UDC 512.5
V. Ponomarenko (San Diego State Univ., USA)

ARITHMETIC OF SEMIGROUP SEMIRINGS АРИФМЕТИКА НАПІВГРУПОВИХ НАПІВКІЛЕЦЬ

Abstract

We define semigroup semirings by analogy with group rings and semigroup rings. We study the arithmetic properties and determine sufficient conditions under which a semigroup semiring is atomic, has finite factorization, or has bounded factorization. We also present a semigroup-semiring analog (although not a generalization) of the Gauss lemma on primitive polynomials.

Напівгрупові напівкільця визначаються по аналогії з груповими кільцями та напівгруповими кільцями. Вивчено арифметичні властивості та отримано достатні умови, за яких напівгрупове напівкільце є атомним, має скінченну факторизацію або має обмежену факторизацію. Також наведено напівгрупово-напівкільцевий аналог (хоча і не узагальнення) гауссівської леми про примітивні поліноми.

1. Introduction. The study of group rings is very popular and active, see, e.g., [7]. Similarly, the study of semigroup rings has a rich history, see, e.g., [8]. Also, the study of semirings is very active not only in mathematics but in computer science and control theory, see, e.g., [10]. In this context, it seems natural to study semigroup semirings; however relatively little work (see, e.g., [4, 15]) has been done in this area. We propose to study the arithmetic properties of semigroup semirings, specifically factorization into irreducibles and primes. As tools we will use tools from semirings as well as from semigroups.

This work is organized as follows. Section 1 collects basic facts and tools about semirings and factorization theory. Section 2 introduces semigroup semirings and develops several tools to find atoms. Section 3 introduces content sets and maximal common divisors, which generalize the notion of greatest common divisors. These tools are sufficient to determine necessary conditions for a semigroup semiring to be atomic, finite factorization, and bounded factorization. We also prove a semiring analog of the Gauss lemma on primitive polynomials.

Definition 1.1. We call $R=(R,+, \times)$ a semiring if it satisfies the following:
(1) $(R,+)$ is a commutative monoid with identity 0 ;
(2) (R, \times) is a commutative monoid with identity 1 . We abbreviate \times via juxtaposition;
(3) for all $a \in R, a 0=0$;
(4) for all $a, b, c \in R, a(b+c)=(a b)+(a c)$.

Following [10], we call R an information algebra if it also satisfies the following:
(5) for all $a, b \in R$, if $a+b=0$ then $a=b=0$;
(6) for all $a, b \in R$, if $a b=0$ then $a=0$ or $b=0$.

For convenience, set $R^{*}=R \backslash\{0\}$. Properties (5), (6) are equivalent to R^{*} being closed under ,$+ \times$.

Lemma 1.1. Let R be an information algebra, and let $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k} \in R$. Then $\sum_{i=1}^{k} a_{i} b_{i}$ is nonzero if and only if there is some $i \in[1, k]$ with a_{i} and b_{i} each nonzero.

Proof. If the sum is zero, then each summand is zero by property (5), and hence for each i either $a_{i}=0$ or $b_{i}=0$ by property (6). The other direction is trivial.

Let (M, \cdot) be a commutative monoid with identity e. We say that binary relation R on M respects - if for all $a, b, c \in M, a R b$ implies that $(a \cdot c) R(b \cdot c)$. We define the relation \mid on M via $a \mid b$ if there is some $c \in M$ with $a \cdot c=b$. We say that a is a unit if $a \mid e$ and a nonunit otherwise. It is easy to see that the product of units is a unit and the product of nonunits is a nonunit. We say that a and b are associates if $a \mid b$ and $b \mid a$.

We now recall terms from the arithmetical theory of semigroups. For an introduction, see [6]. We say that nonunit a is an atom if $a=b \cdot c$ implies that either b or c is a unit. We say that ($M, \cdot)$ is atomic if every nonunit may be factored into atoms in at least one way. We say that nonunit a is prime if $a \mid b \cdot c$ implies that $a \mid b$ or $a \mid c$. We say that (M, \cdot) is reduced if e is the only unit.

For a in atomic ($M, \cdot)$, we say that $a_{1} \cdot a_{2} \ldots a_{k}$ is a factorization of a if the product is a and each a_{i} is an atom. Two factorizations $a_{1} \cdot a_{2} \ldots a_{k}$ and $a_{1}^{\prime} \cdot a_{2}^{\prime} \ldots a_{k}^{\prime}$ are equivalent if there is some permutation $\pi \in S_{k}$, and $a_{i}, a_{\pi(i)}^{\prime}$ are associates for $1 \leq i \leq k$. This is an equivalence relation on the set of all factorizations of an element. For nonunit a, we call $F(a)$ a factorization set of a if every equivalence class of factorizations of a has exactly one representative in $F(a)$. We define the length set $\mathcal{L}(a)=\{k$: $\left.a_{1} \cdot a_{2} \ldots a_{k} \in F(a)\right\}$. Note that $|F(a)|$ and $\mathcal{L}(a)$ are independent of the choice of equivalence class representatives for $F(a)$. We say that a has unique factorization (UF) if $|F(a)|=1$; we say that a has finite factorization (FF) if $|F(a)|<\infty$; we say that a has bounded factorization (BF) if $|\mathcal{L}(a)|<\infty$. We say that (M, \cdot) is UF, FF, BF if each nonunit in M is. We define the elasticity ρ of $a \in M$ via $\rho(a)=\frac{\sup \mathcal{L}(a)}{\min \mathcal{L}(a)}$. We define the elasticity $\rho(M)=\sup _{a \in M} \rho(a)$, and say M is fully elastic if every $x \in \mathbb{Q} \cap[1, \rho(M))$ is the elasticity of some element in M.

We say that (M, \cdot) is yoked if for all $a, b \in M$ there is some $c \in M$ where either $a \cdot c=b$ or $a=b \cdot c$. We say that ($M, \cdot)$ is cancellative if $a \cdot c=b \cdot c$ implies that $a=b$. Following [3], we say that (M, \cdot) is weakly cancellative if $a \cdot b=a$ implies that $b=e$. This property has also been called plain, in [10].

Lemma 1.2. (M, \cdot) is weakly cancellative if and only if the following holds:

$$
\forall a, b, c \in M, \quad \text { with unit } a . \quad \text { If } a \cdot c=b \cdot c, \text { then } a=b .
$$

Proof. Let $d \in M$ with $d \cdot a=e$. Then $c=d \cdot a \cdot c=d \cdot b \cdot c$. Applying weak cancellativity, $d \cdot b=e$ and hence $b=a \cdot d \cdot b=a \cdot e=a$. The other direction follows by taking $a=e$.

Our primary focus is on information algebras R. We study the multiplicative monoid (R^{*}, \times), and say that R is atomic, cancellative, reduced, etc. if $\left(R^{*}, \times\right)$ is. We say that $a \in R^{*}$ is a unit, atom, prime, etc. if it is in $\left(R^{*}, \times\right)$.

Example 1.1. The set of nonnegative integers \mathbb{N}_{0} is a UF, cancellative, reduced, information algebra under the usual,$+ \times$.

Example 1.2. For $\mathbb{B}=\{0,1\}$, we set $0+0=0 \times 0=0 \times 1=1 \times 0=0,0+1=1+0=$ $=1+1=1 \times 1=1$, and $1>0$. This is an UF, cancellative, reduced, yoked information algebra known as the Boolean semiring.

Example 1.3. Let $(R,+, \times)$ be the set of fractional ideals of a Dedekind domain $D .+$ has identity (0), and \times has identity $D .(R,+, \times)$ is an atomic information algebra.

Example 1.4. Let R be a partially-ordered semiring (or ring). Set $R^{+}=\{r \in R: r \geq 0\}$, the positive cone of $R . R^{+}$is an information algebra.

Example 1.5. Let R be a semiring that is not a ring. Then $\{1+r: r \in R\} \cup\{0\}$ is an information algebra.

Proposition 1.1. Let (M, \cdot) be a commutative monoid. Then the following hold:

1. The relation \mid is a preorder, with $u \mid$ a for all units u and all $a \in M$.
2. If $a=u \cdot b$ for some unit u, then a, b are associates. If (M, \cdot) is also weakly cancellative, then the opposite implication also holds.
3. Let $a \in M$. If a is an atom, then for all $b \mid a$, either b is a unit or an associate of a. If (M, \cdot) is also weakly cancellative, then the opposite implication also holds.
4. Let $a, b \in M$ be associates. If a is an atom, then b is an atom.
5. If (M, \cdot) is weakly cancellative, then every prime is an atom.
6. If (M, \cdot) is $U F$, then every atom is prime.
7. If (M, \cdot) is reduced and weakly cancellative, then \mid is a partial order. If (M, \cdot) is yoked, then \mid is a weak order. If (M, \cdot) is reduced, weakly cancellative, and yoked, then \mid is a total order.
8. The relation \mid respects \cdot.
9. If there exists a partial order \leq on M with least element e that respects \cdot, then (M, \cdot) is reduced. Further, \leq is a refinement of \mid. That is, if $a \mid b$ then $a \leq b$.

Proof. (1) Straightforward.
(2) Suppose that $a=b \cdot u$ for some unit u. Hence $b \mid a$. Let v be such that $u \cdot v=e$. We have $a \cdot v=b \cdot u \cdot v=b$, and thus $a \mid b$ so a, b are associates. Suppose now that (M, \cdot) is weakly cancellative and a, b are associates. Then there are d, d^{\prime} with $a=b \cdot d, b=a \cdot d^{\prime}$. Combining, we have $a=b \cdot d=a \cdot\left(d^{\prime} \cdot d\right)$, and hence $e=d^{\prime} \cdot d$. Thus d is a unit and $a=b \cdot d$.
(3) Suppose that a is an atom. Let $b \mid a$ for nonunit b that is a nonassociate of a. Then $a=b \cdot c$ for some $c \in M$. Since a is an atom and b is a nonunit, then c must be a unit. By (2), a, b are associates, contrary to hypothesis.

Now let a be a nonatom that satisfies the condition. Write $a=b \cdot c$, a product of two nonunits. By hypothesis, b must be a unit or associate of a, hence an associate of a. By (2), $b=a \cdot u$ for some $u \in M$. Hence $a=b \cdot c=a \cdot(u \cdot c)$, and by weak cancellativity $u \cdot c=e$. Hence c is a unit, in violation of hypothesis.
(4) Suppose otherwise; we write $b=u \cdot v$ for some nonunits u, v. Since a, b are associates there is some $c \in M$ with $a=b \cdot c=u \cdot v \cdot c$. Hence a is a product of nonunits $u,(v \cdot c)$, a contradiction.
(5) Let $a \in M$ be prime. Suppose $a=b \cdot c$ for nonunits b, Since a is prime, we assume without loss that $a \mid b$. Hence a, b are associates and by (2) there is some unit u with $b=a \cdot u$. Now $a=b \cdot c=a \cdot u \cdot c$, and by weak cancellativity $u \cdot c=e$ and hence c is a unit. This contradiction shows that a is an atom.
(6) Let $a \in M$ be an atom, and suppose $a \mid b \cdot c$. There is some $d \in M$ with $a \cdot d=b \cdot c$. We take factorizations $d=\left(d_{1} \cdot d_{2} \ldots\right), b=\left(b_{1} \cdot b_{2} \ldots\right), c=\left(c_{1} \cdot c_{2} \ldots\right)$. We have two factorizations $a \cdot\left(d_{1} \cdot d_{2} \ldots\right)=\left(b_{1} \cdot b_{2} \ldots\right) \cdot\left(c_{1} \cdot c_{2} \ldots\right)$; by UF these must be equivalent. Without loss we may assume that a, b_{1} are associates; but then $a \mid b$. Hence a is prime.
(7) Suppose that $a \mid b$ and $b \mid a$. Then by (2), $a=u \cdot b$ for some unit u, and $u=e \operatorname{since}(M, \cdot)$ is reduced. Therefore $a=b$ and \mid is antisymmetric. Suppose that (M, \cdot) is yoked. Then for all $a, b \in M$, either $a \mid b$ or $b \mid a$ and hence \mid is a total preorder (aka a weak order). A total partial order is a total order.
(8) Straightforward.
(9) First, note that if u is a unit different from e we have $u \cdot v=e$ and $e<u=u \cdot e<u \cdot v=e$, a contradiction. Hence (M, \cdot) is reduced. Suppose now that $a \mid b$. Then there is some $c \in M$ with $b=a \cdot c$. We now have $a=a \cdot e \leq a \cdot c=b$.

