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ON A TWO-WEIGHT CRITERIA FOR MULTIDIMENSIONAL HARDY TYPE
OPERATOR IN p-CONVEX BANACH FUNCTION SPACES
AND SOME APPLICATION *

PO IBOBAT'OBUM KPUTEPIN J1JI1 BATATOBUMIPHOI'O OITIEPATOPA
THUITY XAP/I B p-ONYKJIUX BAHAXOBUX ITPOCTOPAX ®YHKIIIH
TA JESAKI 3ACTOCYBAHHSA

The main goal of this paper is to prove a two-weight criterion for multidimensional Hardy type operator from weighted
Lebesgue spaces into p-convex weighted Banach function spaces. The problem for the dual operator is also considered. As
an application, we prove a two-weight criterion for the boundedness of multidimensional geometric mean operator from
weighted Lebesgue spaces into weighted Musielak — Orlicz spaces.

['0JI0BHOIO METOI0 J1aHOi CTaTTi € JOBEACHHS JBOBAroBOrO KPHUTEpPilo AJis OaraToBHMIpHOTrO oreparopa Ty Xapmi i3
BaroBHX JIOETOBUX MPOCTOPIB B p-OMyKJIi BaroBi 6aHaxoBi mpoctopu QyHKHiHA. Takox po3mIIHYTO 3a1aqy AJIs TyadbHOTO
omeparopa. Sk 3acTOCyBaHHs, BCTAHOBJICHO JABOBArOBHH KpUTEpild 0OMEKEHOCTi 6araToOBUMIpHOTO OIlepaTropa reoMeTpud-
HOTO CepeIHBOTO 3 BaroBHX JICOErOBUX MPOCTOPIB y BaroBi nmpocropu Mycersika — Opiiva.

1. Introduction. The investigation of Hardy operator in weighted Banach function spaces (BFS) have
recently history. The goal of this investigations were closely connected with the found of criterion
on the geometry and on the weights of BFS for validity of boundedness of Hardy operator in BFS.
Characterization of the mapping properties such as boundedness and compactness were considered in
the papers [10, 11, 14, 30] and etc. More precisely, in [10] and [11] were considered the boundedness
of certain integral operator in ideal Banach spaces. In [14] was proved the boundedness of Hardy
operator in Orlicz spaces. Also, in [30] the compactness and measure of noncompactness of Hardy
type operator in BFS was proved. But in this paper we consider the boundedness of Hardy operator
in p-convex BFS and find a new type criterion on the weights for validity of Hardy inequality. Note
that the notion of BFS was introduced in [32]. In particular, the weighted Lebesgue spaces, weighted
Lorentz spaces, weighted variable Lebesgue spaces, variable Lebesgue spaces with mixed norm,
Musielak — Orlicz spaces and etc. is BFS.

In this paper, we establish an integral-type necessary and sufficient condition on weights, which
provides the boundedness of the multidimensional Hardy type operator from weighted Lebesgue
spaces into p-convex weighted BFS. We also investigate the corresponding problems for the dual
operator. It is well known that the classical two-weight inequality for geometric mean operator is
closely connected with the one-dimensional Hardy inequality (see [20]). Analogously, the Polya—
Knopp type inequalities with multidimensional geometric mean operator are connected with the
multidimensional Hardy type operator. Therefore, in this paper, as an application of Hardy inequality
we prove the boundedness of multidimensional geometric mean operator and boundedness of certain
sublinear operator from weighted Lebesgue spaces into weighted Musielak — Orlicz spaces.

* This paper was partially supported by the Science Development Foundation under the President of the Republic of
Azerbaijan (Grant EIF-2014-9(15)-46/10/1) and by the grant of Presidium of Azerbaijan National Academy of Sciences
2015.
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2. Preliminaries. Let (2, ) be a complete o-finite measure space. By Lo = Lo(, 1) we
denote the collection of all real-valued p-measurable functions on 2.

Definition 1 [9, 29, 32]. We say that real normed space X is a BFS if:

(P1) the norm ||f| x is defined for every u-measurable function f, and f € X if and only if
1Fllx < o0 | fllx = 0 if and only if f = 0 e

(P2) [IFllx = [llf[llx forall f € X;

(P3) f0< fu? f<gae, then | fulx 1T |fllx (Fatou property);

(Py) if E is a measurable subset of ) such that i(E) < oo, then ||xE|| x < 00, where X is the
characteristic function of the set I,

(P5) for every measurable set E C Q with u(E) < oo, there is a constant Cgy > 0 such that

/ f(z) dz < Crl|f]1x.
E

Given a BFS X we can always consider its associate space X’ consisting of those g € Lg
that f - g € Ly for every f € X with the usual order and the norm ||g|lx» = sup {||f - gz
lgllx» < 1}. Note that X is a BFS in (€2, ;1) and a closed norming subspaces.

