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THE STONE - CECH COMPACTIFICATION OF GROUPOIDS *
KOMIAKTHU®IKAIISI CTOYHA -YEXA JJISI TPYIIOIIIB

Let G be a discrete groupoid and consider the Stone — Cech compactification SG of Gi. We extend the operation on the set of
composable elements G of G to the operation “x” on a subset (BG’)(2> of BG x BG such that the triple (8G, (BG)@), *)
is a compact right topological semigroupoid.

Hexaii G — nuckpetnuii rpynoia. Posnisaemo xommnaktudikaiiiro Ctoyna—Yexa SG rpymoiga G. Posmupumo omnepartito

[T3RL)

Ha muoxuni G enementin G, 0 KOMIIOHYIOTBCS, JIO Omepaiii “*” Ha IMiAMHOXHHI (/BG)(Q) MHoxuHH SG X BG Taxoi,
o Tpiiika (SG, (ﬂG)(Q), *) € KOMIIAKTHUM TOIOJIOTIYHMM HAIliBIPYIIOiIOM.

1. Introduction. A compactification of a topological space X is a compact space K together with
an embedding e: X — K with e¢(X) dense in K. We usually identify X with (X)) and consider
X as a subspace of K. There exists a very special type of compactification of X in which X is
embedded in such a way that every bounded, real-valued (complex-valued) continuous function on
X will extend continuously to the compactification. Such a compactification of X is called the
Stone — Cech compactification and denoted by X

As known, the Stone—Cech compactification SG of an infinite discrete group G can be turned
into a (compact) semigroup by an operation, extended from G [1, 4]. This operation can be taken
in many ways depending on how we regard SG. We can regard SG as the maximal ideal space of
B(G), the C*-algebra of all bounded complex-valued functions on G. In this case, the product of two
elements 0,7 € SG, is described by the following steps:

Ly(f)(h) = f(gh),  Tys(9) =n(Lyf), Oxn(f)=0(T,yz).

Let g € G. By using the universal property of 3G (see S1 below), one can extend the continuous map
h+— gh: G — (G to a continuous map 1 — g *n: SG — BG. Then the mappings g — g * 7n:
G — G are in turn continuously extended to 3G leading to a binary operation in SG. This operation
in SG is associative, so SG is a compact right topological semigroup, that is, the map 6 +— 0 * 7:
BG — BG is continuous for every n € SG. More generally, for any topological group, there are
many compactifications. Each compactification can be described as the maximal ideal space of a
function algebra.

In this paper, we deal with groupoids instead of groups. Unlike groups, in a groupoid G, the
product is not defined for each two elements of GG. But, the product defined on a subset of G x G,
the set of composable pairs. The product on composable elements is associative (see Definition 2.1
below). We will show that, like the group case, the operation of any groupoid G can be extend to
BG such that this operation is still associative.

* This paper was partially supported by a grant from IPM (No. 89470014).
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THE STONE - CECH COMPACTIFICATION OF GROUPOIDS 457

2. Preliminaries. The Stone—Cech compactification. For the convenience of the reader we
repeat the relevant material about 3X, the Stone—Cech compactification of X, from [3, 8] without
proofs, thus making our exposition self-contained.

Let X be a topological space. Then Cp(X) stands for the algebra of all bounded continuous
complex-valued functions on the topological space X. Also, a subset £ of X is called C*-embedded
if every function in C(E) can be extended to a function in Cp(X). A subset E is called zero-set if
there exists a continuous function f in Cy(X) such that £ = {z € X : f(x) = 0}. Trivially, every
subset I of a discrete space X is C*-embedded and also is zero-set. Every (completely regular)
space X has a compactification 5X, with the following properties:

S1. (Stone) Every continuous mapping 7" from X into any compact space Y has a continuous
extension 7' from 56X into Y.

S2. (Stone—Cech) Every function f in Cy,(X) has an extension to a function f in C'(8X).

S3. (Cech) Any two disjoint zero-sets in X have disjoint closures in 3X.

S4. For any two zero-sets Z; and Z5 in X,

Z1 N Zy :Zﬂz

S5. A subset S of X is C*-embedded in X if and only if 35 = S.

S6. If S is open-and-closed in X, then S is open-and-closed in 3X.
Let £ be a subset of a discrete space X. Then, by applying SI and S5, we can deduce that every
map f from E into compact space Y can be extended to a continuous map f from E = BE into
Y (S1, S5).