For information algebras R, we will use $\left.\right|_{+}$to denote the preorder \midon the reduced monoid $(R,+)$.
Proposition 1.2. Suppose that (M, \cdot) has UF. Then (M, \cdot) is weakly cancellative if and only if it is cancellative.

Proof. One direction is trivial. For the other, suppose that a, b are nonunits and $a \cdot c=b \cdot c$. If c is a unit we multiply by c^{-1} and get $a=b$; otherwise we take factorizations $a=\left(a_{1} \cdot a_{2} \ldots\right)$, $b=\left(b_{1} \cdot b_{2} \ldots\right), c=\left(c_{1} \cdot c_{2} \ldots\right)$. By UF the factorization $\left(a_{1} \cdot a_{2} \ldots\right) \cdot\left(c_{1} \cdot c_{2} \ldots\right)$ is equivalent to $\left(b_{1} \cdot b_{2} \ldots\right) \cdot\left(c_{1} \cdot c_{2} \ldots\right)$. Hence we may assume without loss that a_{i}, b_{i} are associates for all i, and thus a, b are associates. By Proposition 1.1(2), there is some unit u with $a=u \cdot b$. But then $u \cdot b \cdot c=b \cdot c$, and by weak cancellativity $u=e$ and hence $a=e \cdot b=b$.

Definition 1.2. Given semirings R_{1}, R_{2}, we say $\phi: R_{1} \rightarrow R_{2}$ is a morphism if it satisfies the following, for all $a, b \in R_{1}$:
(1) $\phi(a+b)=\phi(a)+\phi(b)$,
(2) $\phi(a b)=\phi(a) \phi(b)$,
(3) $\phi(0)=0, \phi(1)=1$.

For morphism ϕ and property P, we say that P carries forward if $P(a)$ implies $P(\phi(a))$. We say that P carries backward if $P(\phi(a))$ implies $P(a)$. We say that P is preserved if it carries forward and backward. We make similar statements for semiring properties.

Proposition 1.3. Let $\phi: R_{1} \rightarrow R_{2}$ be a morphism. Then units and associates carry forward. If units are preserved, then atoms carry backward. If ϕ is injective, then cancellation and weak cancellation carries backward. If ϕ is surjective, then yoked carries forward.

Proof. (Units) Let $a \in R_{1}$ be a unit. Choose $b \in R_{1}$ with $a b=1$. Then $\phi(a) \phi(b)=\phi(1)=1$, so $\phi(a)$ is a unit.
(Associates) Let $a, b \in R_{1}$ be associates. There must be $c, d \in R_{1}$ with $a=b c, b=a d$. We have $\phi(a)=\phi(b) \phi(c)$ and $\phi(b)=\phi(a) \phi(d)$.
(Atoms) Suppose that $\phi(a)$ is an atom. a cannot be a unit since units carry forward. Suppose that a is not an atom. Then we write $a=a_{1} a_{2}$ for nonunits $a_{1}, a_{2} \in R_{1}$. Then $\phi(a)=\phi\left(a_{1}\right) \phi\left(a_{2}\right)$, a product of nonunits since units carry backward. Hence $\phi(a)$ is a nonatom, contrary to hypothesis.
(Cancellation) Suppose that $a c=b c$. Then $\phi(a) \phi(c)=\phi(b) \phi(c)$, and by cancellation on R_{2}, $\phi(a)=\phi(b)$. Since ϕ is injective, $a=b$.
(Weak cancellation) Suppose that $a b=a$. Then $\phi(a) \phi(b)=\phi(a)$, and by weak cancellation on $R_{2}, \phi(b)=1$. Since ϕ is injective, $b=1$.
(Yoked) Let $a, b \in R_{2}$. Since ϕ is surjective, there are $a^{\prime}, b^{\prime} \in R_{1}$ with $\phi\left(a^{\prime}\right)=a, \phi\left(b^{\prime}\right)=b$. Since R_{1} is yoked, without loss we let $c \in R_{1}$ with $a^{\prime} c=b^{\prime}$. Then $\phi\left(a^{\prime}\right) \phi(c)=\phi\left(b^{\prime}\right)$ and $a \phi(c)=b$. Hence R_{2} is yoked.

Proposition 1.4. Let R_{1}, R_{2} be semirings. Let $\phi: R_{1} \rightarrow R_{2}$ be a bijective morphism. Then $\phi^{-1}:$ $R_{2} \rightarrow R_{1}$ is a (bijective) morphism. Also, ϕ preserves units, associates, atoms, primes, and UF.

Proof. Let $a, b \in R_{2} . \phi\left(\phi^{-1}(a)+\phi^{-1}(b)\right)=\phi\left(\phi^{-1}(a)\right)+\phi\left(\phi^{-1}(b)\right)=a+b$. Hence $\phi^{-1}(a+b)=\phi^{-1}\left(\phi\left(\phi^{-1}(a)+\phi^{-1}(b)\right)\right)=\phi^{-1}(a)+\phi^{-1}(b)$. Similarly, $\phi\left(\phi^{-1}(a) \phi^{-1}(b)\right)=$ $=\phi\left(\phi^{-1}(a)\right) \phi\left(\phi^{-1}(b)\right)=a b$. Hence $\phi^{-1}(a b)=\phi^{-1}\left(\phi\left(\phi^{-1}(a) \phi^{-1}(b)\right)\right)=\phi^{-1}(a) \phi^{-1}(b)$. Hence ϕ^{-1} is a morphism.
ϕ preserves units, associates, and atoms by applying Proposition 1.3 to ϕ and ϕ^{-1}.
(Primes) Suppose that a is a prime but $\phi(a)$ is a nonprime. Hence there are $b, c, d \in R_{2}$ with $\phi(a) d=b c$, but $\phi(a) \nmid b$ and $\phi(a) \nmid c$. Because ϕ is surjective, there are $b^{\prime}, c^{\prime}, d^{\prime} \in R_{1}$ with $\phi\left(b^{\prime}\right)=b$, $\phi\left(c^{\prime}\right)=c, \phi\left(d^{\prime}\right)=d . \phi\left(a d^{\prime}\right)=\phi(a) \phi\left(d^{\prime}\right)=\phi(a) d=b c=\phi\left(b^{\prime}\right) \phi\left(c^{\prime}\right)=\phi\left(b^{\prime} c^{\prime}\right)$, hence since ϕ is injective $a d^{\prime}=b^{\prime} c^{\prime}$. Since a is prime, without loss $a \mid b^{\prime}$, i.e., there is some $h \in R_{1}$ with $a h=b^{\prime}$. Now $\phi(a) \phi(h)=\phi\left(b^{\prime}\right)=b$, so $\phi(a) \mid b$, a contradiction. Hence ϕ carries primes forward; the other direction follows from ϕ^{-1}.
(UF) Suppose R_{2} is UF. Let $a \in R_{1}$ have two inequivalent factorizations $a_{1} a_{2} \ldots a_{k}, a_{1}^{\prime} a_{2}^{\prime} \ldots a_{j}^{\prime}$. But then $\phi\left(a_{1}\right) \phi\left(a_{2}\right) \ldots \phi\left(a_{k}\right), \phi\left(a_{1}^{\prime}\right) \phi\left(a_{2}^{\prime}\right) \ldots \phi\left(a_{j}^{\prime}\right)$ are inequivalent factorizations of $\phi(a)$, a contradiction. Hence ϕ carries UF backward; the other direction follows from ϕ^{-1}.

Note that for any morphism ϕ, if $a \mid b$ then $\phi(a) \mid \phi(b)$. Recalling an important tool from factorization theory, we say that ϕ is a divisor morphism if the converse also holds.

Definition 1.3. We say that morphism $\phi: R_{1} \rightarrow R_{2}$ is a divisor morphism if it satisfies the following: For all $a, b \in R_{1}$, if $\phi(a) \mid \phi(b)$ (in R_{2}), then $a \mid b$ (in R_{1}).

Proposition 1.5. Let $\phi: R_{1} \rightarrow R_{2}$ be a divisor morphism. Then units and associates are preserved, while atoms and primes carry backward. If ϕ is surjective, then atoms and primes are preserved.

Proof. It is straightforward to prove that units, associates, and primes carry forward.
Let $a \in R_{1}$ and suppose that $\phi(a)$ is a nonatom. Write $\phi(a)=b c$, and by surjectivity there are $b^{\prime}, c^{\prime} \in R_{1}$ with $\phi\left(b^{\prime}\right)=b, \phi\left(c^{\prime}\right)=c$. Hence $\phi(a)=\phi\left(b^{\prime} c^{\prime}\right)$ and $\phi(a)\left|\phi\left(b^{\prime} c^{\prime}\right), \phi\left(b^{\prime} c^{\prime}\right)\right| \phi(a)$. Therefore $a, b^{\prime} c^{\prime}$ are associates. b^{\prime}, c^{\prime} cannot be units since units carry forward; hence a is a nonatom.

Let $a \in R_{1}$ be prime. Suppose that $\phi(a) \mid b c$; by surjectivity there are $b^{\prime}, c^{\prime} \in R_{1}$ with $\phi\left(b^{\prime}\right)=b$, $\phi\left(c^{\prime}\right)=c$. Because $\phi(a)\left|b c=\phi\left(b^{\prime} c^{\prime}\right), a\right| b^{\prime} c^{\prime}$; since a is prime we may assume without loss that $a \mid b^{\prime}$. But then $\phi(a) \mid \phi\left(b^{\prime}\right)=b$.

Proposition 1.6. Let R_{1}, R_{2} be atomic semirings, and let $\phi: R_{1} \rightarrow R_{2}$ be a divisor morphism. For all $a \in R_{1}, \sup \mathcal{L}(a) \leq \sup \mathcal{L}(\phi(a))$. Further, BF and FF carry backward.

Proof. Let $a \in R_{1}, k \in \mathcal{L}(a)$. Choose $a_{1} a_{2} \ldots a_{k} \in F(a) . \phi(a)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \ldots \phi\left(a_{k}\right)$. $\mathcal{L}(\phi(a)) \supseteq \mathcal{L}\left(\phi\left(a_{1}\right)\right)+\mathcal{L}\left(\phi\left(a_{2}\right)\right)+\ldots+\mathcal{L}\left(\phi\left(a_{k}\right)\right) \geq 1+1+\ldots+1 \geq k$. Hence $\sup \mathcal{L}(a) \leq$ $\leq \sup \mathcal{L}(\phi(a))$, and if the right-hand side is finite (i.e., a is BF) then so is the left-hand side.