Let X be a BFS and w be a weight, that is, positive Lebesgue measurable and a.e. finite
functions on Q. Let X, = {f € Lo: fw € X}. This space is a weighted BFS equipped with the
norm || f||x, = || f w||x. (For more detail and proofs of results about BFS we refer the reader to [9]
and [29].)

Note that the notion of BFS was introduced by W. A. J. Luxemburg in [32].

Let us recall the notion of p-convexity and p-concavity of BFS’s.

Definition 2 [42]. Let X is a BFS. Then X is called p-convex for 1 < p < oo if there exists a
constant M > 0 such that for all fi,..., fn € X

Zm\p erka) if 1<p< oo,

D=

or HSUplgkgn \fk|HX < M maxi<g<p || fxllx if p = oco. Similarly X is called p-concave for 1 <
< p < o if there exists a constant M > 0 such that for all fi,...,f, € X

1 1
n p n p
(Z!ml&) <M (Zlfklp) if 1<p< oo,
k=1 k=1
X

or maxi<p<n | frllxy <M ||supi<p<y [ fil|| i P = oo

Remark 1. Note that the notions of p-convexity, respectively p-concavity are closely related
to the notions of upper p-estimate (strong £,-composition property), respectively lower p-estimate
(strong ¢,,-decomposition property) as can be found in [29].

Now we reduce some examples of p-convex and respectively p-concave BFS. Let R™ be the

n-dimensional Euclidean space of points z = (x1,...,z,) and € be a Lebesgue measurable subset
1/2
in R" and |z| = (Zn . m?) . The Lebesgue measure of a set 2 will be denoted by |©2]. It is well
1=
n/2
known that |B(0,1)| = 7;7, where B(0,1) ={z: z € R"; |z| < 1}.
r(+1)
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Example 1. Let 1 < g < oo and X = L,. Then the space L, is p-convex (p-concave) BFS if
andonly if 1 <p<g<oo(1<g<p<oo)

The proof implies from usual Minkowski inequality in Lebesgue spaces.

Example 2. The following lemma shows that the variable Lebesgue spaces L) (£2) is p-
convex BFS.

Lemma 1 [1]. Let 1 < p < q(x) <G < oo forall y € Qo C R™. Then the inequality

170zt 2 < Coa [ s,

is valid, where

1 1 .
Cpa= (ol + el 42 (5= 2)) (xaila + Irasll)e = esinfala)

azessésupq(fc), Ay ={(z,y) € U xQ2: q(y) =p}, Ao =0 x Qo \ Ay
2

and f: Q1 X Qo — R is any measurable function such that

. D@\
1000 oy = >0 [ (P2 g <16 < oo

Qo
1/p

and |’f(.7y)|’Lp(Ql) = </Q |f(z,y)|P da:)

Analogously, if 1 < g(z) < p < oo, then Ly(,(£2) is p-concave BFS.

Definition 3 [18, 37]. Let 2 C R"™ be a Lebesgue measurable set. A real function ¢: ) x
X [0,00) — [0,00) is called a generalized p-function if it satisfies:

(@) @(x, -) is a p-function for all © € Q, i.e., p(x,-): [0,00) — [0,00) is convex and satisfies
o(z, 0) =0, lim;_,4 0 ¢(x, t) = 0;

(b) ¥: x— @(x, t) is measurable for all t > 0.

If ¢ is a generalized -function on €2, we shortly write p € .

Definition 4 [18, 37]. Let ¢ € ® and be p, defined by the expression

wﬁ%z/@@JﬂwD@ forall | € Lo(€2).

Q

We put L, = {f € Lo(Q): pp(Xof) < oo for some Ao > 0} and

TS :inf{)\ ~0:p, <~’;) < 1}.

The space L, is called Musielak— Orlicz space.
Let w be a weight function on €2, i.e., w is a nonnegative, almost everywhere positive function
on €. In this work we considered the weighted Musielak — Orlicz spaces. We denote

Lpw={f€Lo(Q): fw e Ly}

It is obvious that the norm in this spaces is given by

||f”ng,w = waHLgo
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Remark 2. Let o(x,t) = t9%) in the Definition 4, where 1 < ¢(z) < oo and z € Q. Then we
have the definition of variable exponent weighted Lebesgue spaces L, (€2) (see [18]).