Let X be a discrete space. It is customary to write B(X) rather than C3(X). So, B(X) by
pointwise operations and the norm

|f[lx = sup [f(z)]
zeX

is a commutative unital C*-algebra. Since B(X) is isometrically isomorphism to C'(8X) (by S2),
we can identify X with the maximal ideal space of B(X). So, the topology of 53X coincides with
the Gelfand topology. Thus a net {6;};c; converges to 6 in X if and only if for every f € B(X)
the net {0;(f) }ier converges to 6(f).

Groupoids. Here is some elementary definitions in groupoid literatures. For more details we
refer the reader to [5—7].

Definition 2.1. A4 groupoid is a set G endowed with a product map (g, h) — gh : G?® — G
where G®) is a subset of G x G called the set of composable pairs and an inverse map g — g~ '
G — G such that the following relation are satisfied:

M H =g

() if (g,h) € G? and (h,k) € G, then (gh, k), (g, hk) € G® and we have

(gh)k = g(hk);

3) (97, 9) € GP and if (9, h) € G, then g~ (gh) = h;

@ (9,97 € GP and if (h, g) € GP, then (hg)g~" = h.

The unit space G is the subset of elements gg~' where ¢ ranges over G. The rang map 7 :
G — G and the source map d: G — GV is defined by r(g) = gg~! and d(g) = g~ 'g. The pair
(g, h) belongs to the set G? if and only if d(g) = r(h). For each u € G, the subsets G, and G
are given by Gy, = d~'({u}), G* = r~1({u}).
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458 F. BEHROUZI

Definition 2.2. A4 ropological groupoid consists of a groupoid G and a topology compatible with
the groupoid structure:

D) (z,y) — xy: G® — G is continuous where G has the induced topology from G x G,

2) g— g ': G — G is continuous.

If G is a topological groupoid, then the maps r, d are continuous. In addition, if G° is Hausdorff
in the relative topology, then G(®) is closed in G' x G.

3. Discrete groupoids. Let G be a groupoid and g € G. For any f € B(G), we define the left
g-translation and the right g-translation of f, respectively, by

Lgf(l‘) _ {f(g:l:), UAS Gd(g)a {f(ﬂfg), T € G'r’(g)v

Ryf(x) =
07 T ¢ Gd(g)’ gf( ) 07 T ¢ GT(Q)'

Since f is bounded, so are L, f and R, f. Therefore, for any 6 € G and f € B(G), we can consider
two new functions
ngiG—)(C, ngiG—)C

given by
To.f(g) =0(Lgf), Sos(g) =0(Ryf).

It is clear that Ty ; and Sp ; are bounded. Next, we collect some elementary properties of these
functions.

Lemma 3.1. Let f be a bounded function on a groupoid G. Then for any g,h € G and any
0 € BG:

() If (g, h) € G, then Ly(Lyf) = Lynf. Also, if (g, h) ¢ G, then Ly(Lyf) = 0.

(2) Ly(Th,f) = Ty,1,r and Ry(Sp,) = So,r, -

Proof. (1) Let z € G and (g,h) € G?). Suppose that z ¢ G = G49"), By the definition,
Li(Lyf)(z) =0 = Ly f(z). Let & € GIM = GUIM | Accordingly,

Li(Lgf)(x) = Lo f(hx) = f(ghx) = Lgnf(x).

Therefore, Lynf = Lp(Lyf). Now, suppose that (g,h) ¢ G?). In this case, if ¢ G¥ ") then
Li(Lyf)(z) = 0. If 2 € G4 then Ly, (L,f)(x) = Lyf(hx). Since g ¢ G4") = G4h*)  we have
Lgyf(hx) = 0.

(2) We only prove the first identity, the proof of the second one is similar. Let & be any element
in G with h ¢ G%9). Then Ly(Tp,s)(h) = 0. On the other hand, Ty 1, r(h) = 0(Ly,(Lyf)) = 0. Now,
suppose that h € G¥9). So,

LTy p(h) =Ty s(gh) = 0(Lgnf) = O(Ln(Lyf)) = Tyr,r(h).

Lemma 3.1 is proved.
According to GG, we define the set of composable elements of 3G by

(BG)® = |J GuxG"= | BG. x BG".

ueGO ueGO

It is trivial that G(® C (BG)?). In the following result, we extend the operation of G(?) to
(BG)@.
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Theorem 3.1. Let G be a discrete groupoid. There is a unique operation * on (ﬁG)(Q) satisfying
the following conditions:

(1) For every (g,h) € G®, gx h = gh.

