UDC 512.5

T. O. Banakh (Lviv Nat. Ivan Franko Univ.),

I. V. Protasov, S. V. Slobodianiuk (Kyiv Nat. Taras Shevchenko Univ.)

SCATTERED SUBSETS OF GROUPS

РОЗРІДЖЕНІ ПІДМНОЖИНИ ГРУП

We define scattered subsets of a group as asymptotic counterparts of the scattered subspaces of a topological space and prove that a subset A of a group G is scattered if and only if A does not contain any piecewise shifted IP-subsets. For an amenable group G and a scattered subspace A of G, we show that $\mu(A) = 0$ for each left invariant Banach measure μ on G. It is shown that every infinite group can be split into \aleph_0 scattered subsets.

Розріджені підмножини групи визначено, як асимптотичні аналоги розріджених підпросторів топологічного простору. Доведено, що підмножина A групи $G \in$ розрідженою тоді і тільки тоді, коли A не містить кусково-зсунутих IP-підмножин. Показано, що для аменабельної групи G та розрідженого підпростору A групи G рівність $\mu(A) = 0$ виконується для кожної лівої інваріантної банахової міри μ на G. Встановлено, що кожну нескінченну групу можна розбити на \aleph_0 розріджених підмножин.

1. Introduction. Given a discrete space X, we take the points of βX , the Stone-Čech compactification of X, to be the ultrafilters on X, with the points of X identified with the principal ultrafilters on X. The topology on βX can be defined by stating that the sets of the form $\overline{A} = \{p \in \beta X : A \in p\}$, where A is a subset of X, form a base for the open sets. We note that the sets of this form are clopen and that, for any $p \in \beta X$ and $A \subseteq X$, $A \in p$ if and only if $p \in \overline{A}$. For any $A \subseteq X$ we denote $A^* = \overline{A} \cap G^*$, where $G^* = \beta G \setminus G$. The universal property of βG states that every mapping $f : X \to Y$, where Y is a compact Hausdorff space, can be extended to the continuous mapping $f^{\beta} : \beta X \to Y$.

Now let G be a discrete group. Using the universal property of βG , we can extend the group multiplication from G to βG in two steps. Given $g \in G$, the mapping

$$x \mapsto gx \colon G \to \beta G$$

extends to the continuous mapping

$$q \mapsto gq : \beta G \to \beta G.$$

Then, for each $q \in \beta G$, we extend the mapping $g \mapsto gq$ defined from G into βG to the continuous mapping

$$p \mapsto pq \colon \beta G \to \beta G$$

The product pq of the ultrafilters p, q can also be defined by the rule: given a subset $A \subseteq G$,

$$A \in pq \leftrightarrow \{g \in G \colon g^{-1}A \in q\} \in p.$$

To describe the base for pq, we take any element $P \in p$ and, for every $x \in P$, choose some element $Q_x \in q$. Then $\bigcup_{x \in p} xQ_x \in pq$, and the family of subsets of this form is a base for the ultrafilter pq.

© T. O. BANAKH, I. V. PROTASOV, S. V. SLOBODIANIUK, 2015 304 ISSN 102 By the construction, the binary operation $(p,q) \mapsto pq$ is associative, so βG is a semigroup, and G^* is a subsemigroup of βG . For each $q \in \beta G$, the right shift $x \mapsto xq$ is continuous, and the left shift $x \mapsto xq$ is continuous for each $g \in G$.

For the structure of a compact right topological semigroup βG and plenty of its applications to combinatorics, topological algebra and functional analysis see [1-5].

Given a subset A of a group G and an ultrafilter $p \in G^*$, we define a *p*-companion of A by

$$\Delta_p(A) = A^* \cap Gp = \{gp \colon g \in G, A \in gp\},\$$

and say that a subset S of G^* is an *ultracompanion* of A if $S = \Delta_p(A)$ for some $p \in G^*$. For ultracompanions of subsets of groups and metric spaces see [6, 7].

Clearly, A is finite if and only if $\Delta_p(A) = \emptyset$ for each $p \in G^*$.

We say that a subset A of a group G is

thin if $|\Delta_p(A)| \leq 1$ for each $p \in G^*$;

n-thin, $n \in \mathbb{N}$ if $|\Delta_p(A)| \leq n$ for each $p \in G^*$;

sparse if each ultracompanion of A is finite;

disparse if each ultracompanion of A is discrete;

scattered if, for each infinite subset Y of A, there is $p \in Y^*$ such that $\Delta_p(Y)$ is finite.