Let $a \in R_{1}, a_{1} a_{2} \ldots a_{k} \in F(a)$. Since ϕ preserves units, $\phi(a)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \ldots \phi\left(a_{k}\right)$, a product of nonunits. Suppose now that $F(\phi(a))$ is finite, but $F(a)$ is infinite. Since each element of $F(\phi(a))$ has only finitely many partitions as above, there must be at least two (in fact infinitely many) partitions
$a_{1} a_{2} \ldots a_{k}, a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}^{\prime} \in F(a)$ both mapping to $\left(b_{1}^{1} b_{1}^{2} \ldots\right)\left(b_{2}^{1} b_{2}^{2} \ldots\right) \ldots\left(b_{k}^{1} b_{k}^{2} \ldots\right) \in F(\phi(a))$, where $\left(b_{i}^{1} b_{i}^{2} \ldots\right) \in F\left(\phi\left(a_{i}\right)\right) \cap F\left(\phi\left(a_{i}^{\prime}\right)\right)$. But then $\phi\left(a_{i}\right)=\phi\left(a_{i}^{\prime}\right)$, and hence a_{i}, a_{i}^{\prime} are associates, and hence $a_{1} a_{2} \ldots a_{k}, a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}$ are equivalent yet both in $F(a)$, a contradiction.

The following result may be found in [9]; we include its short proof for completeness.
Proposition 1.7. Let R be an information algebra. Then $\phi: R \rightarrow \mathbb{B}$ given by $\phi(0)=0, \phi(r)=1$ (for all other r) is a morphism.

Proof. If $a=b=0$, then $\phi(a+b)=\phi(a b)=0=\phi(a)+\phi(b)=\phi(a) \phi(b)$. If a, b are nonzero, then $a+b, a b$ are both nonzero, so $\phi(a+b)=\phi(a b)=1=\phi(a)+\phi(b)=\phi(a) \phi(b)$. If one of a, b is zero, but the other is nonzero, then $a+b$ is nonzero and $a b=0$. So $\phi(a+b)=1=\phi(a)+\phi(b)$ while $\phi(a b)=0=\phi(a) \phi(b)$.
2. Semigroup semirings. Semigroup semirings may be seen as analogous to group rings and semigroup rings. We propose to study their arithmetic properties, namely factorization into atoms.

Definition 2.1. Given information algebra R and reduced commutative monoid $(S,+)$ with identity e, we define the semigroup semiring $R[X ; S]=\left\{\sum_{s \in S} r_{s} X^{s}: r_{s} \in R\right\}$, where we insist that all but finitely many coefficients $r_{s}=0$. Notationally, we write $A=\sum_{s \in S} a_{s} X^{s}$, where elements of $R[X ; S]$ are denoted by capital letters and their coefficients by lower case versions. We will often abbreviate $\sum_{s \in S}$ by just \sum. We define,$+ \times$ as follows:
(1) $A+B=\sum\left(a_{s}+b_{s}\right) X^{s}$, with identity $0=\sum 0 X^{s}$,
(2) $A \times B=\sum r_{s} X^{s}$, where $r_{s}=\sum_{u+v=s} a_{u} b_{v}$. This has identity $1=1 X^{e}$.

Example 2.1. Let R be an arbitrary information algebra, and let $S=\mathbb{N}_{0}$. Then $R[X ; S]$ is the semiring of polynomials with coefficients from R. These have been studied in [2, 14].

Example 2.2. Let S be an arbitrary reduced commutative monoid, and let $R=\mathbb{B}$. Then $R[X ; S]$ models the semiring of subsets of S, with operations union (+) and Minkowski addition (\times). These have been studied in [5, 13].

Example 2.3. Let S be an arbitrary reduced commutative monoid, and let $R=\mathbb{N}_{0}$. Then $R[X ; S]$ models the semiring of multisets from S, with operations multiset union $(+)$ and multiset addition (\times).

Proposition 2.1. Semigroup semiring $R[X ; S]$ is an information algebra.
Proof. (1) $(R[X ; S],+)$ is closed and commutative with identity 0 because $(R,+)$ is.
(2) $(R[X ; S], \times)$ is closed and commutative because R is a semiring. We have $1=1 X^{e}+$ $+\sum 0 X^{s}$, so $1 A=\sum r_{s} X^{s}$ where r_{s} has only one nonzero summand, namely $1 a_{s}$. Hence $1 A=A$.
(3) $A 0=\sum r_{s} X^{s}$, where $r_{s}=\sum_{u+v=s} a_{u} 0=0$. Hence $A 0=0$.
(4) $A(B+C)=\sum r_{s} X^{s}$, where $r_{s}=\sum_{u+v=s} a_{u}\left(b_{v}+c_{v}\right)=\sum_{u+v=s}\left(a_{u} b_{v}\right)+\left(a_{u} c_{v}\right)=$ $=\sum_{u+v=s} a_{u} b_{v}+\sum_{u+v=s} a_{u} c_{v}$, repeatedly using the semiring properties of R. Hence $A(B+C)=$ $=(A B)+(A C)$.
(5) Let $A, B \in R[X ; S]$. If $A+B=0$, then $(a+b)_{s}=0$ for all $s \in S$; hence since R is positive $a_{s}=b_{s}=0$ and thus $A=B=0$.
(6) Let $A, B \in R[X ; S]$, and set $C=A B$. If $C=0$, then $\sum_{u+v=s} a_{u} b_{v}=0$ for all $s \in S$. Suppose that $A \neq 0$ and $B \neq 0$. Then there are $u, v \in S$ with $a_{u} \neq 0$ and $b_{v} \neq 0$. By Lemma 1.1, $c_{u+v} \neq 0$ and hence $C \neq 0$, which contradicts hypothesis. Hence either $A=0$ or $B=0$.

Proposition 2.2. Let $R[X ; S]$ be a semigroup semiring. The natural embedding $\phi: R \rightarrow$ $\rightarrow R[X ; S]$ given by $\phi(a)=a X^{e}$ is a divisor morphism. Also, the natural projection $\psi: R[X ; S] \rightarrow$ $\rightarrow R$ given by $\psi\left(\sum a_{s} X^{s}\right)=a_{e}$ is a morphism.

Proof. (1) Let $a, b \in R . \phi(a b)=(a b) X^{e}=a b X^{e+e}=\left(a X^{e}\right)\left(b X^{e}\right)=\phi(a) \phi(b) . \phi(a+b)=$ $=(a+b) X^{e}=a X^{e}+b X^{e}=\phi(a)+\phi(b)$. If $\phi(a) \mid \phi(b)$ then there is some $C \in R[X ; S]$ with $\phi(a) C=\phi(b)$. Since S is reduced, $c_{s}=0$ for $s \neq e$, and hence $C=c_{e} X^{e}$. We have $a_{e} c_{e}=b_{e}$, so $a \mid b$.
(2) Let $A, B \in R[X ; S] \cdot \psi(A+B)=(A+B)_{e}=A_{e}+B_{e}=\psi(A)+\psi(B) \cdot \psi(A B)=(A B)_{e}=$ $=\sum_{u+v=e} a_{u} b_{v}=a_{e} b_{e}=\psi(A) \psi(B)$, where $u+v=e$ implies $u=v=e$ since S is reduced.

Proposition 2.3. Let $R[X ; S]$ be a semigroup semiring. Then the following hold:
(1) $a X^{e}$ is a unit in $R[X ; S]$ if and only if a is a unit in R;
(2) $a X^{e}$ is an atom in $R[X ; S]$ if and only if a is an atom in R;
(3) if $R[X ; S]$ is cancellative/weakly cancellative/yoked, then so is R.

Proof. Propositions 1.3, 1.5, and 2.2.
Definition 2.2. Let $R[X ; S]$ be a semigroup semiring, and let $A \in R[X ; S]$. Set $\operatorname{Supp}(A)=$ $=\left\{s \in S: a_{s} \neq 0\right\}$, the support of A. If $e \in \operatorname{Supp}(A)$, then we call A elementary. If $|\operatorname{Supp}(A)|=1$, then we call A monomial. We call elementary monomials constants.

The product of two elementary elements is elementary, and the product of two monomials is a monomial. The converses of these statements are given in Propositions 2.4 and 2.6.

Proposition 2.4. Let $R[X ; S]$ be a semigroup semiring. The following are equivalent:

1. For all $A, B \in R[X ; S]$, if $A B$ is a monomial then A, B are each monomials.
2. S is cancellative.

Proof. If S is not cancellative, let $a, b, c \in S$ satisfy $a+b=a+c$ and $b \neq c$. Then $\left(1 X^{a}\right)\left(1 X^{b}+1 X^{c}\right)=1 X^{a+b}+1 X^{a+c}=2 X^{a+b}$ gives a monomial product, yet $1 X^{b}+1 X^{c}$ is not a monomial. Conversely, suppose that S is cancellative and B is not a monomial. Let $a \in \operatorname{Supp}(A), b \neq c \in \operatorname{Supp}(B)$. Both $a+b$ and $a+c$ are in $\operatorname{Supp}(A B)$, and $a+b \neq a+c$ since S is cancellative and $b \neq c$. Hence $A B$ is not a monomial.

Proposition 2.5. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. Then $\operatorname{Supp}(A+B)=\operatorname{Supp}(A) \cup \operatorname{Supp}(B)$ and $\operatorname{Supp}(A B)=\operatorname{Supp}(A)+\operatorname{Supp}(B)$.

Proof. Set $C=A+B$. Let $s \in \operatorname{Supp}(C)$. Then $c_{s}=a_{s}+b_{s}$, and since $c_{s} \neq 0$, either $a_{s} \neq 0$ (and $s \in \operatorname{Supp}(A))$ or $b_{s} \neq 0($ and $s \in \operatorname{Supp}(B))$. Hence $s \in \operatorname{Supp}(A) \cup \operatorname{Supp}(B)$. Now let $s \in \operatorname{Supp}(A) \cup \operatorname{Supp}(B)$. Without loss $s \in \operatorname{Supp}(A)$. We have $c_{s}=a_{s}+b_{s}$. Since $a_{s} \neq 0, c_{s} \neq 0$ so $s \in \operatorname{Supp}(C)$.

Now, set $D=A B$. Let $s \in \operatorname{Supp}(D)$. Then $d_{s}=\sum_{u+v=s} a_{u} b_{v}$. Since $d_{s} \neq 0$, some summand corresponding to $u^{\prime}+v^{\prime}=s$ is nonzero. Hence $a_{u^{\prime}}, b_{v^{\prime}}$ are nonzero, so $u^{\prime} \in \operatorname{Supp}(A), v^{\prime} \in \operatorname{Supp}(B)$ and $s=u^{\prime}+v^{\prime} \in \operatorname{Supp}(A)+\operatorname{Supp}(B)$. Now let $u+v \in \operatorname{Supp}(A)+\operatorname{Supp}(B)$. By Lemma 1.1, since a_{u}, b_{v} are nonzero, $d_{u+v} \neq 0$, and so $u+v \in \operatorname{Supp}(D)$.

Lemma 2.1. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S] . A B$ is a constant if and only if A, B are.

