UDC 512.5

F. Behrouzi (Alzahra Univ. and School Math., Inst. Res. Fundam. Sci. (IPM), Tehran, Iran)

THE STONE – ČECH COMPACTIFICATION OF GROUPOIDS* КОМПАКТИФІКАЦІЯ СТОУНА – ЧЕХА ДЛЯ ГРУПОЇДІВ

Let G be a discrete groupoid and consider the Stone – Čech compactification βG of G. We extend the operation on the set of composable elements $G^{(2)}$ of G to the operation "*" on a subset $(\beta G)^{(2)}$ of $\beta G \times \beta G$ such that the triple $(\beta G, (\beta G)^{(2)}, *)$ is a compact right topological semigroupoid.

Нехай G – дискретний групоїд. Розглянемо компактифікацію Стоуна–Чеха βG групоїда G. Розширимо операцію на множині $G^{(2)}$ елементів G, що компонуються, до операції "*" на підмножині $(\beta G)^{(2)}$ множини $\beta G \times \beta G$ такої, що трійка $(\beta G, (\beta G)^{(2)}, *)$ є компактним топологічним напівгрупоїдом.

1. Introduction. A compactification of a topological space X is a compact space K together with an embedding $e: X \longrightarrow K$ with e(X) dense in K. We usually identify X with e(X) and consider X as a subspace of K. There exists a very special type of compactification of X in which X is embedded in such a way that every bounded, real-valued (complex-valued) continuous function on X will extend continuously to the compactification. Such a compactification of X is called the Stone – Čech compactification and denoted by βX .

As known, the Stone-Čech compactification βG of an infinite discrete group G can be turned into a (compact) semigroup by an operation, extended from G [1, 4]. This operation can be taken in many ways depending on how we regard βG . We can regard βG as the maximal ideal space of $\mathcal{B}(G)$, the C*-algebra of all bounded complex-valued functions on G. In this case, the product of two elements $\theta, \eta \in \beta G$, is described by the following steps:

$$L_g(f)(h) = f(gh), \quad T_{\eta,f}(g) = \eta(L_g f), \quad \theta * \eta(f) = \theta(T_{\eta,f}).$$

Let $g \in G$. By using the universal property of βG (see S1 below), one can extend the continuous map $h \mapsto gh: G \longrightarrow \beta G$ to a continuous map $\eta \mapsto g * \eta : \beta G \longrightarrow \beta G$. Then the mappings $g \mapsto g * \eta : G \longrightarrow \beta G$ are in turn continuously extended to βG leading to a binary operation in βG . This operation in βG is associative, so βG is a compact right topological semigroup, that is, the map $\theta \mapsto \theta * \eta : \beta G \longrightarrow \beta G$ is continuous for every $\eta \in \beta G$. More generally, for any topological group, there are many compactifications. Each compactification can be described as the maximal ideal space of a function algebra.

In this paper, we deal with groupoids instead of groups. Unlike groups, in a groupoid G, the product is not defined for each two elements of G. But, the product defined on a subset of $G \times G$, the set of composable pairs. The product on composable elements is associative (see Definition 2.1 below). We will show that, like the group case, the operation of any groupoid G can be extend to βG such that this operation is still associative.

^{*} This paper was partially supported by a grant from IPM (No. 89470014).

THE STONE - ČECH COMPACTIFICATION OF GROUPOIDS

2. Preliminaries. The Stone-Čech compactification. For the convenience of the reader we repeat the relevant material about βX , the Stone-Čech compactification of X, from [3, 8] without proofs, thus making our exposition self-contained.

Let X be a topological space. Then $C_b(X)$ stands for the algebra of all bounded continuous complex-valued functions on the topological space X. Also, a subset E of X is called C^{*}-embedded if every function in $C_b(E)$ can be extended to a function in $C_b(X)$. A subset E is called zero-set if there exists a continuous function f in $C_b(X)$ such that $E = \{x \in X : f(x) = 0\}$. Trivially, every subset E of a discrete space X is C^{*}-embedded and also is zero-set. Every (completely regular) space X has a compactification βX , with the following properties:

S1. (Stone) Every continuous mapping T from X into any compact space Y has a continuous extension \tilde{T} from βX into Y.