We denote by $[G]^{<\omega}$ the family of all finite subsets of G. Given any $F \in [G]^{<\omega}$ and $g \in G$, we put

$$B(g,F) = Fg \cup \{g\}$$

and, following [8], say that B(g, F) is a ball of radius F around g. For a subset Y of G, we put $B_Y(g, F) = Y \cap B(g, F)$. By [6] (Proposition 4), Y is *n*-thin if and only if for every $F \in [G]^{<\omega}$, there exists $H \in [G]^{<\omega}$ such that $|B_Y(y, F)| \leq n$ for each $y \in Y \setminus H$. For thin subsets of a group, their applications and modifications see [9–19].

By [6] (Proposition 5) and [20] (Theorems 3 and 10), for a subset A of a group G, the following statements are equivalent:

(1) A is sparse;

(2) for every infinite subset X of G, there exists finite subset $F \subset G$ such that $\bigcap_{q \in F} gA$ is finite;

(3) for every infinite subset Y of A, there exists $F \in [G]^{<\omega}$ such that, for every $H \in [G]^{<\omega}$, we have

$$\{y \in Y : B_A(y, H) \setminus B_A(y, F) = \emptyset\} \neq \emptyset;$$

(4) A has no subsets asymorphic to the subset $W_2 = \{g \in \bigoplus_{\omega} \mathbb{Z}_2 : \operatorname{supt} g \leq 2\}$ of the group $\bigoplus_{\omega} \mathbb{Z}_2$, where $\operatorname{supt} g$ is the member of nonzero coordinates of g.

The notion of asymorphisms and coarse equivalence will be defined in the next section. The sparse sets were introduced in [21] in order to characterise strongly prime ultrafilters in G^* , the ultrafilters from $G^* \setminus \overline{G^*G^*}$. More on sparse subsets can be find in [10, 11, 16, 22].

In this paper, answering Question 4 from [6], we prove that a subset A of a group G is scattered if and only if A is disparse, and characterize the scattered subsets in terms of prohibited subsets. We answer also Question 2 from [6] proving that each scattered subset of an amenable group is absolute

null. We prove that every infinite group G can be partitioned into \aleph_0 scattered subsets. The results are exposed in Section 2, their proofs in Section 3.

2. Results. Our first statement shows that, from the asymptotic point of view [23], the scattered subsets of a group can be considered as the counterparts of the scattered subspaces of a topological space.

Proposition 1. For a subset A of a group G, the following two statements are equivalent:

(i) *A* is scattered;

(ii) for every infinite subset Y of A, there exists $F \in [G]^{<\omega}$ such that, for every $H \in [G]^{<\omega}$, we have

$$\{y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset\} \neq \emptyset.$$

Proposition 2. A subset A of a group G is scattered if and only if, for every countable subgroup H of $G, A \cap H$ is scattered in H.

Let A be a subset of a group $G, K \in [G]^{<\omega}$. A sequence a_0, \ldots, a_n in A is called K-chain from a_0 to a_n if $a_{i+1} \in B(a_i, K)$ for each $i \in \{0, \ldots, n-1\}$. For every $a \in A$, we denote

 $B_A^{\square}(a, K) = \{b \in A : \text{ there is a } K \text{-chain from } a \text{ to } b\}$

and, following [24] (Chapter 3), say that A is *cellular* (or *asymptotically zero-dimentional*) if, for every $K \in [G]^{<\omega}$, there exists $K' \in [G]^{<\omega}$ such that, for each $a \in A$,

$$B_A^{\square}(a, K) \subseteq B_A(a, K').$$

Now we need some more asymptology (see [24], Chapter 1). Let G, H be groups, $X \subseteq G$, $Y \subseteq H$. A mapping $f: X \to Y$ is called a \prec -mapping if, for every $F \in [G]^{<\omega}$, there exists $K \in [G]^{<\omega}$ such that, for every $x \in X$,

$$f(B_X(x,F)) \subseteq B_Y(f(x),K).$$

If f is a bijection such that f and f^{-1} are \prec -mappings, we say that f is an *asymorphism*. The subsets X and Y are called *coarse equivalent* if there exist asymorphic subsets $X' \subseteq X$ and $Y' \subseteq Y$ such that $X \subseteq B_X(X', F), Y \subseteq B_Y(Y', K)$ for some $F \in [G]^{<\omega}$ and $K \in [H]^{<\omega}$.