(2) For every u € G° and g € G, the map 0+ g xn: G* — BG is continuous.

(3) For every u € G° and n € G¥, the map 0 — 0 xn: G, — BG is continuous.

Proof. Letu € GY. Givenany g € G, define 4 : G* — G C G by (4(x) = gx. By S1, there
is a continuous map @ : BG* = G* — BG such that ﬁg‘|gu = ly. Now, let n € G and define Tyt
Gu — BG by r(g9) = l@(n). Then there is a continuous map ﬁ;: BGy = G, — BG such that
¥, = For any (6,n) € Gy x G¥, set

0xn= 7:7,;(6)
For (1), suppose that (g, h) € G®@) . Then there is a u € GO such that (g,h) € Gy x G". Therefore,
g h=rji(g) = rii(g) = (3(h) = £;(h) = gh.

The map n + g *n: G¥ — G is just the map@ and the map 0 — 0 x n: G, — G, is just the
map ﬁ; and the continuity of these maps follow from the continuity of 7:7,; and !E;.

Theorem 3.1 is proved.

Theorem 3.2. Suppose that G is a discrete groupoid and (0,1) € (6G)?).

(1) If {gi}ier and {h;}jcy are nets in G such that lim; g; = 6 and lim; h; = n, then 0 x n =
= hml llm] gihj-

(2) 0 xn(f) =0(Ty.z)-

Proof. Since (0,1) € (BG)?), there is a u € GO such that (6,7) € G, x G*. As G, and G*
are open, we can suppose that {g; };cs is a net in G,, and {h;};c; is a net in G*. We have

0% = r3(0) = limri(g;) = lim r7t(g;) = lim £2, (1) =

= lim li;n[;f: (hy) = limlim £, (h;) = limlim gih;.
For (2), suppose that {g;}ics is a net in G, and {h;};c; is a net in G* such that lim; g; = 6 and
lim; h; = n. Then for any f in B(G), we have

0xn(f) = lignlijm f(gihj) = Lg, f(hj) =

= limn(Lg, f) = im T, ;(g:) = 0(T5,5)-

Theorem 3.2 is proved.

One can consider the inversion map defined by ¢ — ¢~': G — G. By S2, this map has a
continuous extension inv: BG —s BG. We denote again the 1/7%(0) by 6~'. By the continuity, if
{gi}ier is any net in G converging to 6 in G, then {g; '}ic; converges to 6. Consequently,
(0~1)"!' = @ and if € G, then 6~! € G¥. Let f € B(G) and define the transformation f on
G by f(g) = f(g~'). This relation can be extended to BG, that is, for any # € BG, we have
0=1(f) = 0(f). If G is a groupoid, then (g,¢g~ 1) € G for all g € G. But this property does not
hold for the Stone - Cech compactification SG, unless G° is finite.
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Theorem 3.3. Let G be a discrete groupoid. For every 6 € 5G, (0,60~1) € (BG)® if and only
if GO is finite.

Proof. Assume that (0,071) € (8G)® for all § € BG. Then, it follows that 3G = (J, .o Gu-
Since G, is open in 3G, by compactness of SG, there is uy, us...,u, € GO such that 3G =
= Up—; Gu,- Thus G° = {uy,ua,...,u,}. Conversely, suppose that G is finite. Then, for every
6 € BG, there exists u € G° with @ € G,. Let {g;}sc be a net in G,, converging to 6. So, {g{l}ig
is a net in G* which converges to . Thus (6,6~ 1) € (6G)?.

Theorem 3.3 is proved.

Lemma 3.2. Let G be a discrete groupoid, (6,n) € (3G)?) and let v € G°. Then

() n € Gy ifand only if 0 xn € Gy;

(2) 0 € GV ifand only if § xn € GV.

Proof. (1) Let u be in G° such that (6, 7) € G, x G*. Then there exist nets {g; };er and {h;};e s,
respectively, in Gy, and G such that g; —» 6 and h; — 7. Since G,, is open set 3G containing 7,
we can assume that {h,}c s is also a net in G,. By the Theorem 3.2, 6 * = lim, lim; g;h;. Since
for any i and j, g;h; € G, by Theorem 3.2, we deduce that § x 1 = lim; lim; g;h; € G,. Conversely,
suppose that 6 x n € GY. Let {g;}icr and {h;};c; are net respectively, in G,, and G* such that
gi — 0 and h; —> 7. Since G is open and containing 6 * 1, we can assume that g;h; € G,. Thus
h; € G, and hence 0 € G".