S2. (Stone – Čech) Every function f in $C_b(X)$ has an extension to a function \tilde{f} in $C(\beta X)$.

S3. (Čech) Any two disjoint zero-sets in X have disjoint closures in βX .

S4. For any two zero-sets Z_1 and Z_2 in X,

$$\overline{Z_1 \cap Z_2} = \overline{Z_1} \cap \overline{Z_2}.$$

S5. A subset S of X is C*-embedded in X if and only if $\beta S = \overline{S}$.

S6. If S is open-and-closed in X, then \overline{S} is open-and-closed in βX .

Let E be a subset of a discrete space X. Then, by applying S1 and S5, we can deduce that every map f from E into compact space Y can be extended to a continuous map \tilde{f} from $\tilde{E} = \beta E$ into Y(S1, S5).

Let X be a discrete space. It is customary to write $\mathcal{B}(X)$ rather than $C_b(X)$. So, $\mathcal{B}(X)$ by pointwise operations and the norm

$$||f||_X = \sup_{x \in X} |f(x)|$$

is a commutative unital C*-algebra. Since $\mathcal{B}(X)$ is isometrically isomorphism to $C(\beta X)$ (by S2), we can identify βX with the maximal ideal space of $\mathcal{B}(X)$. So, the topology of βX coincides with the Gelfand topology. Thus a net $\{\theta_i\}_{i \in I}$ converges to θ in βX if and only if for every $f \in \mathcal{B}(X)$ the net $\{\theta_i(f)\}_{i \in I}$ converges to $\theta(f)$.

Groupoids. Here is some elementary definitions in groupoid literatures. For more details we refer the reader to [5-7].

Definition 2.1. A groupoid is a set G endowed with a product map $(g,h) \mapsto gh : G^{(2)} \longrightarrow G$ where $G^{(2)}$ is a subset of $G \times G$ called the set of composable pairs and an inverse map $g \mapsto g^{-1}$: $G \to G$ such that the following relation are satisfied:

(1)
$$(g^{-1})^{-1} = g;$$

(2) if $(g,h) \in G^{(2)}$ and $(h,k) \in G^{(2)}$, then $(gh,k), (g,hk) \in G^{(2)}$ and we have

$$(gh)k = g(hk);$$

(3) $(g^{-1},g) \in G^{(2)}$ and if $(g,h) \in G^{(2)}$, then $g^{-1}(gh) = h$;

(4) $(g, g^{-1}) \in G^{(2)}$ and if $(h, g) \in G^{(2)}$, then $(hg)g^{-1} = h$.

The unit space G^0 is the subset of elements gg^{-1} where g ranges over G. The rang map $r: G \longrightarrow G^0$ and the source map $d: G \longrightarrow G^0$ is defined by $r(g) = gg^{-1}$ and $d(g) = g^{-1}g$. The pair (g, h) belongs to the set $G^{(2)}$ if and only if d(g) = r(h). For each $u \in G^0$, the subsets G_u and G^u are given by $G_u = d^{-1}(\{u\}), G^u = r^{-1}(\{u\})$.

Definition 2.2. A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure:

(1) $(x, y) \mapsto xy : G^{(2)} \longrightarrow G$ is continuous where $G^{(2)}$ has the induced topology from $G \times G$; (2) $q \mapsto q^{-1} : G \longrightarrow G$ is continuous.

If G is a topological groupoid, then the maps r, d are continuous. In addition, if G^0 is Hausdorff in the relative topology, then $G^{(2)}$ is closed in $G \times G$.

