВ ФУР’Є ФУНКЦIЙ
З ОБМЕЖЕНОЮ УЗАГАЛЬНЕНОЮ ВАРIАЦIЄЮ

The paper introduces a new concept of Λ-variation of multivariable functions and studies its relationship with the
convergence of multidimensional Fourier series.

Введено нову концепцiю Λ-варiацiї функцiй багатьох змiнних та вивчено її зв’язок зi збiжнiстю багатовимiрних
рядiв Фур’є.

1. Classes of functions of bounded generalized variation. In 1881 Jordan [11] introduced a class of
functions of bounded variation and applied it to the theory of Fourier series. Hereafter this notion was
generalized by many authors (quadratic variation, Φ-variation, Λ-variation etc., see [2, 12, 15, 17]). In
two-dimensional case the class BV of functions of bounded variation was introduced by Hardy [10].

For an interval T = [a, b] ⊂ R we denote by T d = [a, b]d the d-dimensional cube in Rd.
Consider a function f(x) defined on T d and a collection of intervals

Jk = (ak, bk) ⊂ T, k = 1, 2, . . . , d.

For d = 1 we set

f(J1) := f(b1)− f(a1).

If for any function of d− 1 variables the expression f(J1 × . . .× Jd−1) is already defined, then for
a function of d variables the mixed difference is defined as follows:

f
(
J1 × . . .× Jd

)
:= f

(
J1 × . . .× Jd−1, bd

)
− f

(
J1 × . . .× Jd−1, ad

)
.

Let E = {Ik} be a collection of nonoverlapping intervals from T ordered in arbitrary way and
let Ω = Ω(T ) be the set of all such collections E. We denote by Ωn = Ωn(T ) set of all collections
of n nonoverlapping intervals Ik ⊂ T.

For sequences of positive numbers

Λj = {λjn}∞n=1, lim
n→∞

λjn =∞, j = 1, 2, . . . , d,

and for a function f(x), x = (x1, . . . , xd) ∈ T d the (Λ1, . . . ,Λd)-variation of f with respect to the
index set D := {1, 2, . . . , d} is defined as follows:

{
Λ1, . . . ,Λd

}
V D
(
f, T d

)
:= sup
{Ijij }∈Ω

∑
i1,...,id

∣∣f(I1
i1
× . . .× Idid)

∣∣
λ1
i1
. . . λdid

.
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For an index set α = {j1, . . . , jp} ⊂ D and any x = (x1, . . . , xd) ∈ Rd we set α̃ := D \ α and
denote by xα the vector of Rp consisting of components xj , j ∈ α, i.e.,

xα = (xj1 , . . . , xjp) ∈ Rp.

By

{Λj1 , . . . ,Λjp}V α
(
f, xα̃, T

d
)

and f
(
I1
ij1
× . . .× Ipijp , xα̃

)
we denote respectively the (Λj1 , . . . ,Λjp)-variation over the p-dimensional cube T p and mixed
difference of f as a function of variables xj1 , . . . , xjp with fixed values xα̃ of other variables. The
(Λj1 , . . . ,Λjp)-variation of with respect to the index set α is defined as follows:{

Λj1 , . . . ,Λjp
}
V α(f, T p) = sup

xα̃∈T d−p

{
Λj1 , . . . ,Λjp

}
V α
(
f, xα̃ , T d

)
.

Definition 1. We say that the function f has total bounded (Λ1, . . . ,Λd)-variation on T d and
write f ∈ {Λ1, . . . ,Λd}BV (T d), if

{Λ1, . . . ,Λd}V (f, T d) :=
∑
α⊂D
{Λ1, . . . ,Λd}V α

(
f, T d

)
<∞.

Definition 2. We say that the function f is continuous in (Λ1, . . . ,Λd)-variation on T d and write
f ∈ C{Λ1, . . . ,Λd}V (T d), if

lim
n→∞

{
Λj1 , . . . ,Λjk−1 ,Λjkn ,Λ

jk+1 , . . . ,Λjp
}
V α
(
f, T d

)
= 0, k = 1, 2, . . . , p,

for any α ⊂ D, α := {j1, . . . , jp}, where Λjkn := {λjks }∞s=n.
Definition 3. We say that the function f has bounded partial (Λ1, . . . ,Λd)-variation and write

f ∈ P{Λ1, . . . ,Λd}BV (T d) if

P{Λ1, . . . ,Λd}V (f, T d) :=
d∑
i=1

ΛiV {i}
(
f, T d

)
<∞.