(2) The proof is similar to (1).

Lemma 3.2 is proved.

Definition 3.1. A semigroupoid is a triple (A, A®) %) such that A is a set, A?) is a subset of
A x A, and

«: A 5 A

is an operation which is associative in the following sense: if f,g,h € A are such that either
Q) (f,9) € A® and (g,h) € AP, or
(i) (f,9) € A® and (f*g,h) € A®, or
(i) (g,h) € A® and (f,g*h) € A®),

then all (f,q), (g, h), (f * g, h) and (f,g* h) lie in A® | and

(fxg)xh=[x(gxh).
Moreover, for f € A, we will set
N={geh:(f,g9)e AP}, A;r={geA:(gf) AP}

Let (A, A %) and (A, A®,«') be semigroupoids. A map T': A — A’ is called homomorphism
if (f,9) € A®), then (T(f), T(g)) € A'® and T(f = g) = T(f) ¥ T(g).

Definition 3.2. Let (A, A, x) be a semigroupoid and a topological space. Then

(i) A is called left topological semigroupoid if for every f € A the map g — f*g: Al — Ais
continuous.

(ii) A is called right topological semigroupoid if for every f € A the map g — g f: Ay — A
Is continuous.

Let A be a right topological semigroupoid. The topological center of A is the set of all f € A
such that the map g — f x g: A9 — A is continuous.

Theorem 3.4. If G is discrete groupoid, then (3G, (3G)®), %) is a compact right topological
semigroupoid. Moreover, the topological center of BG contains G.
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Proof. Suppose that 6,n,~ are in SG. By Lemma 3.2, each one of conditions (i)-(iii) of
Definition 3.1 implies that (f,g), (g, h), (f * g,h) and (f, g = h) lie in A®). Therefore, it is enough
to prove that if (8,7) € (8G)? and (n,v) € (BG)?), then (6 * n) * v = 0 % (n * ). For, first we
show the following identity:

To,1, ; = Toun,f-

Suppose that g € G. Then

Ty, ;(9) = 0(Lg(T ) = O(TyL,r) = 0% n(Lgf) = Thun,£(9)-

Now, for any f € B(G), we have

0% (nx)(f) = 0(Tpuy.p) = 0(Tyz, ;) = 05 (T, ) = (0% ) * ()

The above arguments show that SG is a semigroupoid. Also, by the Theorem 3.1, SG is a compact
right topological semigroupoid such that the topological center of SG contains G.

Theorem 3.4 is proved.

Theorem 3.5. Let G be a discrete groupoid and let (K, K @) %) be a compact right topological
semigroupoid which is such that the following properties are satisfied:

(1) there is a morphism e: G — K such that e(G) is dense in K

(2) the topological center of K contains e(G);

(3) Uyeqo €(Gu) x e(G) € K@),
Then there exists a continuous surjective homomorphism T : G — K such that for each g € G,
T(g) = e(9)-

Proof. Since K is compact topological space, there exists a continuous surjective map 71':
BG — K such that the following diagram is commutative:

GlﬁG
|

K.

Let (6,7) € (BG)?). By the definition, there exist u € G® and a net {g;}ics in G, and a net {h;};c;
in G* such that g; — 0 and h; — 7). Therefore, e(g;) — T'(#) and e(h;) — T'(n), and so the
property (3) yields that (T'(8), T(n)) € K®. Since K is right topological semigroupoid and the
topological center of K contains e((G), we have

T(0 % n) = T(lim lim g;h;) = lim lim T(g;ih;) =
7 J ? J

= limlim e(g;h;) = limlim e(g;) * e(h;) =
R i

= limlim T'(g;) x T'(h;) = T(0) » T'(n).
i
Theorem 3.5 is proved.
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We can start the definition of the product on ( B G)? by extending the h-right translation map Ty
x = xh (from G, to G) for h € G" to the map 7}, : G, — BG . Then consider § € G, and define
the map 0 : G* — G by (4 (h) = 7:}1‘(9) We extend ¢ to G, and denote it by /. Now, define
00 = (3(n).