3. Discrete groupoids. Let G be a groupoid and $g \in G$. For any $f \in \mathcal{B}(G)$, we define the left g-translation and the right g-translation of f, respectively, by

$$L_g f(x) = \begin{cases} f(gx), & x \in G^{d(g)}, \\ 0, & x \notin G^{d(g)}, \end{cases} \quad R_g f(x) = \begin{cases} f(xg), & x \in G_{r(g)}, \\ 0, & x \notin G_{r(g)}. \end{cases}$$

Since f is bounded, so are $L_g f$ and $R_g f$. Therefore, for any $\theta \in \beta G$ and $f \in \mathcal{B}(G)$, we can consider two new functions

$$T_{\theta,f}: G \longrightarrow \mathbb{C}, \quad S_{\theta,f}: G \longrightarrow \mathbb{C}$$

given by

$$T_{\theta,f}(g) = \theta(L_q f), \quad S_{\theta,f}(g) = \theta(R_q f).$$

It is clear that $T_{\theta,f}$ and $S_{\theta,f}$ are bounded. Next, we collect some elementary properties of these functions.

Lemma 3.1. Let f be a bounded function on a groupoid G. Then for any $g, h \in G$ and any $\theta \in \beta G$:

(1) If $(g,h) \in G^{(2)}$, then $L_h(L_g f) = L_{gh} f$. Also, if $(g,h) \notin G^{(2)}$, then $L_h(L_g f) = 0$. (2) $L_g(T_{\theta,f}) = T_{\theta,L_g f}$ and $R_g(S_{\theta,f}) = S_{\theta,R_g f}$.

Proof. (1) Let $x \in G$ and $(g,h) \in G^{(2)}$. Suppose that $x \notin G^{d(h)} = G^{d(gh)}$. By the definition, $L_h(L_q f)(x) = 0 = L_{qh}f(x)$. Let $x \in G^{d(h)} = G^{d(gh)}$. Accordingly,

$$L_h(L_g f)(x) = L_g f(hx) = f(ghx) = L_{gh} f(x).$$

Therefore, $L_{gh}f = L_h(L_g f)$. Now, suppose that $(g,h) \notin G^{(2)}$. In this case, if $x \notin G^{d(h)}$, then $L_h(L_g f)(x) = 0$. If $x \in G^{d(h)}$, then $L_h(L_g f)(x) = L_g f(hx)$. Since $g \notin G^{d(h)} = G^{d(hx)}$, we have $L_q f(hx) = 0$.

(2) We only prove the first identity, the proof of the second one is similar. Let h be any element in G with $h \notin G^{d(g)}$. Then $L_g(T_{\theta,f})(h) = 0$. On the other hand, $T_{\theta,L_gf}(h) = \theta(L_h(L_gf)) = 0$. Now, suppose that $h \in G^{d(g)}$. So,

$$L_g T_{\theta,f}(h) = T_{\theta,f}(gh) = \theta(L_{gh}f) = \theta(L_h(L_gf)) = T_{\theta,L_gf}(h).$$

Lemma 3.1 is proved.

According to G, we define the set of composable elements of βG by

$$(\beta G)^{(2)} = \bigcup_{u \in G^0} \overline{G_u} \times \overline{G^u} = \bigcup_{u \in G^0} \beta G_u \times \beta G^u$$

It is trivial that $G^{(2)} \subseteq (\beta G)^{(2)}$. In the following result, we extend the operation of $G^{(2)}$ to $(\beta G)^{(2)}$.

Theorem 3.1. Let G be a discrete groupoid. There is a unique operation * on $(\beta G)^{(2)}$ satisfying the following conditions:

(1) For every $(g, h) \in G^{(2)}, g * h = gh$.

(2) For every $u \in G^0$ and $g \in G_u$, the map $\eta \mapsto g * \eta \colon \overline{G^u} \longrightarrow \beta G$ is continuous.

(3) For every $u \in G^0$ and $\eta \in \overline{G^u}$, the map $\theta \mapsto \theta * \eta \colon \overline{G_u} \longrightarrow \beta G$ is continuous.