Proof. Set $C=A B$. If C is a constant, then $\operatorname{Supp}(C)=\{e\}=\operatorname{Supp}(A)+\operatorname{Supp}(B)$, by Proposition 2.5. Since S is reduced, $\operatorname{Supp}(A)=\operatorname{Supp}(B)=\{e\}$, and hence A, B are constant. The other direction is similar.

Proposition 2.6. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. If $A+B$ is elementary, then at least one of A, B is elementary. If $A B$ is elementary, then both A, B are elementary.

Proof. The first statement follows from Proposition 2.5. Let $e \in \operatorname{Supp}(A B)=\operatorname{Supp}(A)+$ $+\operatorname{Supp}(B)$. By Proposition 2.5 again, there are $a \in \operatorname{Supp}(A), b \in \operatorname{Supp}(B)$ with $a+b=e$. Since S is reduced, $a=b=e$.

Proposition 2.7. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. Suppose that S is cancellative. Then $|\operatorname{Supp}(A B)| \geq \max (|\operatorname{Supp}(A)|,|\operatorname{Supp}(B)|)$, with equality if one of A, B is a monomial.

Proof. Without loss we assume $|\operatorname{Supp}(A)| \geq|\operatorname{Supp}(B)|$. Let $r \in \operatorname{Supp}(B)$. We have $|\operatorname{Supp}(A B)|=|\operatorname{Supp}(A)+\operatorname{Supp}(B)| \geq|\operatorname{Supp}(A)+\{r\}|$. For $a, b \in \operatorname{Supp}(A)$, if $a+r=b+r$ then $a=b$ since S is cancellative. Therefore $|\operatorname{Supp}(A)+\{r\}|=|\operatorname{Supp}(A)|$. If B is a monomial, then the inequality is an equality.

Corollary 2.1. Let $R[X ; S]$ be a semigroup semiring with S cancellative. Then every divisor of a monomial is again a monomial.

Theorem 2.1. Let $R[X ; S]$ be a semigroup semiring. The set of units of $R[X ; S]$ is $U=\left\{r X^{e}\right.$: r is a unit of $R\}$. In particular, each unit is a constant.

Proof. By Proposition 2.3, each element of U is a unit in $R[X ; S]$. Suppose now that $1=A B$. By Proposition 2.5, $\operatorname{Supp}(A)+\operatorname{Supp}(B)=\{e\}$. Since S is reduced, $\operatorname{Supp}(A)=\operatorname{Supp}(B)=\{e\}$. Hence $A=a X^{e}, B=b X^{e}$, and $A B=(a b) X^{e}$. Hence $A, B \in U$.

Proposition 2.8. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. If $A B$ is elementary, then $\left.\left(b_{e} A+a_{e} B\right)\right|_{+}\left(A B+\left(a_{e} b_{e}\right) X^{e}\right)$ and $\left.b_{e} A\right|_{+} A B$.

Proof. Let $s \in \operatorname{Supp}(A)$. By Proposition 2.6, B is elementary and hence $e \in \operatorname{Supp}(B)$. Thus $s=s+e \in \operatorname{Supp}(A)+\operatorname{Supp}(B)=\operatorname{Supp}(A B)$. Set $C=A B$. We have $\left.a_{s} b_{e}\right|_{+} c_{s}$. Further, for all $s \neq e, a_{s} b_{e}+\left.b_{s} a_{e}\right|_{+} c_{s}$, while for $s=e, a_{s} b_{e}=c_{s}$ so $a_{s} b_{e}+a_{e} b_{s}=c_{s}+a_{e} b_{e}$.

The following result simplifies the search for divisors of an elementary element, and is the key to finding elementary atoms (as will be seen in Corollary 3.1).

Theorem 2.2. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. If $A B$ is elementary, then $\operatorname{Supp}(A) \cup \operatorname{Supp}(B) \subseteq \operatorname{Supp}(A B)$.

Proof. Apply Proposition 2.8 to A, B.
Proposition 2.9. Let $R_{1}[X ; S], R_{2}[X ; S]$ be semigroup semirings, and let $\phi: R_{1} \rightarrow R_{2}$ be a morphism. Define $\phi^{\prime}: R_{1}[X ; S] \rightarrow R_{2}[X ; S]$ via $\phi^{\prime}\left(\sum a_{s} X^{s}\right)=\sum \phi\left(a_{s}\right) X^{s}$. Then ϕ^{\prime} is a morphism. Further, if ϕ preserves units, then so does ϕ^{\prime}.

Proof. Let $A, B \in R_{1}[X ; S]$. Then

$$
\begin{gathered}
\phi^{\prime}(A+B)=\phi^{\prime}\left(\sum\left(a_{s}+b_{s}\right) X^{s}\right)=\sum \phi\left(a_{s}+b_{s}\right) X^{s}= \\
=\sum\left(\phi\left(a_{s}\right)+\phi\left(b_{s}\right)\right) X^{s}=\sum \phi\left(a_{s}\right) X^{s}+\sum \phi\left(b_{s}\right) X^{s}=\phi^{\prime}(A)+\phi^{\prime}(B), \\
\phi^{\prime}(A B)=\phi^{\prime}\left(\sum c_{s} X^{s}\right)=\sum_{s \in S} \phi\left(c_{s}\right) X^{s}= \\
=\sum_{s \in S} X^{s} \sum_{u+v=s} \phi\left(a_{u}\right) \phi\left(b_{v}\right)=
\end{gathered}
$$

$$
=\sum \phi\left(a_{s}\right) X^{s} \sum \phi\left(b_{s}\right) X^{s}=\phi^{\prime}(A) \phi^{\prime}(B)
$$

$\phi^{\prime}(0)=\phi^{\prime}\left(0 X^{e}\right)=\phi(0) X^{e}=0 X^{e}=0$, and $\phi^{\prime}(1)=\phi^{\prime}\left(1 X^{e}\right)=\phi(1) X^{e}=1 X^{e}=1$.
Suppose now that ϕ preserves units. By Proposition 1.3, ϕ^{\prime} carries units forward. Suppose now that $A \in R_{1}[X ; S]$ and $\phi^{\prime}(A)$ is a unit. By Theorem 2.1, $\phi^{\prime}(A)=r X^{e}=\phi\left(a_{e}\right) X^{e}$, and $\phi\left(a_{e}\right)$ is a unit in R_{2}. Since ϕ preserves units, a_{e} is a unit, and hence $A=a_{e} X^{e}$ is a unit.

Definition 2.3. Let S be a reduced commutative monoid with identity e. We call $\nu: S \rightarrow \mathbb{N}_{0} a$ valuation if $\nu(s \cdot t)=\nu(s)+\nu(t)$ for all $s, t \in S$.

Note that if ν is a valuation then $\nu(e)=\nu(e \cdot e)=\nu(e)+\nu(e)$, so $\nu(e)=0$. Valuations are useful in our context because of the following.

Proposition 2.10. Let $R[X ; S]$ be a semigroup semiring, let ν be a valuation on S, and let $\rho \in R$. Set $\nu: R[X ; S] \rightarrow R$ via $\nu(A)=\sum_{s \in \operatorname{Supp}(A)} a_{s} \rho^{\nu(s)}$. Then $\nu: R[X ; S] \rightarrow R$ is a morphism.

Proof. We have

$$
\begin{gathered}
\nu(A+B)=\sum_{s \in \operatorname{Supp}(A+B)}\left(a_{s}+b_{s}\right) \rho^{\nu(s)}= \\
=\sum_{s \in \operatorname{Supp}(A)} a_{s} \rho^{\nu(s)}+\sum_{s \in \operatorname{Supp}(B)} b_{s} \rho^{\nu(s)}=\nu(A)+\nu(B) \\
\nu(1)=\nu\left(1 X^{e}\right)=1 \rho^{\nu(e)}=1 \rho^{0}=1
\end{gathered}
$$

and $\nu(0)$ is an empty sum so $\nu(0)=0$,

$$
\begin{gathered}
\nu(A B)=\sum_{s \in \operatorname{Supp}(A)+\operatorname{Supp}(B)} \sum_{u+v=s} a_{u} b_{v} \rho^{\nu(s)}= \\
=\sum_{s \in \operatorname{Supp}(A)+\operatorname{Supp}(B)} \sum_{u+v=s} a_{u} \rho^{\nu(u)} b_{v} \rho^{\nu(v)}=\sum_{s \in \operatorname{Supp}(A)} a_{u} \rho^{\nu(u)} \sum_{s \in \operatorname{Supp}(B)} b_{v} \rho^{\nu(v)}=\nu(A) \nu(B) .
\end{gathered}
$$

Proposition 2.11. Let (S, \cdot) be a a reduced commutative monoid with identity e. Let $\sigma \in S$ be prime. For all $s \in S$, set $\nu(s)=\sup \left\{n: \sigma^{n} \mid s\right\}$. Suppose that the following two conditions hold:
(1) for all $s \in S, \nu(s) \in \mathbb{N}_{0}$;
(2) for all $s, t \in S$, if $\sigma \cdot s=\sigma \cdot t$ then $s=t$.

The ν is a valuation on S.
Proof. Let $u \cdot v=s$; we write $u=\sigma^{\nu(u)} \cdot u^{\prime}, v=\sigma^{\nu(v)} \cdot v^{\prime}$ for some $u^{\prime}, v^{\prime} \in S$. Certainly $\nu\left(u^{\prime}\right)=\nu\left(v^{\prime}\right)=0$, by maximality of ν. We have $s=u \cdot v=\sigma^{\nu(u)+\nu(v)} \cdot u^{\prime} \cdot v^{\prime}$, so $\nu(s) \geq \nu(u)+\nu(v)$, and we write $s=\sigma^{\nu(u)+\nu(v)} \cdot s^{\prime}=\sigma^{\nu(u)+\nu(v)} \cdot u^{\prime} \cdot v^{\prime}$. By hypothesis (2), $s^{\prime}=u^{\prime} \cdot v^{\prime}$. Since σ is prime, if $\sigma \mid s^{\prime}$ then $\sigma \mid u^{\prime}$ or $\sigma \mid v^{\prime}$, contrary to $\nu\left(u^{\prime}\right)=\nu\left(v^{\prime}\right)=0$. Hence $\nu\left(s^{\prime}\right)=0$ and thus $\nu(s)=\nu(u)+\nu(v)$.

Note that if S is BF, then the first condition of Proposition 2.11 holds. If S is cancellative, then the second condition of Proposition 2.11 holds.

Example 2.4. Consider the multiplicative submonoid of the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. It has units $U=\{1,-1\}$. Set $S=(\mathbb{Z}[\sqrt{-5}] / U, \cdot)$, a reduced commutative semigroup with identity $e=[1]$. Set $\sigma=[6+\sqrt{-5}] \in S$. It is prime since it has norm $36+5=41$, a rational prime. S is BF and cancellative, hence we define ν as in Proposition 2.11. Consider $\mathbb{N}[X ; S]$, the semiring of
multisets from S. Set $A=1 X^{e}+2 X^{\sigma}+3 X^{\sigma \cdot \sigma}$. Taking $\rho=1$, we have $\nu(A)=6$, which is not helpful. However, if we take $\rho=2$ we have $\nu(A)=17$, a rational prime. ν preserves units, since if $\nu(B)=0$ then $b_{s}=0$ for all s. Hence by Proposition 1.3, A is an atom.