Following [23], we say, that the set Y of G has no asymptotically isolated balls if Y does not satisfy Proposition 1(ii): for every $F \in [G]^{<\omega}$, there exists $H \in [G]^{<\omega}$ such that $B_Y(y, H) \setminus B_Y(y, F) \neq \emptyset$ for each $y \in Y$.

By [23], a countable cellular subset Y of G with no asymptotically isolated balls is coarsely equivalent to the group $\bigoplus_{\omega} \mathbb{Z}_2$.

Proposition 3. Let X be a countable subset of a group G. If X is not cellular, then X contains a subset Y coarsely equivalent to $\bigoplus_{\omega} \mathbb{Z}_2$.

Let $(g_n)_{n < \omega}$ be an injective sequence in a group G. The set

$$\{g_{i_1}g_{i_2}\dots g_{i_n}: 0 \le i_1 < i_2 < \dots < i_n < \omega\}$$

is called an IP-set [1, p. 406], the abriviation for "infinite dimensional parallelepiped".

Given a sequence $(b_n)_{n < \omega}$ in G, we say that the set

$$\{g_{i_1}g_{i_2}\dots g_{i_n}b_{i_n}: 0 \le i_1 < i_2 < \dots < i_n < \omega\}$$

is a piecewise shifted IP-set.

- (i) A is scattered;
- (ii) A is disparse;
- (iii) A contains no subsets coarsely equivalent to the group $\oplus_{\omega} \mathbb{Z}_2$;
- (iv) A contains no piecewise shifted IP-sets.

By the equivalence (i) \Leftrightarrow (ii) and Propositions 10 and 12 from [6], the family of all scattered subsets of an infinite group G is a translation invariant ideal in the Boolean algebra of all subsets of G strictly contained in the ideal of all small subsets.

Now we describe some relationships between the left invariant ideals Sp_G , Sc_G of all sparse and scattered subsets of a group G on one hand, and closed left ideals of the semigroup βG .

Let J be a left invariant ideal in the Boolean algebra \mathcal{P}_G of all subsets of a group G. We set

$$\hat{J} = \{ p \in \beta G \colon G \setminus A \in p \text{ for each } A \in J \}$$

and note that \hat{J} is a closed left ideal of the semigroup βG . On the other hand, for a closed left ideal L of βG , we set

$$\dot{L} = \{ A \subseteq G \colon A \notin p \text{ for each } p \in L \}$$

and note that \check{L} is a left invariant ideal in \mathcal{P}_G . Moreover, $\check{J} = J$ and $\check{L} = L$. Clearly $[G]^{\leq \omega} = G^*$ and by Theorem 1

Clearly,
$$[G]^{<\omega} = G^*$$
 and by Theorem 1,

$$Sc_G = \operatorname{cl}\{p \in \beta G : Gp \text{ is discrete in } \beta G\} =$$
$$= \operatorname{cl}\{p \in \beta G : p = \varepsilon p \text{ for some idempotent } \varepsilon \in G^*\}.$$
(1)

Given a left invariant ideal J in \mathcal{P}_G and following [11], we define a left invariant ideal $\sigma(J)$ by the rule: $A \in \sigma(J)$ if and only if $\Delta_p(A)$ is finite for every $p \in \hat{J}$. Equivalently, $\sigma(J) = \operatorname{cl}(\check{G}^*\hat{J})$. Thus, we have

$$Sp_G = \operatorname{cl}(G^*G^*).$$

We say that a left invariant ideal J in \mathcal{P}_G is sparse-complete if $\sigma(J) = J$ and denote by $\sigma^*(J)$ the intersection of all sparse-complete ideals containing J. Clearly, the sparse-completion $\sigma^*(J)$ is the smallest sparse-complete ideal such that $J \subseteq \sigma^*(J)$. By [11] (Theorem 4(1)), $\sigma^*(J) = \bigcup_{n \in \omega} \sigma^n(J)$, where $\sigma^0(J) = J$ and $\sigma^{n+1}(J) = \sigma(\sigma^n(J))$. We can prove that $A \in \sigma^n([G]^{<\omega})$ if and only if A has no subsets asymorphic to $W_n = \{g \in \bigoplus_{\omega} \mathbb{Z}_2 : \operatorname{supt} g \leq n\}$.