Proof. Let $u \in G^0$. Given any $g \in G_u$, define $\ell_g^u : G^u \longrightarrow G \subseteq \beta G$ by $\ell_g^u(x) = gx$. By S1, there is a continuous map $\tilde{\ell}_g^u : \beta G^u = \overline{G^u} \longrightarrow \beta G$ such that $\tilde{\ell}_g^u|_{G^u} = \ell_g^u$. Now, let $\eta \in \overline{G^u}$ and define $r_\eta^u : G_u \longrightarrow \beta G$ by $r_\eta^u(g) = \tilde{\ell}_g^u(\eta)$. Then there is a continuous map $\tilde{r}_\eta^u : \beta G_u = \overline{G_u} \longrightarrow \beta G$ such that $\tilde{r}_\eta^u|_{G_u} = r_\eta^u$. For any $(\theta, \eta) \in \overline{G_u} \times \overline{G^u}$, set

$$\theta * \eta = \widetilde{r_n^u}(\theta).$$

For (1), suppose that $(g,h) \in G^{(2)}$. Then there is a $u \in G^0$ such that $(g,h) \in G_u \times G^u$. Therefore,

$$g * h = \widetilde{r_h^u}(g) = r_h^u(g) = \widetilde{\ell_g^u}(h) = \ell_g^u(h) = gh.$$

The map $\eta \mapsto g * \eta : \overline{G^u} \longrightarrow \beta G$ is just the map $\widetilde{\ell_g^u}$ and the map $\theta \mapsto \theta * \eta : \overline{G_u} \longrightarrow \beta G$, is just the map $\widetilde{r_\eta^u}$ and the continuity of these maps follow from the continuity of $\widetilde{r_\eta^u}$ and $\widetilde{\ell_g^u}$.

Theorem 3.1 is proved.

Theorem 3.2. Suppose that G is a discrete groupoid and $(\theta, \eta) \in (\beta G)^{(2)}$.

(1) If $\{g_i\}_{i \in I}$ and $\{h_j\}_{j \in J}$ are nets in G such that $\lim_i g_i = \theta$ and $\lim_j h_j = \eta$, then $\theta * \eta = \lim_i \lim_j g_i h_j$.

(2) $\theta * \eta(f) = \theta(T_{\eta,f}).$

Proof. Since $(\theta, \eta) \in (\beta G)^{(2)}$, there is a $u \in G^0$ such that $(\theta, \eta) \in \overline{G_u} \times \overline{G^u}$. As $\overline{G_u}$ and $\overline{G^u}$ are open, we can suppose that $\{g_i\}_{i \in I}$ is a net in $\overline{G_u}$ and $\{h_j\}_{j \in J}$ is a net in $\overline{G^u}$. We have

$$\theta * \eta = \widetilde{r_{\eta}^{u}}(\theta) = \lim_{i} \widetilde{r_{\eta}^{u}}(g_{i}) = \lim_{i} r_{\eta}^{u}(g_{i}) = \lim_{i} \widetilde{\ell_{g_{i}}^{u}}(\eta) =$$
$$= \lim_{i} \lim_{j} \widetilde{\ell_{g_{i}}^{u}}(h_{j}) = \lim_{i} \lim_{j} \ell_{g_{i}}^{u}(h_{j}) = \lim_{i} \lim_{j} g_{i}h_{j}.$$

For (2), suppose that $\{g_i\}_{i \in I}$ is a net in $\overline{G_u}$ and $\{h_j\}_{j \in J}$ is a net in $\overline{G^u}$ such that $\lim_i g_i = \theta$ and $\lim_j h_j = \eta$. Then for any f in $\mathcal{B}(G)$, we have

$$\theta * \eta(f) = \lim_{i} \lim_{j} f(g_i h_j) = L_{g_i} f(h_j) =$$
$$= \lim_{i} \eta(L_{g_i} f) = \lim_{i} T_{\eta, f}(g_i) = \theta(T_{\eta, f}).$$

Theorem 3.2 is proved.