Proposition 2.12. Let S be a reduced commutative semigroup with identity e. For valuations ν_{1}, ν_{2}, we define operation \circ via $\left(\nu_{1} \circ \nu_{2}\right)(s)=\nu_{1}(s)+\nu_{2}(s)$. Under this operation, the set of valuations on S is a nonempty reduced commutative semigroup with identity $\nu_{0}: S \rightarrow\{0\}$.

Proof. We have $\left(\nu_{1} \circ \nu_{2}\right)(s \cdot t)=\nu_{1}(s \cdot t)+\nu_{2}(s \cdot t)=\nu_{1}(s)+\nu_{1}(t)+\nu_{2}(s)+\nu_{2}(t)=$ $=\left(\nu_{1}(s)+\nu_{2}(s)\right)+\left(\nu_{1}(t)+\nu_{2}(t)\right)=\left(\nu_{1} \circ \nu_{2}\right)(s)+\left(\nu_{1} \circ \nu_{2}\right)(t)$, so $\nu_{1} \circ \nu_{2}$ is a valuation. \circ is commutative by symmetry. We have $\left(\nu_{0} \circ \nu\right)(s)=\nu_{0}(s)+\nu(s)=0+\nu(s)=\nu(s)$, so ν_{0} is neutral. Lastly, if $\nu_{1} \circ \nu_{2}=\nu_{0}$, then $\nu_{1}(s)+\nu_{2}(s)=0$ for all s, but since $\nu_{1}(s), \nu_{2}(s) \in \mathbb{N}_{0}$, $\nu_{1}(s)=\nu_{2}(s)=0$ and $\nu_{1}=\nu_{2}=\nu_{0}$.

3. Primitivity and maximal common divisors.

Definition 3.1. Let $R[X ; S]$ be a semigroup semiring, and $A \in R[X ; S]$ be nonzero. We call the R-content of A the set $R c(A)=\left\{r \in R: r \mid a_{s}\right.$ for all $\left.s \in \operatorname{Supp}(A)\right\}$. We say that A is R-primitive if there is no nonunit in $R c(A)$. We call the S-content of A the set $S c(A)=\{t \in S$: $t \mid s$ for all $s \in \operatorname{Supp}(A)\}$. We say that A is S-primitive if $S c(A)=\{e\}$. We say that A is primitive if it is both R-primitive and S-primitive.

Lemma 3.1. Let $R[X ; S]$ be a semigroup semiring, and let $A \in R[X ; S]$ be nonzero. $r \in R c(A)$ if and only if $r X^{e} \mid A . s \in S c(A)$ if and only if $1 X^{s} \mid A$.

Proof. If $r \in \operatorname{Rc}(A)$, then for all $s \in \operatorname{Supp}(A)$ we define a_{s}^{\prime} via $a_{s}=r a_{s}^{\prime}$. We have $A=$ $=\sum_{s \in \operatorname{Supp}(A)} r a_{s}^{\prime} X^{s}=\left(r X^{e}\right) \sum_{s \in \operatorname{Supp}(A)} a_{s}^{\prime} X^{s}$. If $A=\left(r X^{e}\right) B=\sum_{s \in \operatorname{Supp}(B)} r b_{s} X^{s}$, so $r \mid a_{s}$ for all $s \in \operatorname{Supp}(A)=\operatorname{Supp}(B)$ and hence $r \in R c(A)$.

If $s \in S c(A)$, then for all $t \in \operatorname{Supp}(A)$ we define t^{\prime} via $t=s+t^{\prime}$. We have

$$
A=\sum_{t \in \operatorname{Supp}(A)} a_{t} X^{t}=\sum_{t^{\prime}: s+t^{\prime} \in \operatorname{Supp}(A)} a_{t} X^{s+t^{\prime}}=\left(1 X^{s}\right) \sum_{t^{\prime}: s+t^{\prime} \in \operatorname{Supp}(A)} a_{s+t^{\prime}} X^{t^{\prime}}
$$

Now, if $A=\left(1 X^{s}\right) B=\sum_{t \in \operatorname{Supp}(B)} b_{t} X^{s+t}$, then $\operatorname{Supp}(A)=s+\operatorname{Supp}(B)$, so $s \in S c(A)$.
Proposition 3.1. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. Then $R c(A) R c(B) \subseteq R c(A B), R c(A) \cap R c(B) \subseteq R c(A+B)$, and $S c(A)+S c(B) \subseteq S c(A B)$.

Proof. We apply Lemma 3.1 repeatedly. If $d_{a} \in R c(A), d_{b} \in R c(B)$, then $d_{a} X^{e}\left|A, d_{b} X^{e}\right| B$ and hence $\left(d_{a} X^{e}\right)\left(d_{b} X^{e}\right)=\left(d_{a} d_{b}\right) X^{e} \mid A B$ so $d_{a} d_{b} \in R c(A B)$. If $d \in R c(A) \cap R c(B)$, then $d X^{e}\left|A, d X^{e}\right| B$ so $A=d X^{e} A^{\prime}, B=d X^{e} B^{\prime}$ and $A+B=d X^{e}\left(A^{\prime}+B^{\prime}\right)$, so $d X^{e} \mid(A+B)$ and hence $d \in \operatorname{Rc}(A+B)$. If $t_{a} \in S c(A), t_{b} \in S c(B)$, then $1 X^{t_{a}}\left|A, 1 X^{t_{b}}\right| B$ and hence $\left(1 X^{t_{a}}\right)\left(1 X^{t_{b}}\right)=1 X^{t_{a}+t_{b}} \mid A B$ so $t_{a}+t_{b} \in S c(A B)$.

Corollary 3.1. Let $R[X ; S]$ be a semigroup semiring, and let $A, B \in R[X ; S]$. If $A B$ is R primitive (resp. S-primitive), then A and B are each R-primitive (resp. S-primitive).

Theorem 3.1. Let $R[X ; S]$ be a semigroup semiring, and let $A \in R[X ; S]$ be primitive. Let $B \in \mathbb{B}[X ; S]$ with $\operatorname{Supp}(A)=\operatorname{Supp}(B)$. Suppose B is an atom. Then A is an atom.

Proof. Combining Propositions 1.7 and 2.9, we get morphism $\phi: R[X ; S] \rightarrow \mathbb{B}[X ; S]$ that maps A to B. Suppose that $A=A_{1} A_{2}$, a product of nonunits. Then $\phi(A)=B=\phi\left(A_{1}\right) \phi\left(A_{2}\right)$. Since B is an atom, without loss $\phi\left(A_{1}\right)$ is a unit. The only unit of $\mathbb{B}[X ; S]$ is $1 X^{e}$, and hence $A_{1}=r X^{e}$ for some nonzero r. By Corollary 3.1, A_{1} is primitive and thus r is a unit in R. But then A_{1} is a unit by Proposition 2.3, which is a contradiction. Hence A is an atom.

Proposition 3.2. Let $R[X ; S]$ be a semigroup semiring. Every elementary element is S-primitive. If S is also yoked, then the opposite implication also holds.

Proof. Let $A \in R[X ; S]$. Suppose that A is elementary, and let $t \in S c(A) . e \in \operatorname{Supp}(A)$ since A is elementary, so $t \mid e$ and $t=e$ since S is reduced. Hence $S c(A)$ contains no nonunits, and A is S-primitive. Suppose now that S is yoked and A is S-primitive. By Proposition 1.1, \mid is a total preorder on S, hence on $\operatorname{Supp}(A)$. We may therefore choose some $t \in \operatorname{Supp}(A)$ (not necessarily uniquely) that is a common divisor of each element of $\operatorname{Supp}(A)$. Since A is S-primitive, t is a unit. Since S is reduced, $t=e$. Therefore $e \in \operatorname{Supp}(A)$ and A is elementary.

The following result is a major tool for construction of elementary atoms in semigroup semirings. We have no similarly simple construction for primitive non elementary atoms, lacking an analog to Theorem 2.2.

Theorem 3.2. Let $R[X ; S]$ be a semigroup semiring, let $A \in R[X ; S]$ be elementary, and set $T=\operatorname{Supp}(A) \backslash\{e\}$. Let $s \in T$ be "maximal" in the sense that for all $t \in T, s+t \notin T$. Suppose that for all $u, v \in T, u+v \neq s$. Then A is an atom.

Proof. Suppose otherwise, that $A=B C$, a product of nonunits. We first prove that B is not a monomial. Suppose otherwise, that $B=b X^{t}$. We have $b \in R c(A), t \in S c(A)$. Since A is elementary, by Proposition 3.2, A is primitive and so b, t are units, and by Proposition 2.3, B is a unit, contrary to hypothesis. Hence B (and, similarly, C) is not a monomial. Since $s \in \operatorname{Supp}(A)$, by Proposition 2.5 there are $u \in \operatorname{Supp}(B), v \in \operatorname{Supp}(C)$ with $u+v=s$. If $u=e$, then $s \in \operatorname{Supp}(C)$. Choose any $u^{\prime} \in \operatorname{Supp}(B) \backslash\{e\}$, which is nonempty since B is not a monomial. Then $u^{\prime}+v=u^{\prime}+s \in T$, which contradicts the "maximality" of s. Hence $u \neq e$, and similarly $v \neq e$. Now by Theorem 2.2, $u, v \in T$ and $u+v=s$. This contradicts hypothesis, and hence A is an atom.

Example 3.1. Consider $R\left[X ; \mathbb{N}_{0}\right]$, which are polynomials and admit a degree. Let $A \in R\left[X ; \mathbb{N}_{0}\right]$ be elementary with $\operatorname{deg}(A)=n$. Suppose that either $\left[1, \frac{n}{2}\right]$ or $\left[\frac{n}{2}, n-1\right]$ has no intersection with $\operatorname{Supp}(A)$. Taking $s=n$ in Theorem 3.2, we conclude that A is an atom.

The following is derived from an example in [14].
Proposition 3.3. Let $R[X ; S]$ be a semigroup semiring. Suppose that $1,2(=1+1), 3$ are pairwise distinct in R. Suppose further that there is some $s \in S$ with $s, 2 s(=s+s), \ldots, 12 s$ all distinct. Then the elasticity of $R[X ; S]$ is at least $3 / 2$. In particular, $R[X ; S]$ is not $U F$.

Proof. Note that $X^{e}+X^{s}+X^{2 s}+X^{3 s}+2 X^{4 s}+2 X^{5 s}+2 X^{6 s}+3 X^{7 s}+X^{8 s}+X^{9 s}+X^{10 s}=$ $=A B=C D E$, for $A=X^{e}+X^{3 s}+X^{5 s}+X^{6 s}, B=X^{e}+X^{s}+X^{2 s}+X^{4 s}, C=X^{e}+X^{s}$, $D=X^{e}+X^{2 s}, E=X^{e}+2 X^{4 s}+X^{7 s}$. C, D, E are all atoms by Theorem 3.2. If A were not an atom, we write $A=A_{1} A_{2}$, and applying Proposition 2.2 we get $\operatorname{Supp}\left(A_{1}\right) \cup \operatorname{Supp}\left(A_{2}\right) \subseteq \operatorname{Supp}(A)=$ $=\{e, 3 s, 5 s, 6 s\}$. Within this set $5 s+e$ is the only factorization of $5 s$. Hence without loss we assume that $5 s \in \operatorname{Supp}\left(A_{1}\right), e \in \operatorname{Supp}\left(A_{2}\right)$. But now $\operatorname{Supp}\left(A_{2}\right)=\{e\}$ else $\operatorname{Supp}(A) \neq\{e, 3 s, 5 s, 6 s\}$. Hence $A_{2}=u X^{e}$ and $A_{1}=a X^{e}+b X^{3 s}+c X^{5 s}+d X^{6 s}$. Since $u a=1, u$ is a unit in R, and hence A_{2} is a unit in $R[X ; S]$. By a similar argument, if B is not an atom, then $B=\left(a X^{e}+b X^{s}+\right.$ $\left.+c X^{2 s}\right)\left(a^{\prime} X^{e}+b^{\prime} X^{s}+c^{\prime} X^{2 s}\right)$. So $a a^{\prime}=1, a b^{\prime}+b a^{\prime}=1, a c^{\prime}+b b^{\prime}+c a^{\prime}=1, b c^{\prime}+c b^{\prime}=0$, $c c^{\prime}=1$. So $a, a^{\prime}, c, c^{\prime}$ are units. But $b c^{\prime}=0$ and $c b^{\prime}=0$, so $b=b^{\prime}=0$ and hence $a b^{\prime}+b a^{\prime}=0$, a contradiction.