By [11] (Theorem 4(2)), the ideal Sp_G is not sparse complete. By (1), the ideal Sc_G is sparse-complete. Hence $\sigma^*([G]^{<\omega}) \subseteq Sc_G$ but $\sigma^*([G]^{<\omega}) \neq Sc_G$.

Recall that a subset A of an amenable group G is *absolute null* if $\mu(A) = 0$ for each left invariant Banach measure μ on G. For sparse subsets, the following theorem was proved in [10] (Theorem 5.1).

Theorem 2. Every scattered subset A of an amenable group G is absolute null.

Let A be a subset of \mathbb{Z} . The *upper density* $\overline{d}(A)$ is denoted by

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{-n, -n+1, \dots, n-1, n\}|}{2n+1}.$$

By [25] (Theorem 11.11), if $\overline{d}(A) > 0$, then A contains a piecewise shifted *IP*-set. We note that Theorem 2 generalizes this statement because there exists a Banach measure μ on \mathbb{Z} such that $\overline{d}(A) = \mu(A)$.

ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 3

In connection with Theorem 1, one may ask if it possible to replace piecewise shifted *IP*-sets to (left or right) shifted *IP*-sets. By Theorem 2 and [25] (Theorem 11.6), this is impossible.

By Theorem 1 and Proposition 13 from [6] an infinite group G can be partitioned into \aleph_0 scattered subsets provided that G is embeddable into a direct product of countable groups, in particular if G is Abelian.

Theorem 3. Every infinite group G can be partitioned into \aleph_0 scattered subsets.

We note that Theorem 3 does not hold with sparse subsets in place of scattered subsets [22].

By Theorems 1 and 3, every infinite groups admits a countable partition such that each cell has no piecewise-shifted *IP*-sets.

We recall that a free ultrafilter p on a set X is *countably complete* if, for every countable partition of X, one cell of the partition is a member of p. In this case |X| should be Ulam-measurable. Let p be a countably complete ultrafilter on a group G. Applying Theorem 3, we conclude that the orbit Gp is discrete in G^* .

3. Proofs. *Proof of Proposition* **1.** (i) \Rightarrow [(ii). We take $p \in Y^*$ such that $\Delta_p(Y)$ is finite, so $\Delta_p(Y) = Fp$ for some $F \in [G]^{<\omega}$. Given any $H \in [G]^{\omega}$, we have $hp \notin \Delta_p(Y)$ for each $h \in H \setminus F$. Hence $hP_h \cap Y = \emptyset$ for some $P_h \in p$. We put $P = \bigcap_{h \in H \setminus P} P_h$ and note that

$$P \subseteq \{y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset\}.$$

(ii) \Rightarrow (i). We take an infinite subset Y of A, choose corresponding $F \in [G]^{<\omega}$ and, for each $H \in [G]^{<\omega}$, denote

$$P_H = \{ y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset \}.$$

By (ii), the family $\{P_H : H \in [G]^{<\omega}\}$ has a finite intersection property and $\bigcap_{H \in [G]^{<\omega}} P_H = \emptyset$. Hence $\{P_H : H \in [G]^{<\omega}\}$ is contained in some ultrafilter $p \in Y^*$. By the choice of p, we have $gp \notin \Delta_p(Y)$ for each $g \in G \setminus (F \cup \{e\})$, e is the identity of G. It follows that $\Delta_p(Y)$ is finite so A is scattered.

Proof of Proposition 2. Assume that A is not scattered and choose a subset Y of A which does not satisfy the condition (ii) of Proposition 1. We take an arbitrary $a \in A$ and put $F_0 = \{e, a\}$. Then we choose inductively a sequence $(F_n)_{n \in \omega}$ in $[G]^{<\omega}$ such that

(1) $F_n F_n^{-1} \subset F_{n+1};$

(2) $B_Y(y, F_{n+1}) \setminus B_Y(y, F_n) \neq \emptyset$ for every $y \in Y$.

After ω steps, we put $H = \bigcup_{n \in \omega} F_n$. By the choice of F_0 , $Y \cap H \neq \emptyset$. By (1), H is a subgroup. By (2), $(Y \cap H)$ is not scattered in H.