Example 3. The following lemma shows that the Musielak —Orlicz spaces L, is p-convex BFS.

Lemma 2 [6]. Let Qi C R" and Q3 C R™. Let (x,t) € Q1 x [0,00) and ¢ (m,tl/p) € @ for
some 1 < p < oo. Suppose f: Q1 x Qo +— R. Then the inequality

7 eyl <277 G20l 0

is valid.
We note that the Lebesgue spaces with mixed norm, weighted Lorentz spaces and etc. is p-convex
(p-concave) BFS. Now we reduce more general result connected with Minkowski’s integral inequality.
Let X and Y be BFS’s on (Qq, 1) and (Q9,v) respectively. By X[Y] and Y[X] we denote
the spaces with mixed norm and consisting of all functions g € Lo (€21 X Q2, 1 X v) such that
llg(x, -)|ly € X and ||g(+, y)||x € Y. The norms in this spaces is defined as

lgllxyy = Mg, vy, lgllvixy = g€ wlixlly -

Theorem 1 [42]. Let X and Y be BFS’s with the Fatou property. Then the generalized
Minkowski integral inequality

I fllxpy < M fllyix)

holds for all measurable functions f(x,y) if and only if there exists 1 < p < oo such that X is

p-convex and Y is p-concave.
It is known that X [Y'] and Y [X] are BFS’s on €27 x Qg (see [29]).
3. Main results. We consider the multidimensional Hardy type operator and its dual operator

Hf@ = [ty ad Hf@= [ e,
ly| <] ly[>|z|
where f > 0 and x € R™.
Now we prove a two-weight criterion for multidimensional Hardy type operator acting from the
p-concave weighted BFS to weighted Lebesgue spaces.

Theorem 2. Let v(z) and w(x) are weights on R"™. Suppose that X,, be a p-convex weighted
BFS’s for 1 < p < oo on R". Then the inequality

\E Sy, <CIfl, , (1)
holds for every f > 0 and for all o € (0,1) if and only if

o 11—«
P p’
Ala) = sup / W™ dy | (x50 () / [w(y)] ™" dy <oo.  (2)
ly|<t lyl<I'|
KXw
Moreover, if C' > 0 is the best possible constant in (1), then
P Ala) Ala)

<C<M inf

021;121 (1-a) [(1 Zja>p+ a(p1_ 1)]1/1»
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Proof. Sufficiency. Passing to the polar coordinates, we have

o
v

/

S

mo) = | [ @I - /| [ o ag | as |
|z<yl 0 £l=1

where d¢ is the surface element on the unit sphere. Obviously, h(y) = h(|yl|), i.e., h(y) is a radial
function.

Applying Holder’s inequality for L,(R™) spaces and after some standard transformations, we
obtain

1H fllx, = ||w(-) /f(y)dy = ||w(-) /[f(y)h(y)v(y)][h(y)v(y)]_ldy <

lyl <] X lyl <l X

< me IRy (X

Applying Theorem 1, we get

(|y|<-|)HX

Hw(') Fhv X<y () H[hv]*l‘

Ly (<t g, ||

= wahUX{|.|<|ml}(.) H[hv]_1’

Ly (1<) ‘X[Lp] '

Hw Fhoxg < () H h v]_1’

Ly (<) ‘X[Lp] -

=M wah“><{~|<wl}(‘> [ LX)
)

Ly ([-<]])

=M HHw(')fhvxam-}(y) H[’“’rl‘

Lp/(|y<|->”X L

=M Hfhv

w(-) Xqly|<|} (¥) H[h “]*1‘

Lpf<|y|<~|>HX

By switching to polar coordinates and after some calculations, we have

Ly

1/p'

o], ey = | B ay | =

|yl <lz|

1 /
|| /p

o U G B A0 R R

0 §1=1
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|z] , —a /v
N / / o / [v(s€)] 77 d¢ | ds / ()] de [ dr | =
0 [0 lg1=1 l§1=1
12| . -« 1/p'
1 d _ _y
A\ 0 =
-
|z| P
S [ o) e [ds | =
(1= a)v v(s s
0 ¢l=1
1—a
p/
1 / —
= — v(z dz
T 0(2)]
2| <]
Therefore from condition (2), we obtain
hv {|w(: . ho] ™! ' =
e wt) xeuan) el .
B l1—a
' A(o)
1 ! «
= m Fo 1B lIXg >y / [v(z)]" dz < m 1fvllg, -
l2I<||
L Xwd L,
Thus
A(a)
HHfHXw S Mm HfHLp,u forall o€ (0, 1)