In the case Λ1 = . . . = Λd = Λ we set

ΛBV (T d) := {Λ1, . . . ,Λd}BV (T d),

CΛV (T d) := C{Λ1, . . . ,Λd}V (T d),

PΛBV (T d) := P{Λ1, . . . ,Λd}BV (T d).

If λn ≡ 1 (or if 0 < c < λn < C < ∞, n = 1, 2, . . .) the classes ΛBV and PΛBV coincide with
the Hardy class BV and PBV respectively. Hence it is reasonable to assume that λn →∞.

When λn = n for all n = 1, 2, . . . we say Harmonic Variation instead of Λ-variation and write
H instead of Λ, i.e., HBV, PHBV, CHV, etc.

For two variable functions Dyachenko and Waterman [5] introduced another class of functions of
generalized bounded variation.
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Denoting by Γ the the set of finite collections of nonoverlapping rectangles Ak := [αk, βk] ×
× [γk, δk] ⊂ T 2, for a function f(x, y), x, y ∈ T, we set

Λ∗V (f, T 2) := sup
{Ak}∈Γ

∑
k

|f(Ak)|
λk

.

Definition 4 (Dyachenko, Waterman). We say that f ∈ Λ∗BV (T 2) if

ΛV (f, T 2) := ΛV1(f, T 2) + ΛV2(f, T 2) + Λ∗V (f, T 2) <∞.

In this paper we introduce a new classes of functions of generalized bounded variation and
investigate the convergence of Fourier series of function of that classes.

For the sequence Λ = {λn}∞n=1 we denote

Λ#Vs
(
f, T d

)
:= sup
{xi{s}}⊂T d−1

sup
{Isi }∈Ω

∑
i

∣∣f(Isi , x
i{s})

∣∣
λi

,

where

xi{s} :=
(
xi1, . . . , x

i
s−1, x

i
s+1, . . . , x

i
d

)
for xi :=

(
xi1, . . . , x

i
d

)
. (1)

Definition 5. We say that the function f belongs to the class Λ#BV (T d), if

Λ#V
(
f, T d

)
:=

d∑
s=1

Λ#Vs
(
f, T d

)
<∞.

The notion of Λ-variation was introduced by Waterman [15] in one-dimensional case, by Sahakian
[14] in two-dimensional case and by Sablin [13] in the case of higher dimensions. The notion of
bounded partial variation (class PBV ) was introduced by Goginava in [7]. These classes of functions
of generalized bounded variation play an important role in the theory Fourier series.

Remark 1. It is not hard to see that Λ#BV (T d) ⊂ PΛBV (T d) for any d > 1 and Λ∗BV (T 2) ⊂
⊂ Λ#BV (T 2).

We prove that the following theorem is true.

Theorem 1. Let d ≥ 2 and T = (t1, t2) ⊂ R. If

Λ = {λn} with λn =
n

logd−1(n+ 1)
, n = 1, 2, . . . , (2)

then

HV
(
f, T d

)
≤M(d)Λ#V (f, T d). (3)

Proof. We have to prove that for any α := {j1, . . . , jp} ⊂ D

sup
{Ijij }∈Ω

∑
i1,...,ip

|f(I1
i1
× . . .× Ipip , xα̃)|
i1 . . . ip

≤M(d)
d∑
s=1

Λ#Vs(f, T
d). (4)

To this end, observe that
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∑
i1,..., ip

|f(I1
i1
× . . .× Ipip , xα̃)|
i1 . . . ip

=
∑
σ

∑
iσ(1)≤...≤iσ(p)

|f(I1
i1
× . . .× Ipip , xα̃)|
i1 . . . ip

, (5)

where the sum is taken over all rearrangements σ =
{
σ(k)

}p
k=1

of the set {1, 2, . . . , p}.
Next, we have

∑
i1≤...≤ip

∣∣f(I1
i1
× . . .× Ipip , xα̃)