Proof of Proposition 3. Replacing G by by the subgroup generating by X, we assume that G is countable. We write G as an union of an increasing chain F_n of finite subsets such that $F_0 = \{e\}$, $F_n = F_n^{-1}$. In view of [23], it suffices to find a cellular subset Y of X with no asymptotically isolated balls.

Since X is not cellular, there exists $F \in [G]^{<\omega}$ such that

(1) for every $n \in \mathbb{N}$, there is $x \in X$ such that

$$B_X^{\sqcup}(x,F) \setminus B_X(x,F_n) \neq \emptyset.$$

We assume that G is finitely generated and choose a system of generators $K \in [G]^{<\omega}$ such that $K = K^{-1}$ and $F \subseteq K$. Then we consider the Cayley graph $\Gamma = \text{Cay}(G, K)$ with the set of vertices G and the set of edges $\{\{g,h\}: g^{-1}h \in K\}$. We endow Γ with the path metric d and say that a sequence $a_0, \ldots, a_n \in G$ is a geodesic path if a_0, \ldots, a_n is the shortest path from a_0 to a_n , in

particular, $d(a_0, a_n) = n$. Using (1), for each $n \in \mathbb{N}$, we choose a geodesic path L_n of length 3^n such that $L_n \subset X$ and

(2) $B_G(L_n, F_n \cap B_G(L_{n+1}, F_{n+1}) = \emptyset$ for every $n \in \mathbb{N}$. Let $L_n = \{a_{n0}, \ldots, a_{n3^n}\}$. For each $i \in \{0, \ldots, 3^n\}$, we take a tercimal decomposition of i and denote by Y_n the subset of all $a_i \in L$ such that i has no 1-s in its decomposition based on $\{0, 1, 2\}$ (see [26]). By [2] and the construction of Y_n , the set $Y = \bigcup_{n \in \mathbb{N}} Y_n$ is cellular and has no asymptotically isolated balls.

Now let G be an arbitrary countable group. We consider a subgroup H of G generated by F and decompose G into left cosets by H. If X meets only finite number of these cosets, then X is contained in some finitely generated subgroup of G and we arrive in the previous case. At last, let $\{Hx_n : n \in \mathbb{N}\}$ be a decomposition of G into left cosets by H and X meets infinitely many of them. We endow each Hx_n with the structure of a graph Γ_n naturally isomorphic to the Cayley graph Cay(H, F). Then we use (1) to choose an increasing sequence $(m_n)_{n \in \omega}$ and a sequence $(L_n)_{n \in \mathbb{N}}$ of geodesic paths of length 3^n satisfying (2) and such that $L_n \subset X$. For each $n \in \mathbb{N}$, we define a subset Y_n of L_n as before, and put $Y = \bigcup_{n \in \mathbb{N}} Y_n$. By (2) and the construction of Y_n , Y is cellular and has no asymptotically isolated balls.

Proof of Theorem 1. We follow the tour (i) \Rightarrow (iv) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i). (i) \Rightarrow (iv). We prove that a piecewise shifted *IP*-subset

$$A = \{ g_{i_1} g_{i_2} \dots g_{i_n} b_{i_n} : 0 \le i_1 < \dots < i_n < \omega \}$$

of G is not scattered. For each $m \in \omega$, let

$$A_m = \{ g_{i_1} g_{i_2} \dots g_{i_n} b_{i_n} \colon m < i_1 < \dots < i_n < \omega \}.$$

We take an arbitrary $p \in A^*$ and show that $\Delta_p(A)$ is infinite.

If $A_m \in p$ for every $m \in \omega$, then $g_n p \in A^*$ for each $n \in \omega$. Otherwise, there exists $m \in \omega$ such that

$$\{g_m g_{i_1} \dots g_{i_n} b_{i_n} \colon m < i_1 < \dots < i_n < \omega\} \in p.$$

Then $g_m^{-1}p \in A^*$ and we repeat the arguments for $g_m^{-1}p$.