Proposition 3.4. Let $R[X ; S]$ be a semigroup semiring. Suppose there is some $r \in R^{*}$ with $r+r=r r=r$. Suppose there is some $s \in S$ with $s, 2 s, 3 s, \ldots$ all distinct. Then $R[X ; S]$ has infinite elasticity. Further, if there is some prime $P \in R[X ; S]$, then $R[X ; S]$ is fully elastic.

Proof. Let $n \in \mathbb{N}$. Set $A=1 X^{e}+r X^{s}, B=1 X^{e}+r X^{s}+r X^{2 s}+\ldots+r X^{n s}+r X^{(2 n+1) s}$, $C=1 X^{e}+r X^{(n+1) s}+r X^{(n+2) s}+\ldots+r X^{(2 n+1) s}$. By Theorem 3.2, A, B, C are each atoms. We have $B C=1 X^{e}+r X^{s}+r X^{2 s}+\ldots+r X^{(4 n+2) s}=A^{4 n+2}$, hence $\rho(R[X ; S]) \geq \frac{4 n+2}{2}=2 n+1$, so $\rho(R[X ; S])=\infty$. Now, let $\frac{p}{q} \geq 1$. If $p=q$ we have $\rho(P)=\frac{p}{q}$, otherwise we take $n=p-q$ and consider $B C P^{4 q-2}=A^{4 n+2} P^{4 q-2}$. We have $\rho\left(B C P^{4 q-2}\right)=\frac{4(p-q)+2+4 q-2}{2+4 q-2}=\frac{p}{q}$.

Note that an r such as in Proposition 3.4 may be appended to any semiring R, defining $x+r=$ $=x r=r$ for all nonzero $x \in R$. Further, in [2] it is shown that $\mathbb{N}_{0}\left[X ; \mathbb{N}_{0}\right]$ has infinite elasticity. Hence even for these very well-behaved R, S (cancellative, reduced, UF, greatest common divisors, totally ordered), the resulting semigroup semiring has infinite elasticity.

At the other extreme, if $|S|=1$ then we call $R[X ; S]$ trivial. Then the natural embedding ϕ : $R[X ; S] \rightarrow R$ is bijective, so by Proposition $1.4, R[X ; S]$ inherits the properties of R, such as elasticity and $U F$.

The evidence collected above and in Propositions 3.3 and 3.4 leads us to the following conjecture. It stands in contrast to the (semi)group ring case, where UF is achievable (e.g., $D[X]$ for any unique factorization domain D).

Conjecture 3.1. All nontrivial atomic semigroup semirings have infinite elasticity. In particular, no semigroup semiring is $U F$.

Proposition 3.5. Let $R[X ; S]$ be a semigroup semiring. $1 X^{s}$ is an atom in $R[X ; S]$ if and only if s is an atom in $S .1 X^{s}$ is prime in $R[X ; S]$ if and only if s is prime in S.

Proof. Suppose $s=r+t$, for nonzero $r, t \in S$. Then $1 X^{s}=\left(1 X^{r}\right)\left(1 X^{t}\right)$, a product of nonunits by Theorem 2.1. Suppose now that $1 X^{s}=A B$, for nonunits A, B. If $\operatorname{Supp}(A)=\{e\}$, then a_{e} is a nonunit in R by Theorem 2.1. However, $a_{e} \in R c(A B)$ by Proposition 3.1, hence $a_{e} \mid 1$, a contradiction. Hence there is some $t \in \operatorname{Supp}(A)$ with $t \neq e$. Similarly, there is some $r \in \operatorname{Supp}(B)$ with $r \neq e$. By Proposition 2.5, $r+t \in \operatorname{Supp}(A B)=\{s\}$, and hence $r+t=s$. Therefore s is not an atom in S.

Suppose now that $1 X^{s}$ is prime in $R[X ; S]$, and there are $a, b, c \in S$ with $a+s=b+c$. Then $\left(1 X^{a}\right)\left(1 X^{s}\right)=\left(1 X^{b}\right)\left(1 X^{c}\right)$, and since $1 X^{s}$ is prime, then without loss there is some $A \in R[X ; S]$ with $A\left(1 X^{s}\right)=1 X^{b}$. Then for all $t \in \operatorname{Supp}(A), t+s=b$, so in particular $s \mid b$. Hence s is prime in S. Suppose next that s is prime in S, and that there are $A, B, C \in R[X ; S]$ with $A\left(1 X^{s}\right)=B C$. Suppose there are $u \in \operatorname{Supp}(B), v \in \operatorname{Supp}(C)$ with $s \nmid u$ and $s \nmid v$. But then $u+v \in \operatorname{Supp}(B C)=$ $=\operatorname{Supp}(A)+s$, so $s \mid u+v$ yet $s \nmid u, s \nmid v$, which contradicts the primality of S. Hence either $s \in S c(B)$ or $s \in S c(C)$ and hence $1 X^{s} \mid B$ or $1 X^{s} \mid C$, and so $1 X^{s}$ is prime.

Proposition 3.6. Let $R[X ; S]$ be a semigroup semiring. Let $A=a X^{s}$ be an arbitrary monomial. A is an atom if exactly one of the following holds:
(1) a is an atom in R, and $s=e$ or
(2) a is a unit in R, and s is an atom in S.

Proof. One direction is given by Propositions 2.3 and 3.5. If neither a nor s is a unit, then we write $A=\left(a X^{e}\right)\left(1 X^{s}\right)$, a product of nonunits. Hence if A is an atom either a or s is a unit; then by Propositions 2.3 and 3.5 again, one of the above must hold.

Proposition 3.7. Let $R[X ; S]$ be a semigroup semiring. Let $r, r^{\prime} \in R, s, s^{\prime} \in S$. Monomials $r X^{s}, r^{\prime} X^{s^{\prime}}$ are associates in $R[X ; S]$ if and only if
(1) r, r^{\prime} are associates in R, and
(2) s, s^{\prime} are associates in S.

Proof. Suppose first (1) $+(2)$. Choose $r^{\prime \prime} \in R, s^{\prime \prime} \in S$ with $r=r^{\prime} r^{\prime \prime}, s=s^{\prime} s^{\prime \prime}$. We have $r X^{s}=\left(r^{\prime} X^{s^{\prime}}\right)\left(r^{\prime \prime} X^{s^{\prime \prime}}\right)$; hence $r X^{s} \mid r^{\prime} X^{s^{\prime}}$. Repeating in the other direction proves (1) and (2).

Suppose now $r X^{s}, r^{\prime} X^{s^{\prime}}$ are associates. Choose $A \in R[X ; S]$ with $r X^{s} A=r^{\prime} X^{s^{\prime}}$. Then $\left(r X^{e}\right)\left(1 X^{s}\right) A=r^{\prime} X^{s^{\prime}}$, so by Lemma 3.1, (1) $r \in R c\left(r^{\prime} X^{s^{\prime}}\right)$ so $r \mid r^{\prime}$, and (2) $s \in S c\left(r^{\prime} X^{s^{\prime}}\right)$ so $s \mid s^{\prime}$. Repeating in the other direction proves (1) and (2).

Proposition 3.8. Let $R[X ; S]$ be a semigroup semiring, with R, S atomic. If all monomials of $R[X ; S]$ have $U F / F F / B F$, then R, S are also $U F / F F / B F$. If S is also cancellative, then the opposite implication also holds.

Proof. Consider monomial $r X^{s}$. By Proposition 3.6, we may reorder any factorization of $r X^{s}$ into monomials canonically, as $\left(r_{1} X^{e}\right)\left(r_{2} X^{e}\right) \ldots\left(r_{k} X^{e}\right)\left(1 X^{s_{1}}\right)\left(1 X^{s_{2}}\right) \ldots\left(1 X^{s_{j}}\right)$, where $r_{1} r_{2} \ldots r_{k}$ is a factorization of r and $s_{1}+s_{2}+\ldots+s_{j}$ is a factorization of s. By Proposition 3.7, two such factorizations are equivalent in $R[X ; S]$ if and only if the corresponding factorizations are each equivalent in R, S. Hence the set of factorizations of $r X^{s}$ into monomials is UF/FF/BF, if and only if the same conditions hold on both factorizations of r, s. This gives one direction, since if all factorizations of $r X^{s}$ are UF/FF/BF then surely all factorizations into monomials are. If S is cancellative, then by Proposition 2.4, all factorizations of $r X^{s}$ are into monomials, which gives the other direction.

Proposition 3.9. Let $R[X ; S]$ be a semigroup semiring, and let $A \in R[X ; S]$. If A is an atom then either A is a monomial or primitive.

Proof. Suppose otherwise. If A is not R-primitive, there is some nonunit $r \in R c(A)$, and by Lemma 3.1, we write $A=\left(r X^{e}\right) B$. If instead A is not S-primitive, there is some nonunit $t \in S c(A)$ and by Lemma 3.1, we write $A=\left(1 X^{t}\right) B$. In both cases, B is a nonunit by Theorem 2.1 since $|\operatorname{Supp}(B)|=|\operatorname{Supp}(A)|$, which is greater than 1 . Hence we have factored A into two nonunits, which contradicts the hypothesis.

Hence, every atomic factorization of $A \in R[X ; S]$ is the product of monomial atoms (whose product may or may not be a monomial) and the product of primitive atoms (whose product may or may not be primitive). The former can be resolved by Corollary 2.1, and the latter by Theorem 3.11.

However another approach to factoring A into atoms is to first factor A into a monomial (each factor of which must be monomial) times a primitive element (each factor of which must be primitive). Then, we factor each part into atoms. We take this approach, with a sequence of results leading up to Theorem 3.6, which gives sufficient conditions for $R[X ; S]$ to be atomic.

Definition 3.2. Given monoid (M, \cdot), suppose that for each finite set $S \subseteq M$, there is some d that satisfies the following:
(1) for all $s \in S, d \mid s$;
(2) if there is some d^{\prime} with $d \mid d^{\prime}$ and $d^{\prime} \mid s($ for all $s \in S)$, then d, d^{\prime} are associates. In this case we say that (M, \cdot) has maximal common divisors.

In the ring theoretic context, maximal common divisors have been considered in [1, 11]. Every FF monoid has maximal common divisors. A monoid may have maximal common divisors but no greatest common divisors, as shown by the following.