∣∣
i1 . . . ip

=
∑
ip

1

ip

∑
i1≤...≤ip

∣∣f(I1
i1
× . . .× Ipip , xα̃)

∣∣
i1 . . . ip−1

. (6)

Taking into account that for the fixed ip, i1 ≤ . . . ≤ ip, there exists xip1 , . . . , x
ip
p−1 ∈ T such that∣∣f(I1

i1 × . . .× I
p
ip
, xα̃)

∣∣ ≤ 2d
∣∣∣f(Ipip , xip1 , . . . , xipp−1, xα̃

)∣∣∣
from (6) we obtain

∑
i1≤...≤ip

∣∣f(I1
i1
× . . .× Ipip , xα̃)

∣∣
i1 . . . ip

≤ 2d
∑
ip

∣∣f(Ipip , x
ip
1 , . . . , x

ip
p−1, xα̃)

∣∣
ip

∑
i1≤...≤ip

1

i1 . . . ip−1
≤

≤M(d)
∑
ip

logd−1(ip + 1)

ip

∣∣f(Ipip , x
ip
1 , . . . , x

ip
p−1, xα̃)

∣∣ ≤
≤M(d)Λ#Vip

(
f, T d

)
≤M(d)Λ#V

(
f, T d

)
.

Similarly one can obtain bounds for other summands in the right-hand side of (5), which imply (3).
Theorem 1 is proved.

Corollary 1. If the sequence Λ is defined by (2), then Λ#BV (T d) ⊂ HBV (T d).

Now, we denote

∆ :=
{
δ = (δ1, . . . , δd) : δi = ±1, i = 1, 2, . . . , d

}
(7)

and

πεδ(x) := (x1, x1 + εδ1)× . . .× (xd, xd + εδd),

for x = (x1, . . . , xd) ∈ Rd and ε > 0. We set πδ(x) := πεδ(x), if ε = 1.

For a function f defined in some neighbourhood of a point x and δ ∈ ∆ we set

fδ(x) := lim
t∈πδ(x), t→x

f(t), (8)

if the last limit exists.

Theorem 2. Suppose f ∈ Λ#BV (T d) for some sequence Λ = {λn}.
(a) If the limit fδ(x) exists for some x = (x1, . . . , xd) ∈ T d and some δ = (δ1, . . . , δd) ∈ ∆,

then

lim
ε→0

Λ#V (f, πεδ(x)) = 0. (9)
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(b) If f is continuous on some compact K ⊂ T d, then

lim
ε→0

Λ#V
(
f, [x1 − ε, x1 + ε]× . . .× [xd − ε, xd + ε]

)
= 0 (10)

uniformly with respect to x = (x1, . . . , xd) ∈ K.
Proof. According to Definition 5, we need to prove that

lim
ε→0

Λ#Vs
(
f, πεδ(x)

)
= 0 (11)

for any s = 1, 2, . . . , d. Without loss of generality we can assume that s = 1 and δi = 1 for
i = 1, 2, . . . , d. Assume to the contrary that (11) does not holds:

lim
ε→0

Λ#V1

(
f, πεδ(x)

)
6= 0.

Then there exists a number α such that

Λ#V1

(
f, πεδ(x)

)
> α > 0 (12)

for any ε > 0.

Using induction on k = 1, 2, . . . , we construct positive numbers εk and the sequences of collec-
tions of nonoverlapping intervals

I1
i ⊂ (x1 + εk+1, x1 + εk), i = nk + 1, . . . , nk+1, (13)

and vectors

βi = (βi1, . . . , β
i
d) ∈ πεkδ(x), i = nk + 1, . . . , nk+1, (14)

as follows. By (12), for a fixed number ε1 > 0 we find a collection of nonoverlapping intervals

I1
i ⊂ (x1, x1 + ε1), i = 1, . . . , n1,

and vectors

βi = (βi1, . . . , β
i
d) ∈ πε1δ(x), i = 1, . . . , n1,

such that
n1∑
i=1

∣∣f(I1
i ;βi2, . . . , β

i
d)
∣∣

λi
> α. (15)

Now, suppose the number εk, intervals (13) and the vectors (14) for some k = 1, 2, . . . are
constructed. Since the limit fδ(x) exists, we can choose εk+1 satisfying

0 < εk+1 < εk, (x1, x1 + εk+1) ∩

(
nk⋃
i=1

I1
i

)
= ∅ (16)

and
nk∑
i=1

∣∣f(J1
i ; γi2, . . . , γ

i
d)
∣∣

λi
<
α

2
(17)
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for any collection of nonoverlapping intervals

J1
i ⊂ (x1, x1 + εk+1), i = 1, . . . , nk,

and for any vectors

γi = (γi1, . . . , γ
i
d) ∈ πεk+1δ(x), i = 1, . . . , nk.