(iv) \Rightarrow (ii). Assume that A is not disparse and take $p \in A^*$ such that p is not isolated in $\Delta_p(A)$. Then p = qp for some $q \in G^*$. The set $\{x \in G^* : xp = p\}$ is a closed subsemigroup of G^* and, by [1] (Theorem 2.5), there is an idempotent $r \in G^*$ such that p = rp. We take $R \in r$ and $P_g \in p$, $g \in R$ such that $\bigcup_{g \in R} gP_g \subseteq A$. Since r is an idempotent, by [1] (Theorem 5.8), there is an injective sequence $(g_n)_{n \in \omega}$ in G such that

$$\{g_{i_1} \dots g_{i_n} : 0 \le i_1 < \dots < i_n < \omega\} \subseteq R.$$

For each $n \in \omega$, we pick $b_n \in \bigcap \{P_g : g = g_{i_1} \dots g_{i_n} : 0 \le i_1 < \dots < i_n < \omega\}$ and note that

$$\{g_{i_1} \dots g_{i_n} b_{i_n} : 0 \le i_1 < \dots < i_n < \omega\} \subseteq A.$$

(ii) \Rightarrow (iii). We assume that A contains a subset coarsely equivalent to the group $B = \bigoplus_{\omega} \mathbb{Z}_2$. Then there exist a subset X of $B, H \in [B]^{<\omega}$ such that B = H + X, and an injective \prec -mapping $f : X \to A$. We take an arbitrary idempotent $r \in B^*$, pick $h \in H$ such that $h + X \in r$ and put p = r - h. Since r + p = r, we see that p is not isolated in $\Delta_p(X)$. We denote $q = f^{\beta}(p)$. Let $b \in B, b \neq 0$ and $b + p \in X^*$. Since f is an injective \prec -mapping, there is $g \in G \setminus \{e\}$ such that $f^{\beta}(b+p) = g + q$. It follows that q is not isolated in $\Delta_q(A)$. Hence A is not disparse. (iii) \Rightarrow (i). Let X be a countable subset of A. By Proposition 3, X is cellular. By [23], X satisfies Proposition 1(ii). Hence X is scattered. By Proposition 2, A is scattered.

Proof of Theorem 2. We assume that $\mu(A) > 0$ for some Banach measure μ on G. We use the arguments from [10, p. 506, 507] to choose a decreasing sequence $(A_n)_{n \in \omega}$ of subsets of G and an injective sequence $(g_n)_{n \in \omega}$ in G such that $A_0 = A$, $g_n A_{n+1} \subseteq A_n$ and $\mu(A_n) > 0$ for each $n \in \omega$. We pick $x_n \in A_{n+1}$ and put

$$X = \{g_0^{\varepsilon_0} \dots g_n^{\varepsilon_n} x_n \colon n \in \omega , \varepsilon_i \in \{0,1\}\}.$$

By the construction X is a piecewise shifted IP-sets and $X \subseteq A$. By Theorem 1, X is not scattered. Theorem 2 is proved.

To prove Theorem 3, we need some definitions and notations.

Let G be an infinite group with the identity e, \varkappa be an infinite cardinal. A family $\{G_{\alpha}: \alpha < \varkappa\}$ of subgroups of G is called a *filtration* if the following conditions hold:

(1) $G_0 = \{e\}$ and $G = \bigcup_{\alpha < \varkappa} G_{\alpha};$

(2) $G_{\alpha} \subset G_{\beta}$ for all $\alpha < \beta < \varkappa$;

(3) $\bigcup_{\alpha < \beta} G_{\alpha} = G_{\beta}$ for each limit ordinal $\beta < \varkappa$.

Clearly, a countable group G admits a filtration if and only if G is not finitely generated. Every uncountable group G of cardinality \varkappa admits a filtration satisfying the additional condition $|G_{\alpha}| < \varkappa$ for each $\alpha < \kappa$.

Following [27], for each $0 < \alpha < \kappa$, we decompose $G_{\alpha+1} \setminus G_{\alpha}$ into right cosets by G_{α} and choose some system X_{α} of representatives so $G_{\alpha+1} \setminus G_{\alpha} = G_{\alpha}X_{\alpha}$. We take an arbitrary element $g \in G \setminus \{e\}$ and choose the smallest subgroup G_{α} with $g \in G_{\alpha}$. By (3), $\alpha = \alpha_1 + 1$ for some ordinal $\alpha_1 < \varkappa$. Hence, $g \in G_{\alpha+1} \setminus G_{\alpha_1}$ and there exist $g_1 \in G_{\alpha_1}$ and $x_{\alpha_1} \in X_{\alpha_1}$ such that $g = g_1x_{\alpha_1}$. If $g_1 \neq e$, we choose the ordinal α_2 and elements $g_2 \in G_{\alpha_2+1} \setminus G_{\alpha_2}$ and $x_{\alpha_2} \in X_{\alpha_2}$ such that $g_1 = g_2x_{\alpha_2}$. Since the set of ordinals $\{\alpha : \alpha < \varkappa\}$ is well-ordered, after finite number s(g) of steps, we get the representation

$$g = x_{\alpha_{s(g)}} x_{\alpha_{s(g)-1}} \dots x_{\alpha_2} x_{\alpha_1}, \quad x_{\alpha_i} \in X_{\alpha_i}.$$