So, we have the following results:
(1) For every g, h € G, g0h = gh.
(2) For every u € GV and 6 € G,,, the map 7 — 6075 : G* — BG is continuous.
(3) For every u € G° and h € G, the map 6 — 00h: G,, — BG is continuous.
(4) For every u € G® and (0,7) € G, x G

0 0n = limlim g;h;,
J i
where {g;}icr is a net in G,, and {h;};cs is a net in G* such that g; — 6 and h; — 7.
(5) Forevery u € G°, (0,1) € G, x G¥ and f € B(G):
0 0n(f) = n(Se,r)-

(6) (BG, (BG)?), D) is a compact left topological semigroupoid.
Lemma 3.3. Suppose that G is a groupoid, g € G and 6 € BG. Then

(D) Lof = Ry-1 f,
(2) Taf - S@—lJ‘.
Proof. (1) Assume that z € G%9). Then 2! € G (g-1) and we have
Lof(x) = f(9z) = f(a™"g™") = Rya f(2™") = Ryr f(2).
Also, if z ¢ G¥9) | then = ¢ G, (41, and so
Lyf(z) =0=Ry1f(z7") = Ry14(x).
(2) Let « be any element in G. Then

T, j(z) = 0(Laf) = O0(R,— ) = 07 (R f) =

= 59717]0(1771) = 59717]0({13).

Lemma 3.3 is proved.
Theorem 3.6. Let G be a discrete groupoid and (6,1) € (BG)?). Then (n=1,0~") € (BG)?

and we have
n k0t =(00on) "t

Proof. Let u € G° be such that § € G, and € G¥. Then ! € G, and §~! € G“. Thus
(7,071 € (BG)@, and so

07N () =0 (T ) = Ty ) = (S, ) =
=00(f) = (OO0 (f).
Theorem 3.6 is proved.
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Example 3.1. An interesting example of a groupoid is an equivalence relation R on a set X.
Here, R® = {((g,h), (h,k)): (g,h),(h,k) € R} and the product map and inversion map are
given by (g,h)(h,k) = (g,k) and (g,h)~ = (h,g). So, the set of units is {(g,9): g € X}. Also,
G99 = {g} x [g] and G g,9) = l9] X {g}- Here [g] denotes the equivalence class of g. In this case,
the set of composable elements is

(B&® = | o] x {g} x {g} x 4.

geG

To specify the product, let us first determine [g] x {g} and {g} x [g]. Consider the bijection II; :
[g] x {g} —> [g] defined by II;((h,g)) = h. Thus, there exists homeomorphism II; : 3([g] x
x {g}) — P[g] which is an extension of II;. If we repeat the argument for {g} x [¢g] we obtain the
homeomorphism Ils : S({g} X [g]) — B[g] which is an extension of the bijection I : {9} x[9] —
— [g] defined by IIs((g,h)) = h. Let f € B(G) and g € X and define f;: [g) — C by
fq(h) = f(g,h). Also, for 6 € G define

U@jfiX—)(C

by Us ¢ (g9) = 6(fy)- Let {(gi, g) }icr and {(g, hj) } jes be nets, respectively, in [g] x {g} and {g} x [g]
such that (g;,g9) — 6’ and (g, hj) — 1" in BG. Since [g] x {g} and {g} x [g] are homeomorphic

to S.X, we can assume that there exist § and 7 in X such that g; — 6 and h; — 7 and I'Tl(@’ )=16
and Il3(n’) = n. For any f € B(G), we have

0" «n'(f) = lim lijm f((91,9)(g, j)) = lim 1i]m f(gi,hj) =
= limlim fy, (h;) = limn(fy,) =
7 J 7

= limUy,£(gi) = 0(Un,z)-

Note that, we can deduce that the composable elements (BG)(2) is homeomorphic to the disjoint
union of S[g] x Bg] s, that is,

| | Blg] x Blal-

geX

Example 3.2. Another example of a groupoid is the transformation group groupoid. Suppose that
the group S acts on a set U on the right. The image of the point « by the transformation s is denoted
u.s. We let G be U x S and define the following groupoid structure: (u, s) and (v, t) are composable
if and if v = w.s, (u,s)(u.s,t) = (u,st), and (u,s)™' = (u.s,s71). Then r(u,s) = (u,e) and
d(u,s) = (u.s,e). The map (u,e) — u identifies G° with U. It is easy to check that

GU={u} xS, Gu={(us?ts):seS}

By the same argument mentioned in Example 3.1, we can identify G" with .S and obtain a home-
omorphism between 3G" and 3S. Also, the map (u.s~!,s) — s is a bijection from G, onto S.
So, this map has a continuous extension from SG, onto 5S. Thus, the set composable elements is
homeomorphic to
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o

| |85 x Bs.

uelU
Let (¢/,7') € Gy, x G*. Let {(u.s; ', s;) }ier and {(u, t;)}jc be nets in BG such that (u.s; ', s;) —
— 0" and (u, t;) —> 1. Therefore, there exist ) and ¢ in 55 such that s; — 6 and t; — 7. For
any f € B(G), one has

0«1/ (f) = limlim(u.s; ', 5;) (u, t;) =
i

= limlim(u, s;t;)(f) =
i

= lim lim fy(s;t;) = 0 * n(fu),
i

where f, is a map from S into C defined by f,,(s) = f(u, s).