Necessity. Let f € Ly, (R"), f > 0, and inequality (1) is valid. We choose the test function as

/

fa) = 2 (gt V"

o l-a

/ —

v () X<ty () + [g(]])]

/

_1
py P

=
’U\‘Q

() X{ja|>t} (%),

where ¢t > 0 is a fixed number and

g(t) = /’vp'(y)dy:/tS”1 /vp’(sn)dn ds.

ly|<t 0 In|=1
. . d / . o .
It is obvious that dii =1 / v P (tn) dn. Again by switching to polar coordinates, from the
Inl=1

right-hand side of inequality (1) we get
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1/p

11z, = / <1f’ ) 9] o7 (2) dar + / g(lal)) 0D o (@) da | =

a
lz|<t || >t

1—alp-1) )17

Il
7N
’E\
~
=)
—~
~
=
Q
-
|
)
+
[S—y
=)
—
~
=
|
2
3
=
|
—
@I
E\
—~
<
S~—
U
<
IN

() sl () ]

After some calculations, from the left-hand side of inequality (1), we have

|Hfly, = / fwdy| = s / Jwdyl| =

lwl<l X, lwl<l X,

Xw

In|=1 Xuw

11—«

11—«

D —

= HX{-|>t} lg(-)] P :
X
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Hence, this implies that

ie.,
p' Ala)

[ = 1)?

Theorem 2 is proved.

For the dual operator, the below stated theorem is proved analogously.

Theorem 3. Let v(x) and w(x) are weights on R". Suppose that X,, be a p-convex weighted
BFSs for 1 < p < oo on R"™. Then the inequality

S <C forall ac (0,1).

1B fllx, < C Il . 3)
holds for every f > 0 and for all v € (0, 1) if and only if

P
o) =suwp | [ W0l | |xpaco)| [ @I a <oe.
ly[>t [yI>1|
Moreover, if C' > 0 is the best possible constant in (3), then
P’ B(v) B()

<C<M inf

e 02yt (1 —7)7”

(o=

Corollary 1. Note that Theorems 2 and 3 in the case X, = Ly v, ¢ (ac,tl/p) € & for some
1 < p < oo, x € R" was proved in [6]. In the case X, = Lq ., 1 < p < q < o0, for

z € (0,00), a = > 1 and s € (1, p) Theorems 2 and 3 was proved in [44]. For x € R" in the

case Xy = Ly(y),w and 1 < p < q(x) < esssup,epn q(7) < 0o Theorems 2 and 3 was proved in
[3] (see also [2]).

Remark 3. Inthe case n = 1, Xy = Ly, 1 < p < g < 00, at z € (0,00), for classical
Lebesgue spaces the various variants of Theorems 2 and 3 were proved in [13, 20, 27, 28, 35, 36,
43] and etc. In particular, in the Lebesgue spaces with variable exponent the boundedness of Hardy
type operator was proved in [16, 17, 19, 21, 26, 33, 34] and etc. For Xy, = Ly(y) 0, 1 < p <
< q(z) < esssup,epq)q(z) < oo and z € [0,1] the two-weighted criterion for one-dimensional
Hardy operator was proved in [26]. Also, other type two-weighted criterion for multidimensional
Hardy type operator in the case Xy = Lg(),w, | <p < q(z) < esssup,epn ¢(7) < oo and z € R"
was proved in [33] (see also [34]). In the papers [12] and [41] the inequalities of modular type for
more general operators was proved. Also, in [14] the Hardy type inequalities with special power-type
weights in Orlicz spaces was proved.
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4. Application. Now we consider the multidimensional geometric mean operator defined as

1
B0, []) / i fy)dy |.

B(0, |=])

Gf(x) =exp

where f > 0 and |B(0, |z|)| = |B(0,1)||z|™. It is obvious that G (f1 - f2) (z) = Gfi(x) - G fa(x).
We formulate a two-weighted criterion on boundedness of multidimensional geometric mean
operator in weighted Musielak — Orlicz spaces.
Theorem 4. Let ¢ (z, tl/p) € & for some 0 < p < co and x € R"™. Suppose that v(x) and w(x)
are weight functions on R". Then the inequality