Example 3.2. Consider the numerical monoid $(M,+)$ for $M=\{0,3,4,5,6, \ldots\}$. For $S=$ $=\{9,10\}$, the set of common divisors is $\{0,3,4,5,6\}$, and the set of maximal common divisors is $\{4,5,6\}$. There is no greatest common divisor of S.

Theorem 3.3. Let $R[X ; S]$ be a semigroup semiring, where R and S each have maximal common divisors and are weakly cancellative. Let $A \in R[X ; S]$. Then we may write $A=B C$, where B is monomial and C is primitive.

Proof. Let b be a maximal common divisor of $\left\{a_{s}: s \in \operatorname{Supp}(A)\right\}$, and let t be a maximal common divisor of $\operatorname{Supp}(A)$. Set $B=b X^{t}$, and $C=\sum_{s \in \operatorname{Supp}(A)}\left(a_{s} / b\right) X^{(s-t)}$. Evidently $A=B C$ and B is a monomial; it remains to prove that C is primitive. Suppose d is a common divisor of $\left\{c_{s}\right.$: $s \in \operatorname{Supp}(C)\}$. But then $b d$ is a common divisor of $\left\{a_{s}: s \in \operatorname{Supp}(A)\right\}$. Since b is maximal, in fact $b=b d e$ for some unit e; hence d is a unit by weak cancellativity of R. Hence C is R-primitive. Suppose now that r is a common divisor of $\operatorname{Supp}(C)$. But then $r+t$ is a common divisor of $\operatorname{Supp}(A)$. Since t is maximal, in fact $t=t+r+e$ for some unit e; hence r is a unit by weak cancellativity of S. Hence C is S-primitive, and thus primitive.

Theorem 3.4. Let $R[X ; S]$ be a semigroup semiring, where R and S are each atomic. Let $A \in R[X ; S]$ be a monomial. Then we may write A as a product of monomial atoms. Further, if both R, S are $U F / F F / B F$, then so is A.

Proof. Let $A=a X^{s}$. We factor into atoms $a=a_{1} a_{2} \ldots a_{m}$ and also $s=s_{1}+s_{2}+\ldots$ $\ldots+s_{n}$. By Proposition 3.6, we have a factorization of A into $k=m+n$ atoms given by $\left(a_{1} X^{e}\right)\left(a_{2} X^{e}\right) \ldots\left(a_{m} X^{e}\right)\left(1 X^{s_{1}}\right)\left(1 X^{s_{2}}\right) \ldots\left(1 X^{s_{n}}\right)$. On the other hand, if $A=A_{1} A_{2} \ldots A_{k}$, then by Proposition 3.6, for some $m+n=k$ this corresponds to a factorization of a into m atoms, and a factorization of s into n atoms. Hence $|F(A)| \leq|F(a)||F(s)|$ and $\sup \mathcal{L}(A) \leq \sup \mathcal{L}(a)+\sup \mathcal{L}(s)$.

Note that if S is also cancellative, Corollary 2.1 provides a partial converse to Theorem 3.4: all factorizations of a monomial are into other monomials.

The following surprising theorem gives a factorization of any primitive element into a bounded number of atoms, even if R, S are not BF or atomic themselves.

Theorem 3.5. Let $R[X ; S]$ be a semigroup semiring, with S cancellative. Let $A \in R[X ; S]$ be a primitive nonunit. Then we may write A as a product of k primitive atoms, for some $k \leq 2^{|\operatorname{Supp}(A)|}$.

Proof. The proof is by induction on $|\operatorname{Supp}(A)|$. If $|\operatorname{Supp}(A)|=1$, then A is a primitive monomial, hence a unit by Proposition 2.3, which is contrary to hypothesis. Now suppose that $|\operatorname{Supp}(A)|>1$. If A is an atom, there is nothing to prove. If not, write $A=B C$ for nonunits B, C. By Corollary 3.1, both B and C are primitive. If either were a monomial, then again by Proposition 2.3 it would be a unit, contrary to supposition. By Proposition $2.7,|\operatorname{Supp}(A)| \geq$ $\geq|\operatorname{Supp}(B)|$ and $|\operatorname{Supp}(A)| \geq|\operatorname{Supp}(C)|$. We now prove that these inequalities are strict. Suppose that instead $|\operatorname{Supp}(B)+\operatorname{Supp}(C)|=|\operatorname{Supp}(A)|=|\operatorname{Supp}(B)|$. Let $c \in \operatorname{Supp}(C) \backslash\{e\}$; we must have $\operatorname{Supp}(B)+\{c\}=\operatorname{Supp}(B)+\operatorname{Supp}(C)$. For all $a \in \operatorname{Supp}(A)$, we write $a=u+v$ for some $u \in \operatorname{Supp}(B), v \in \operatorname{Supp}(C)$. Since $u+v \in \operatorname{Supp}(A)=\operatorname{Supp}(B)+\{c\}$, there is some $u^{\prime} \in \operatorname{Supp}(B)$ with $a=u^{\prime}+c$. Therefore $c \in S c(A)$, contradicting the primitivity of A. Hence $|\operatorname{Supp}(A)|>|\operatorname{Supp}(B)|$ and similarly $|\operatorname{Supp}(A)|>|\operatorname{Supp}(C)|$. The inductive hypothesis now gives us two factorizations into primitive atoms $B=B_{1} B_{2} \ldots B_{m}, C=C_{1} C_{2} \ldots C_{n}$. Combining and setting $k=m+n$, we have $A=B_{1} B_{2} \ldots B_{m} C_{1} C_{2} \ldots C_{n}$. By the inductive hypothesis $m \leq 2^{|\operatorname{Supp}(B)|} \leq 2^{|\operatorname{Supp}(A)|-1}$ and also $n \leq 2^{|\operatorname{Supp}(A)|-1}$ so $k=m+n \leq 2^{|\operatorname{Supp}(A)|}$.

Theorem 3.6 provides sufficient conditions for semigroup semiring $R[X ; S]$ to be atomic, and also BF. UF was addressed in Conjecture 3.1, while FF requires some machinery and will be addressed in Theorem 3.7.

Theorem 3.6. Suppose that R, S are atomic and have maximal common divisors. Suppose that R is weakly cancellative, and S is cancellative. Then semigroup semiring $R[X ; S]$ is atomic. Further, if R, S are each $B F$, then so is $R[X ; S]$.

Proof. We first factor $A \in R[X ; S]$ into monomial and primitive parts with Theorem 3.3, then factor each part into atoms with Theorem 3.4 and Theorem 3.5, respectively.

Definition 3.3. Let (M, \cdot) be a commutative monoid. Suppose that M admits a total order \geq with least element e that respects \cdot. Suppose further that M does not contain any infinite descending chain $s_{1}>s_{2}>\ldots$. We then call M well-ordered. For semiring R, if $(R,+)$ is well-ordered, and also \geq respects \times, then we call R well-ordered.

Well-ordered semigroups are characterized in [12]. A well-ordering on R yields a natural partial ordering on $R[X ; S]$ via $A \geq B$ if $a_{s} \geq b_{s}$ for all $s \in S$.

Let R be a well-ordered semiring, and let $r \in R$. Then there are finitely many $r^{\prime} \in R$ with $\left.r^{\prime}\right|_{+} r$.
Theorem 3.7. Let $R[X ; S]$ be a BF semigroup semiring. Suppose that R is well-ordered, $(R,+)$ is $F F$, and S is cancellative, yoked, and FF. Then $R[X ; S]$ is $F F$.

Proof. Let $A \in R[X ; S]$. Suppose we have factorization set $F(A)$ with $|F(A)|=\infty$. By Proposition 3.9, either infinitely many nonassociate monomial atoms divide A, or infinitely many nonassociate primitive atoms divide A. In the first case, by Proposition 3.6, either R or S lacks FF. We therefore suppose the second case. By Proposition 3.2, A is elementary, and by Proposition 2.8 if $B \mid A$ then there is some constant $c \in R$ with $\left.c B\right|_{+} A$. Since $(R,+)$ is FF, there are only finitely many $r \in R$ with $\left.r\right|_{+} a_{s}$ for each $s \in \operatorname{Supp}(A)$. Since there are infinitely many nonassociate B dividing A, we may construct $c_{1}, c_{2}, \ldots \in R$ and nonassociate B_{1}, B_{2}, \ldots such that $B_{i} \mid A$ and $c_{1} B_{1}=c_{2} B_{2}=\ldots$. If some $c_{i}=c_{j}$, then $B_{i}=B_{j}$, contrary to hypothesis. Because \geq is a well-ordering, $c_{1}>c_{2}>\ldots$ is impossible, hence we assume without loss that $c_{1}<c_{2}<\ldots$. Let $s \in \operatorname{Supp}\left(B_{1}\right)$, and set $b_{i}=\left(B_{i}\right)_{s}$. We have $c_{1} b_{1}=c_{2} b_{2}=\ldots$. If $b_{1} \leq b_{2}$ then $c_{1} b_{1}<c_{2} b_{1} \leq c_{2} b_{2}$, a contradiction. Hence $b_{1}>b_{2}>\ldots$, which contradicts the well-ordering of R.

The gap between Theorems 3.6, 3.7, and the following partial converse remains open. Note also Conjecture 3.1.

Theorem 3.8. Suppose that $R[X ; S]$ is an atomic semigroup semiring. Then R, S are atomic. Further, if $R[X ; S]$ is $U F / F F / B F$, then so are R, S.

Proof. Propositions 2.3 and 3.8.
We turn now toward a semiring analog of the Gauss lemma on primitive polynomials. Note that this does not directly generalize Gauss lemma since semigroup semirings as we define them are information algebras (hence cannot be rings). In Theorem 3.11 we present the desired result, but first we need some machinery.

Proposition 3.10. Let (M, \cdot) be a commutative monoid with UF. Then (M, \cdot) has greatest common divisors. Further, if $X, Y \subseteq M$ are nonempty and finite, then $\operatorname{gcd}(X \cdot Y)=\operatorname{gcd}(X) \cdot \operatorname{gcd}(Y)$, up to associates.

Proof. Let $S \subseteq M$ be finite. Choose a factorization of $\prod S$, and let Q be the finite set of primes from this factorization. Choose $P \subseteq Q$ so that each $q \in Q$ has some associate $p \in P$, but the elements of P are pairwise nonassociate. By UF, any prime from any factorization of an element of S is associate to some element of Q, hence some element of P. Hence for each $s \in S$ we have a unique associated prime factorization $\prod_{p \in P} p^{\nu(p)}$, where $\nu(p) \in \mathbb{N}_{0}$.

We claim that $d \mid s$ if and only if d is associated to some $\prod_{p \in P} p^{\gamma(p)}$, where $0 \leq \gamma(p) \leq \nu(p)$. If d is associated to an element of this form, then s is associated to $d \prod_{p \in P} p^{\nu(p)-\gamma(p)}$, so $d \mid s$.

Suppose that $d \mid s$. If some prime divides d that is not associate to any prime in P, that prime divides $\prod S$, which contradicts the UF property. Hence d is associated to $\prod_{p \in P} p^{\gamma(p)}$, where $\gamma(p) \in \mathbb{N}_{0}$. Suppose that $\gamma(p)>\nu(p)$ for some p. Then $p^{\gamma(p)} \mid s$, so we write $s=p^{\gamma(p)} a$, for some $a \in M$. But this contradicts UF, since any factorization of $p^{\gamma(p)} a$ must have at least $\gamma(p)$ primes associate to p, and so p is associate to some other element of P. Now, set $\mu(p)=\min _{s \in S}\{\nu(p)\}, d=\prod_{p \in P} p^{\mu(p)}$. By the above, d is a common divisor for S, and if d^{\prime} is any other divisor of s, then $d^{\prime} \mid d$.