Further, according to (12) there is a collection of nonoverlapping intervals

J1
i ⊂ (x1, x1 + εk+1), i = 1, . . . , nk+1, (18)

and vectors

γi = (γi1, . . . , γ
i
d) ∈ πεk+1δ(x), i = 1, . . . , nk+1,

such that
nk+1∑
i=1

∣∣f(J1
i ; γi2, . . . , γ

i
d)
∣∣

λi
> α. (19)

Now, denoting

I1
i = J1

i , βi = γi for i = nk + 1, . . . , nk+1, (20)

from (17) and (19) we get

nk+1∑
i=nk+1

∣∣f(I1
i ;βi2, . . . , β

i
d)
∣∣

λi
>
α

2
. (21)

Intervals (13) and vectors (14) for k = 1, 2, . . . , are constructed.
By (16), (18) and (20), the intervals I1

i are nonoverlapping for i = 1, 2, . . . , while according
to (21),

∞∑
i=1

∣∣f(I1
i ;βi2, . . . , β

i
d)
∣∣

λi
=∞.

Consequently, Λ#V1(f, T d) = ∞. This contradiction completes proof of the statement (a) of Theo-
rem 2.

To prove statement (b), observe that (a) obviously implies (10) for any point x ∈ T d, where f is
continuous. Hence, we have to prove that (10) holds uniformly with respect to x ∈ K, provided that
f is continuous on the compact K ⊂ T d.

To this end let us assume to the contrary that (10) does not hold uniformly on K. Then there exist
δ > 0 and sequences

xi = (xi1, . . . , x
i
d) ∈ K and εi > 0, i = 1, 2, . . . , with εi → 0

such that

Λ#V
(
f ;
[
xi1 − εi, xi1 + εi

]
× . . .×

[
xid − εi, xid + εi

])
≥ δ > 0.
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Since K is compact we can assume without loss of generality that xi → x for some x =

= (x1, . . . , xd) ∈ K. Then obviously for each ε > 0 there is a number i(ε) such that

[xij − εi, xij + εi] ⊂ [xj − ε, xj + ε], j = 1, . . . , d, for i > i(ε).

Consequently,

Λ#V
(
f ; [x1 − ε, x1 + ε]× . . .× [xd − ε, xd + ε]

)
≥ δ > 0,

for any ε > 0, which is a contradiction.
Theorem 2 is proved.
Next, we define

v#
s (f, n) := sup

{xi}ni=1⊂T d
sup

{Isi }ni=1∈Ωn

n∑
i=1

∣∣f(Isi , x
i{s})

∣∣, s = 1, . . . , d, n = 1, 2, . . . ,

where xi{s} is as in (1). The following theorem holds.
Theorem 3. If the function f(x), x ∈ T d, satisfies the condition

∞∑
n=1

v#
s (f, n) logd−1(n+ 1)

n2
<∞, s = 1, 2, . . . , d,

then f ∈
{

n

logd−1(n+ 1)

}#

BV (T d).

Proof. Let s = 1, . . . , d be fixed. The for any collection of intervals {Isi }ni=1 ∈ Ωn and a
sequence of vectors {xi}ni=1 ∈ T d, using Abel’s partial summation we obtain

n∑
j=1

∣∣f(Isj , x
j{s})

∣∣ logd−1(j + 1)

j
=

=

n−1∑
j=1

(
logd−1(j + 1)

j
− logd−1(j + 2)

j + 1

)
j∑

k=1

∣∣f(Isk, xk{s})∣∣+
+

logd−1(n+ 1)

n

n∑
j=1

∣∣f(Isj , xj{s})∣∣ ≤
≤

n−1∑
j=1

(
logd−1(j + 1)

j
− logd−1(j + 2)

j + 1

)
v#
s (f, j) +

logd−1(n+ 1)

n
v#
s (f, n). (22)