4. Topological groupoids. Let G be a topological groupoid such that for every u € GV, G* is
C*-embedded. Let ZZ‘ be the extension of the map /g mentioned in the previous section. Then for
each fixed n € G%, we may consider the mapping ry from Gy, into BG. Defined by 1y (g) = ﬁ;f(g).
But unlike the discrete case, nothing guarantees that the mapping r;; is continuous for every 1 € Gu.
Therefore we might not able to extend these mappings to SG leading to a continuous operation on
BG.

We can start this process by extending the mappings 7} : G, — BG to mappings 7:};‘: Gy, —
— BG, where h € G“. If for every 6 € G, we define I : G* — BG by l4(h) = 7:}}(0), again
nothing guarantees the continuity of the mappings /g for each 6 € G,,.

Let G be a topological groupoid. As the previous section, we can define left g-translation L, f
and right g-translation. But these map are not continuous in general. As we know we can regard 5G
as the maximal ideal space of Cy(G). It seems that we can not define the extended operation on SG
in the term of elements of the maximal ideal space of C},(G). Because the mapping g — (L, f) is
not well-defined.

Lemma 4.1. Suppose that u € G, n € G and f € Cy(GY). Let Fy, Fy € Cy(G)such that
Fi|gu = Fy|ge = f. Then n(F1) = n(F?).

Letu € G, g € Gyandleth € G For f € Cy(G) define Lyf: G — Cby Ly f(z) = f(g).
Also, define R} f: G, — C by R} f(z) = f(zh).

Definition 4.1. Letu € G°, n € G¥, 0 € Gy. For f € Cy(G), set

where Eg/f is an extension of Ly f in Cy(G). By Lemma 4.1, 7;7“f is well-defined. Also defined
SipiGY— C, Sip(h)=0(RLS),

where f@:f is an extension of @ in Cy(G).

Theorem 4.1. Let G be a topological groupoid and let f € Cy(G). Then the followings are
equivalent:

(1) For every u € G° and for every 0 € G, I is continuous.

(2) For every u € G and for every n € G, Ty IS continuous.
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(3) For every u € GV, for every n € Gy, and every f € Cy(G), T f is continuous.

(4) For every u € GV, for every 0 € G, and every f € Cy(Q), Sy ; is continuous.

Proof. First, we prove the following identities, for any u € G°, g € Gy, h € G* and f € B(G),
are satisfied

flra(9) = Fa(g™), (4.1)
f(ry(9) = T, (9), (4.2)
fg(h)) = Sg ¢ (h). (4.3)

Let w € G and n € G*". Let {h;}jecs be a net in G* such that h; — 7. So, n~' € G, and
hj — n~L. For (4.1),

F(r(9)) = (I n) = lim f(05(1;)) = lim f(gh;) =

= lim Fhitg™h) = lim f(rj1 (1)) =

o~ — ~

= flreamn™h) = fl-a(g7h).

On the other hand
Foi(g) = flam) = lim f(g(hj)) = fim flgh;) =

= lim £ f(h;) = n(Lef) = T4(g).

Similarly, one can prove (4.3). The identity (4.1) implies that (1) < (2) and the identity (4.2) implies
that (2) < (3) and the identity (4.3) implies that (1) < (4) .

Theorem 4.1 is proved.
Example 4.1. Let G be the groupoid [0, 00) x [0, 00). Consider the sequence ((1,7))2° . So
there exist a subnet ((1,n4));2; and € SG such that (1,7;) — 7 in SG. Let f be a function in

1
. Define F':
n—+1

1
Cy([0,00)) such that f(n) =1 for every n and f(t) =0 if n + - <t<n4+1-—

1 1
G — Cby F(z,y) = f(z + y). Then for every m € N, T, p (m’ 1> = limy, f <nk + m> =0.

But 7, r(0,1) = f(ni) = 1. Therefore, 7, r is not continuous.
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