Next, for $S=X \cup Y$, we set $\mu_{X}(p)=\min _{s \in X}\{\nu(p)\}, \mu_{Y}(p)=\min _{s \in Y}\{\nu(p)\}, \mu_{X \cdot Y}(p)=$ $=\min _{s \in X \cdot Y}\{\nu(p)\}$. Choose $x \in X$ with $x=p^{\mu_{X}(p)} x^{\prime}$ and $\nu\left(x^{\prime}\right)=0$, and $y \in Y$ with $y=p^{\mu_{Y}(p)} y^{\prime}$ and $\nu\left(y^{\prime}\right)=0$. We have $p^{\mu_{X}(p)+\mu_{Y}(p)} \mid x y$, so $\mu_{X \cdot Y}(p) \geq \mu_{X}(p)+\mu_{Y}(p)$. Suppose that $p^{s} \mid x y$ with $s>\mu_{X}(p)+\mu_{Y}(p)$. We write $p^{s} \mid p^{\mu_{X}(p)+\mu_{Y}(p)} x^{\prime} y^{\prime}$. But now, by UF, $p \mid x^{\prime} y^{\prime}$ and so $p \mid x^{\prime}$ or $p \mid y^{\prime}$, which contradicts $\nu\left(x^{\prime}\right)=\nu\left(y^{\prime}\right)=0$. Hence $\mu_{X \cdot Y}(p)=\mu_{X}(p)+\mu_{Y}(p)$ and hence $\prod_{p \in P} p^{\mu_{X \cdot Y}(p)}=\prod_{p \in P} p^{\mu_{X}(p)} \cdot \prod_{p \in P} p^{\mu_{Y}(p)}$. Each element of $\operatorname{gcd}(X \cdot Y)$ is associated to this product, as is each element of $\operatorname{gcd}(X) \cdot \operatorname{gcd}(Y)$.

The following is an $S c$-analog of the Gauss lemma on primitive polynomials.
Theorem 3.9. Let $R[X ; S]$ be a semigroup semiring. Suppose that S has UF. Then $S c(A B)=$ $=S c(A)+S c(B)$. In particular, if A, B are both S-primitive, then $A B$ is S-primitive.

Proof. $\operatorname{gcd}(\operatorname{Supp}(A B))=\operatorname{gcd}(\operatorname{Supp}(A)+\operatorname{Supp}(B))$ by Proposition 2.5. By Proposition 3.10, this is associate to $\operatorname{gcd}(\operatorname{Supp}(A))+\operatorname{gcd}(\operatorname{Supp}(B))$. If $c \in S c(A B)$, then c divides each element of $\operatorname{Supp}(A B)$, hence $c \mid \operatorname{gcd}(\operatorname{Supp}(A B))=\operatorname{gcd}(\operatorname{Supp}(A))+\operatorname{gcd}(\operatorname{Supp}(B))$. Hence there is some $a \in \operatorname{gcd}(\operatorname{Supp}(A)), b \in \operatorname{gcd}(\operatorname{Supp}(B))$ with $c \mid a+b$ and hence $c \in S c(A)+S c(B)$. On the other hand, if $a \in S c(A), b \in S c(B)$, then $a+b$ divides each element of $\operatorname{Supp}(A B)$, hence $a+b \in S c(A B)$.

Definition 3.4. Let R be a semiring. Following [10], we call R a PLIS-semiring if the following property holds: For all $a, b \in R$, if d is a common divisor of $a, a+b$, then d is a divisor of b.

Note that every ring is a PLIS-semiring. The following lemma extends Proposition 3.1, for PLIS-semirings.

Lemma 3.2. Let $R[X ; S]$ be a semigroup semiring, where R is a PLIS-semiring. Let $A, B \in$ $\in R[X ; S]$. Then $R c(A) \cap R c(A+B) \subseteq R c(B)$.

Proof. Let $d \in R c(A) \cap R c(A+B)$. Hence, for each $s \in S$, we have $d\left|a_{s}, d\right|\left(a_{s}+b_{s}\right)$. Because R is a PLIS-semiring, $d \mid b_{s}$; hence $d \in R c(B)$.

Definition 3.5. Let $R[X ; S]$ be a semigroup semiring. Suppose that S is well-ordered. We define the degree function, deg : $R[X ; S] \rightarrow S$ via $\operatorname{deg}(A)=\max \{s: s \in \operatorname{Supp}(A)\}$.

We now present an $R c$-analog of the Gauss lemma on primitive polynomials.
Theorem 3.10. Let $R[X ; S]$ be a semigroup semiring. Suppose that R is a UF PLIS-semiring, and S is well-ordered. Then $R c(A B)=R c(A) R c(B)$. In particular, if A, B are both R-primitive, then $A B$ is R-primitive.

Proof. If A, B are not R-primitive, we choose a to be a greatest common divisor of $R c(A), b$ to be a greatest common divisor of $R c(B)$. By Lemma 3.1 we consider $A /\left(a X^{e}\right), B /\left(b X^{e}\right)$. We claim that these are each R-primitive; suppose $d \in R c\left(A /\left(a X^{e}\right)\right)$. But then $d a \in R c(A)$, and hence $d a \mid a$. By unique factorization, d is a unit. Applying the theorem to R-primitive $A /\left(a X^{e}\right), B /\left(b X^{e}\right)$, we conclude that $A B /\left(a b X^{e}\right)$ is R-primitive, and hence $R c(A B)=R c(A) R c(B)$.

We assume henceforth that A, B are R-primitive. Set $C=A B$. The proof proceeds by recursion on $\operatorname{deg}(C)$. If $\operatorname{deg}(C)=e$, then C is a constant. By Proposition $2.6, A, B$ are also constants and hence $R c(C)=R c(A) R c(B)$. If either A or B is a monomial, then again $R c(C)=R c(A) R c(B)$.

Suppose $\operatorname{deg}(C)>e$, and some nonunit $r \in R c(C)$. Since R has UF, we choose prime p dividing r. Let $u \in \operatorname{Supp}(A), v \in \operatorname{Supp}(B)$. We have $\operatorname{deg}(A)+\operatorname{deg}(B) \geq \operatorname{deg}(A)+v \geq u+v$, with equality only if $\operatorname{deg}(A)=u, \operatorname{deg}(B)=v$. Hence $c_{\operatorname{deg}(C)}=a_{\operatorname{deg}(A)} b_{\operatorname{deg}(B)}$. Since $p \mid c_{\operatorname{deg}(C)}$ and p is prime, without loss we may assume that $p \mid a_{\operatorname{deg}(A)}$. Set $A^{\prime}=\sum_{s \in \operatorname{Supp}(A) \backslash\{\operatorname{deg}(A)\}} a_{s} X^{s}$, $A^{\prime \prime}=a_{\operatorname{deg}(A)} X^{\operatorname{deg}(A)}$. These are each nontrivial since A is not a monomial. We have $p \in R c\left(A^{\prime \prime}\right)=$ $=R c\left(A^{\prime \prime}\right)\{1\} \subseteq R c\left(A^{\prime \prime} B\right)$. But also $p \in R c(C)=R c\left(A^{\prime} B+A^{\prime \prime} B\right)$, so by Lemma 3.2, $p \in$ $\in R c\left(A^{\prime} B\right)$.

But now we have $A^{\prime}, B, A^{\prime} B$ with $\operatorname{deg}(C)>\operatorname{deg}\left(A^{\prime} B\right)$. We continue recursively; however since S is well-ordered there cannot be an infinite descending chain. Hence we may assume by recursion that $R c\left(A^{\prime} B\right)=R c\left(A^{\prime}\right) R c(B)=R c\left(A^{\prime}\right)$. We have $p \in R c\left(A^{\prime}\right) \cap R c\left(A^{\prime \prime}\right) \subseteq R c\left(A^{\prime}+A^{\prime \prime}\right)=R c(A)$, which contradicts the R-primitivity of A.

Theorem 3.11. Let $R[X ; S]$ be a semigroup semiring. Suppose that R is a UF PLIS-semiring, and S is UF and well-ordered. Then $R c(A B)=R c(A) R c(B)$ and $S c(A B)=S c(A)+S c(B)$. In particular, if A, B are both primitive, then $A B$ is primitive.

Proof. Combine Theorems 3.9 and 3.10.
Acknowledgement. The author would like to acknowledge the hospitality of the Institut für Mathematik und Wissenschaftliches Rechnen at Karl-Franzens-Universität Graz, where he was visiting while this work was completed.

1. Anderson D. D. GCD domains, Gauss' lemma, and contents of polynomials, non-Noetherian commutative ring theory // Math. Appl. - 2000. - 520. - P. 1-31.
2. Cesarz Patrick, Chapman S. T., Stephen McAdam, Schaeffer George J. Elastic properties of some semirings defined by positive systems // Commut. Algebra and Appl. - Berlin: Walter de Gruyter, 2009. - P. 89-101.
3. Charles Ching-an Cheng, Wong Roman W. Hereditary monoid rings // Amer. J. Math. - 1982. - 104, № 5. P. 935-942.
4. Duchamp G., Thibon J.-Y. Théorèmes de transfert pour les polynômes partiellement commutatifs // Theor. and Comput. Sci. - 1988. - 57, № 2-3. - P. 239-249.
5. Gallagher Peter. In the finite and non-finite generation of finitary power semigroups // Semigroup Forum. - 2005. 71, № 3. - P. 481-494.
6. Geroldinger A., Halter-Koch F. Non-unique factorizations // Pure and Appl. Math. - Boca Raton, FL: Chapman \& Hall/CRC, 2006. - 278.
7. Giambruno A., César Polcino Milies, Sudarshan K. Sehgal (eds.) Groups, rings and group rings // Contemp. Math. Providence, RI: Amer. Math. Soc., 2009. - 499.
8. Gilmer R. Commutative semigroup rings // Chicago Lect. Math. - Chicago, IL: Univ. Chicago Press, 1984.
9. Golan J. S. The theory of semirings with applications in mathematics and theoretical computer science // Pitman Monogr. and Surv. in Pure and Appl. Math. - Harlow: Longman Sci. \& Techn., 1992. - 54.
10. Golan J. S. Semirings and affine equations over them: theory and applications // Math. and Appl. - 2003. - 556.
11. Halter-Koch F. Ideal systems // Monogr. and Textbooks in Pure and Appll. Math. - New York: Marcel Dekker Inc., 1998. - 211.
12. Révész G. When is a total ordering of a semigroup a well-ordering? // Semigroup Forum. - 1990. - 41, № 1. P. 123-126.
13. Schwarz S. Powers of subsets in a finite semigroup // Semigroup Forum. - 1995. - 51, № 1. - P. 1-22.
14. van de Woestijne Ch. E. Factors of disconnected graphs and polynomials with nonnegative integer coefficients (to appear).
15. Weinert H. J. On 0 -simple semirings, semigroup semirings and two kinds of division semirings // Semigroup Forum. 1984. - 28, № 1-3. - P. 313-333.

Received 24.09.12,
after revision - 23.08.13