We note that this representation is unique. For $n \in \mathbb{N}$, we denote

$$D_n = \{g \in G \setminus \{e\} \colon s(g) = n\}.$$

Given any $g = x_{\alpha_{s(q)}} \dots x_{\alpha_2} x_{\alpha_1}$ and $m \in \{1, \dots, s(g)\}$, we put

$$g(m) = x_{\alpha_{s(q)}} \dots x_{\alpha_m}, \qquad \max g = \alpha_1.$$

For a subset $P \subseteq D_n$ and $m \in \{1, \ldots, n\}$, we denote

$$P(m) = \{g(m) : g \in P\},\$$
$$\max P = \{\max g : g \in P\}.$$

Let p be an ultrafilter on G such that $D_n \in p$ and $m \in \{1, ..., n\}$. We denote by $\max p$ the ultrafilter on \varkappa with the base $\{\max P : P \in p, P \subseteq D_n\}$, and by p(m) the ultrafilter on G with the base $\{P(m) : P \in p, P \subseteq D_n\}$.

310

SCATTERED SUBSETS OF GROUPS

Proof of Theorem 3. We use an induction by the cardinality of G. If G is countable, the statement is evident because each singleton is scattered. Assume that we have proved the theorem for all groups of cardinality less than \varkappa , $\varkappa > \aleph_0$ and take an arbitrary group G of cardinality \varkappa . We fix a filtration $\{G_{\alpha} : \alpha < \varkappa\}$ of G such that $|G_{\alpha}| < \varkappa$ for each $\alpha < \varkappa$.

For every $\alpha < \varkappa$, we use the inductive hypothesis to define a mapping $\chi_{\alpha} : G_{\alpha+1} \setminus G_{\alpha} \to \mathbb{N}$ such that $\chi_{\alpha}^{-1}(i)$ is scattered in $G_{\alpha+1}$ for every $i \in \mathbb{N}$. Then we take $g \in G \setminus \{e\}, g = x_{\alpha_n} \dots x_{\alpha_1}$ and put

$$\chi(g) = (\chi_{\alpha_n}(x_{\alpha_n}), \chi_{\alpha_{n-1}}(x_{\alpha_n}x_{\alpha_{n-1}}), \dots, \chi_{\alpha_1}(x_{\alpha_n}x_{\alpha_{n-1}}\dots x_{\alpha_1}))$$

Thus, we have defined a mapping $\chi: G \setminus \{e\} \to \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$. In view of Theorem 1, it suffices to verify that $\chi^{-1}(m)$ is disparse for each $m = (m_1, \ldots, m_n) \in \mathbb{N}^n$. We shall prove this statement by induction on n. Let $m = (m_1)$ and let p be an ultrafilter on G such that $\chi^{-1}(m) \in p$. We endow \varkappa with the interval topology and denote $\lambda = \lim \max p$. If p is a principal ultrafilter then, by the definition of χ_{λ} , Gp is discrete. Otherwise, we take $P \in p$ such that $\max p \leq \lambda$. Then $P \notin gp$ for each $g \in G \setminus \{e\}$.

Suppose that we have proved that $\chi^{-1}(m')$ is disparse for each $m' = (m'_1, \ldots, m'_i)$, i < n and let $m = (m_1, \ldots, m_n)$. We take an arbitrary ultrafilter p on G such that $\chi^{-1}(m) \in p$. If max p is a principal, we use the inductive hypothesis. Otherwise, we denote $\lambda_1 = \lim \max p(1), \ldots, \lambda_n =$ $= \lim \max p(n)$. We choose $k \in \{1, \ldots, n\}$ such that $\lambda_1 = \ldots = \lambda_k, \lambda_{k+1} < \lambda_k$. By the inductive hypothesis, there exists $P \in p$ such that $P(k+1) \notin gp(k+1)$ for every $g \in G \setminus \{e\}$ such that $\max g \leq \lambda_{k+1}$. Then we choose $Q \in p, Q \subseteq D_n$ such that $\max q(k+1) \leq \lambda_{k+1}, \max q(k) > \lambda_{k+1}$ for each $q \in Q$. Then $Gp \cap (P \cap Q) = \{p\}$, so Gp is discrete.