Using the inequality

logd−1(n+ 1)

n
v#
s (f, n) ≤

∞∑
j=n

(
logd−1(j + 1)

j
− logd−1(j + 2)

j + 1

)
v#
s (f, j), (23)

from (22) we get{
n

logd−1(n+ 1)

}#

Vs(f, T
d) ≤ c

∞∑
n=1

v#
s (f, n) logd−1(n+ 1)

n2
<∞. (24)

Theorem 3 is proved.
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2. Convergence of multiple Fourier series. We suppose throughout this section, that T =

= [0, 2π) and T d = [0, 2π)d, d ≥ 2, stands for the d-dimensional torus.
We denote by C(T d) the space of continuous and 2π-periodic with respect to each variable

functions with the norm
‖f‖C := sup

(x1,..., xd)∈T d
|f(x1, . . . , xd)|.

The Fourier series of the function f ∈ L1(T d) with respect to the trigonometric system is the
series

Sf(x1, . . . , xd) :=
+∞∑

n1,...,nd=−∞
f̂(n1, . . . ., nd)e

i(n1x1+...+ndxd),

where

f̂(n1, . . . ., nd) =
1

(2π)d

∫
T d

f(x1, . . . , xd)e−i(n1x1+...+ndxd)dx1 . . . dxd

are the Fourier coefficients of f.
In this paper we consider convergence of only rectangular partial sums (convergence in the

sense of Pringsheim) of d-dimensional Fourier series. Recall that the rectangular partial sums are
defined as follows:

SN1,...,Ndf(x1, . . . , xd) :=

N1∑
n1=−N1

. . .

Nd∑
nd=−Nd

f̂(n1, . . . ., nd)e
i(n1x1+...+ndx

d).

We say that the point x ∈ T d is a regular point of a function f, if the limit fδ(x) defined by (8)
exists for any δ ∈ ∆ (see (7)). For the regular point x we denote

f∗(x) :=
1

2d

∑
δ∈∆

fδ(x). (25)

Definition 6. We say that the class of functions V ⊂ L1(T d) is a class of convergence on T d, if
for any function f ∈ V

1) the Fourier series of f converges to f∗(x) at any regular point x ∈ T d,
2) the convergence is uniform on a compact K ⊂ T d, if f is continuous on K.

The well known Dirichlet – Jordan theorem (see [18]) states that the Fourier series of a function
f(x), x ∈ T, of bounded variation converges at every point x to the value [f(x+ 0) + f(x− 0)]/2.

If f is in addition continuous on T, then the Fourier series converges uniformly on T.
Hardy [10] generalized the Dirichlet – Jordan theorem to the double Fourier series and proved that

BV is a class of convergence on T 2.

The following theorem was proved by Waterman (for d = 1) and Sahakian (for d = 2).
Theorem WS (Waterman [15], Sahakian [14]). If d = 1 or d = 2, then the class HBV (T d) is

a class of convergence on T d.
In [1] Bakhvalov proved that the class HBV is not a class of convergence on T d, if d > 2. On

the other hand, he proved the following theorem.
Theorem B (Bakhvalov [1]). The class CHV (T d) is a class of convergence on T d for any

d = 1, 2, . . . .
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Convergence of spherical and other partial sums of double Fourier series of functions of bounded
Λ-variation was investigated in deatails by Dyachenko [3, 4].

In [8, 9] Goginava and Sahakian investigated convergence of multiple Fourier series of functions
of bounded partial Λ-variation. In particular, the following theorem was proved.

Theorem GS. (a) If and Λ = {λn}∞n=1 with

λn =
n

logd−1+ε(n+ 1)
, n = 1, 2, . . . , d > 1,

for some ε > 0, then the class PΛBV (T d) is a class of convergence on T d.
(b) If Λ = {λn}∞n=1 with

λn =
n

logd−1(n+ 1)
, n = 1, 2, . . . , d > 1,

then the class PΛBV (T d) is not a class of convergence on T d.
In [5], Dyachenko and Waterman proved that the class Λ∗BV (T 2) is a class convergence on T 2

for Λ = {λn} with λn =
n

ln(n+ 1)
, n = 1, 2, . . . .