IGll,, . <CIfl, . @
holds for every f > 0 and for all s € (1,p) if and only if

=L xgas6 () 1
D(s) =sup|B(0,t)| P || —/—"———exp | ———— / In — dy <oo. (%)
() =sup I BOA g0 - pp =P | 1B, 1)

Lo, w
Moreover, if C' > 0 is the best possible constant in (4), then

es/p s—1
sup D(s) <C <2YPinfer D(s).

s>1 1 1/p s>1
(4555
s—1

—1
Proof. Leta = 871, where 1 < s < p. We replace f with f?, v with v#, w with
p p—
p
g

w’(x)
B0, |z])|

0 < B <p,and p with = and ¢(z, t) with ¢ (:B, tl/ﬁ) in (1), (2), we find that for 1 < s < %
1/8|°

Py) dy

IN

I

_ 1
(/) 1B(0, ] -] -
Ly, w(R"

B/p
<0y /ﬁ@mmwy

Rn
Then the inequality
1/ 1/p
FPly) dy <oy’ /[f(y)v(y)]p dy (6)

@, w

-
ECAR]

holds if and only if
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s—1 pgﬁs p
P
_sp. X5 0) o
— s | [ || [ [ ) ay -
i<t 1B, |- IP=P= 1),
Lo, w
= B(s, B) < 0
and
»/ B/p
= 8\
p—s 8 Blp P~ Pops
sup BF(s,8) < Cg <2 inf < B" (s,0).
1<s<p/B D p/B 1 (s, 5) A 1<s<p/B\ P — 583 (5,8)
_l’_
p—sp s—1
(7
By the L’Hospital rule, we get
p—Bs
Bp
1 _Bp_
im | [ ) P Pdy| =

B—+0 £
B0, [z])[P=F5 |2

1 -
TN PR ( [, o dy)

= lim exp =

B—+0 ppB
] ° = F
= lim e —— In ) P= +
Jimexp (<2 | [ o) 7 dy
lyl<|z|

p \? A1
+(p_68) <p—/3> /|y|<x|[v(y)] Ty Y _

Bp
v(y)] P8 d
p /M[ ()] 7B dy

1
In ——dy
S 1 /|y|<|x U(y)

=exp |- In + =
p

[B(0, |z])| [ B(0, [])]
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1 1
= ¢ex —_— In——d
B0, [«))[+» | B0, [])] / w(y) Y

B(0,|z])
Therefore
. =11 g0 () 1 1
i, B (5. 6) = sup|BODL P e TR ™ | B0, D) / R =
B0, Lo
= D(s) < o0
and
s/p
€ : 1/ 1/p : (s—1)/p
D < 1 <92 f D(s).
w (s ] >1/p () i, G =20 gl em D) ®
es +
s—1
Further, we have
1/8
T / Paydy| =ep| ot /lf()d — Gf(x)
=0 | [B(0, [2])] YL TP B, [ef)] A B
B(0, |x) B(0, |x)

From (7) it follows that limg_, o Cg = 1, and according to (5) and (8) limg_, ¢ C/‘;/ F =0 <.
Therefore the inequality (8) is valid. Moreover, from (6) for 5 — +0 we obtain that

HGfHLq(‘),w(R") < c ||f||LPyv(Rn)

and by (8)

es/p

. < O < 9l/p ; (s—=1)/p
21>111) < n >1/p D(s) <C <2 ;I;iie D(s).
e’ +
s—1

Theorem 4 is proved.

Remark 4. Let p(z,t) = t? and n = 1. Note that the simplest case of the condition ¢ (y, Ct) <
< C1Wp(y,t) with v = w = 1 and p = ¢ = 1 was considered in [20] and in [25]. Later this
inequality was generalized in various ways by many authors in [15, 22-24, 31, 38 -40, 44] and etc.

Corollary 2. Let p(x,t) =t9,0 < p < q < 0o and f be a positive function on R™. Then

1/q 1/p
[ieraprta) <o | [ rarr ©)
R™ R™
holds with a finite constant C' if and only if
o= T
q n . p
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and the best constant C' has the following condition:

s/p (s — 1)1/p—1/q 1/q=1/p on/n+1/q
i/?eu/nQ ’B(O, 1)’1/q71/p sup € (5 1) <0< ‘B(O, 1)‘ € )
ngq s>1 (s — 1)es + 1]7 vn

Remark 5. Let o(x,t) = t? and ¢ = p. Then inequality (9) is sharp with the constant

el/n*+1/p
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