Theorem 3 is proved.

The referee pointed out that, with another definition, the scattered subsets appeared in [28].

- 1. Hindman N., Strauss D. Algebra in the Stone Čech compactification. 2nd edition. de Grueter, 2012.
- 2. Todorcevic S. Introduction to Ramsey spaces. Princeton Univ. Press, 2010.
- Filali M., Protasov I. Ultrafilters and topologies on groups // Math. Stud. Monogr. Ser. Lviv: VNTL Publ., 2010. –
 13.
- 4. Zelenyuk Y. Ultrafilters and topologies on groups. de Grueter, 2012.
- Dales H., Lau A., Strauss D. Banach algebras on semigroups and their compactifications // Mem. Amer. Math. Soc., 2010. – 2005.
- 6. *Protasov I., Slobodianiuk S.* Ultracompanions of subsets of groups // Comment. math. Univ. carol. (to appear), preprint is available at arxiv: 1308:1497.
- 7. Protasov I.V. Ultrafilters on metric spaces // Top. and Appl. 2014. 164. P. 207-214.
- 8. Bella A., Malykhin V. On certain subsets of a group // Questions Answers Gen. Top. 1999. 17. P. 183-197.
- Chou C. On the size of the set of left invariant means on a semigroup // Proc. Amer. Math. Soc. 1969. 23. -P. 199-205.
- Lutsenko Ie., Protasov I.V. Sparse, thin and other subsets of groups // Int. J. Algebra Comput. 2009. 19. P. 491–510.
- 11. Lutsenko Ie., Protasov I.V. Relatively thin and sparse subsets of groups // Ukr. Math. J. 2011. 63, № 2. P. 216-225.
- 12. Lutsenko Ie., Protasov I.V. Thin subsets of balleans // Appl. Gen. Top. 2010. 11, № 2. P. 89-93.
- 13. Lutsenko Ie. Thin systems of generators of groups // Algebra and Discrete Math. 2010. 9. P. 108-114.
- 14. Petrenko O., Protasov I.V. Thin ultrafilters // Note Dome J. Formal Logic. 2012. 53. P. 79 88.
- 15. Protasov I.V. Partitions of groups into thin subsets // Algebra and Discrete Math. 2011. 11. P. 88–92.
- 16. Protasov I.V. Selective survey on subset combinatorics of groups // Ukr. Math. Bull. 2011. 7. P. 220-257.
- 17. Protasov I.V. Thin subsets of topological groups // Top. and Appl. 2013. 160. P. 1083-1087.

- 18. Protasov I.V., Slobodianiuk S. Thin subsets of groups // Ukr. Math. J. 2013. **65**, № 9. P. 1237–1245.
- 19. Banakh T., Lyaskova N. On thin complete ideals of subsets of groups // Ukr. Math. J. 2011. 63, № 6. P. 741 754.
- 20. Protasov I.V. Sparse and thin metric spaces // Math. Stud. 2014. 41, № 1. P. 92-100.
- Filali M., Lutsenko Ie., Protasov I. Boolean group ideals and the ideal structure of βG // Math. Stud. 2008. 30. P. 1–10.
- 22. Protasov I.V. Partitions of groups into sparse subsets // Algebra and Discrete Math. 2012. 13, № 1. P. 107-110.
- Banakh T., Zarichnyi I. Characterizing the Cantor bi-cube in asymptotic categories // Groups, Geometry and Dynamics. 2011. 5. P. 691–728.
- 24. Protasov I., Zarichnyi M. General asymptology // Math. Stud. Monogr. Ser. Lviv: VNTL Publ., 2007. 12.
- 25. Hindman N. Ultrafilters and combinatorial number theory // Lect. Notes Math. 1979. 751. P. 119-184.
- 26. Dranishnikov A., Zarichnyi M. Universal spaces for asymptotic dimension // Top. and Appl. 2004. 140. P. 203–225.
- 27. Protasov I.V. Small systems of generators of groups // Math. Notes. 2004. 76. P. 420-426.
- 28. Munarini E., Salvi M. Scattered subsets // Discrete Math. 2003. 267. P. 213 228.

Received 08.12.13