The main result of the present paper is the following theorem.
Theorem 4. (a) If Λ = {λn}∞n=1 with

λn =
n

logd−1(n+ 1)
, n = 1, 2, . . . , d > 1, (26)

then the class Λ#BV (T d) is a class of convergence on T d.
(b) If Λ = {λn}∞n=1 with

λn :=

{
nξn

logd−1(n+ 1)

}
, n = 1, 2, . . . , d > 1, (27)

where ξn → ∞ as n → ∞, then there exists a continuous function f ∈ Λ#BV (T d) such that the
cubical partial sums of d-dimensional Fourier series of f diverge unboundedly at (0, . . . , 0) ∈ T d.

Proof. The proof of the part (a) is based on the following statement, that in the case d = 2 is
proved by Sahakian (see formulaes (33) and (35) in [14]). For an arbitrary d > 2 the proof is similar.

Lemma S. Suppose f ∈ HV (T d) and x ∈ T d. If the limit fδ(x) exists for any δ ∈ ∆, then for
any ε > 0 ∣∣Sn1,...,ndf(x)− f∗(x)

∣∣ ≤M(d)
∑
δ∈∆

HV (f ;πεδ(x)) + o(1),

as ni →∞, i = 1, 2, . . . , d.

Moreover, the quantity o(1) tends to 0 uniformly on a compact K, if f is continuous on K.
Now, if the sequence Λ = {λn} is defined by (26) and f ∈ Λ#BV (T d), then Lemma S and

Theorem 1 imply that for any ε > 0∣∣Sn1,...,ndf(x)− f∗(x)
∣∣ ≤M(d)

∑
δ∈∆

Λ#V (f ;πεδ(x)) + o(1), (28)

which combined with Theorem 2 completes the proof of (a).
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To prove part (b) suppose that Λ = {λn} is a sequence defined by (27). It is not hard to see that
the class C(T d) ∩ Λ#BV (T d) is a Banach space with the norm

‖f‖Λ#BV := ‖f‖C + Λ#BV (f).

Denoting

Ai1,...,id :=

[
πi1

N + 1/2
,
π(i1 + 1)

N + 1/2

)
× . . .×

[
πid

N + 1/2
,
π(id + 1)

N + 1/2

)
,

we consider the following functions:

gN (x1, . . . , xd) :=
N−1∑

i1,...,id=1

1Ai1,...,id (x1, . . . , xd)
d∏
s=1

sin(N + 1/2)xs,

for N = 2, 3, . . . , where 1A(x1, . . . , xd) is the characteristic function of a set A ⊂ T d.
It is easy to check that{

nξn

logd−1(n+ 1)

}#

Vs(gN ) ≤ c
N−1∑
i=1

logd−1(i+ 1)

iξi
= o(logdN)

and hence
‖gN‖Λ#BV = o(logdN) = ηN logdN,

where ηN → 0 as N →∞. Now, setting

fN :=
gN

ηN logdN
, N = 2, 3, . . . ,

we obtain that fN ∈ Λ#BV (T d) and

sup
N
‖fN‖Λ#BV <∞. (29)

Now, for the cubical partial sums of the d-dimensional Fourier series of fN at (0, . . . , 0) ∈ T d we
have that

πdSN,...,NfN (0, . . . , 0) =

=
1

ηN logdN

N−1∑
i1,...,id=1

∫
Ai1,..., id

d∏
s=1

sin2(N + 1/2)xs
2 sin(xs/2)

dx1 . . . dxd ≥

≥ c

ηN logdN

N−1∑
i1,...,id=1

1

i1 . . . id
≥ c

ηN
→∞ (30)

as N → ∞. Applying the Banach – Steinhaus theorem, from (29) and (30) we conclude that there
exists a continuous function f ∈ Λ#BV (T d) such that

sup
N

∣∣SN,...,Nf(0, . . . , 0)
∣∣ =∞.

Theorem 4 is proved.
The next theorem follows from Theorems 3 and 4.
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Theorem 5. For any d > 1 the class of functions f(x) x ∈ T d satisfying the following condition:

∞∑
n=1

v#
s (f, n) logd−1(n+ 1)

n2
<∞, s = 1, . . . , d,

is a class of convergence.
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