One can consider the inversion map defined by $g \mapsto g^{-1}: G \longrightarrow G$. By S2, this map has a continuous extension $\widetilde{inv}: \beta G \longrightarrow \beta G$. We denote again the $\widetilde{inv}(\theta)$ by θ^{-1} . By the continuity, if $\{g_i\}_{i\in I}$ is any net in G converging to θ in βG , then $\{g_i^{-1}\}_{i\in I}$ converges to θ^{-1} . Consequently, $(\theta^{-1})^{-1} = \theta$ and if $\theta \in \overline{G_u}$, then $\theta^{-1} \in \overline{G^u}$. Let $f \in \mathcal{B}(G)$ and define the transformation \hat{f} on G by $\hat{f}(g) = f(g^{-1})$. This relation can be extended to βG , that is, for any $\theta \in \beta G$, we have $\theta^{-1}(f) = \theta(\hat{f})$. If G is a groupoid, then $(g, g^{-1}) \in G^{(2)}$ for all $g \in G$. But this property does not hold for the Stone-Čech compactification βG , unless G^o is finite.

Theorem 3.3. Let G be a discrete groupoid. For every $\theta \in \beta G$, $(\theta, \theta^{-1}) \in (\beta G)^{(2)}$ if and only if G^0 is finite.

Proof. Assume that $(\theta, \theta^{-1}) \in (\beta G)^{(2)}$ for all $\theta \in \beta G$. Then, it follows that $\beta G = \bigcup_{u \in G^0} \overline{G_u}$. Since $\overline{G_u}$ is open in βG , by compactness of βG , there is $u_1, u_2, \ldots, u_n \in G^0$ such that $\beta G = \bigcup_{k=1}^n \overline{G_{u_k}}$. Thus $G^0 = \{u_1, u_2, \ldots, u_n\}$. Conversely, suppose that G^0 is finite. Then, for every $\theta \in \beta G$, there exists $u \in G^0$ with $\theta \in \overline{G_u}$. Let $\{g_i\}_{i \in I}$ be a net in G_u converging to θ . So, $\{g_i^{-1}\}_{i \in I}$ is a net in G^u which converges to θ^{-1} . Thus $(\theta, \theta^{-1}) \in (\beta G)^{(2)}$.

Theorem 3.3 is proved.

Lemma 3.2. Let G be a discrete groupoid, $(\theta, \eta) \in (\beta G)^{(2)}$ and let $v \in G^0$. Then (1) $\eta \in \overline{G_v}$ if and only if $\theta * \eta \in \overline{G_v}$;

(2) $\theta \in \overline{G^v}$ if and only if $\theta * \eta \in \overline{G^v}$.

Proof. (1) Let u be in \overline{G}^0 such that $(\theta, \eta) \in \overline{G_u} \times \overline{G^u}$. Then there exist nets $\{g_i\}_{i \in I}$ and $\{h_j\}_{j \in J}$, respectively, in G_u and G^u such that $g_i \longrightarrow \theta$ and $h_j \longrightarrow \eta$. Since $\overline{G_v}$ is open set βG containing η , we can assume that $\{h_j\}_{j \in J}$ is also a net in G_v . By the Theorem 3.2, $\theta * \eta = \lim_i \lim_j g_i h_j$. Since for any i and j, $g_i h_j \in G_v$, by Theorem 3.2, we deduce that $\theta * \eta = \lim_i \lim_j g_i h_j \in \overline{G_v}$. Conversely, suppose that $\theta * \eta \in \overline{G^v}$. Let $\{g_i\}_{i \in I}$ and $\{h_j\}_{j \in J}$ are net respectively, in G_u and G^u such that $g_i \longrightarrow \theta$ and $h_j \longrightarrow \eta$. Since $\overline{G^v}$ is open and containing $\theta * \eta$, we can assume that $g_i h_j \in G_v$. Thus $h_j \in G_v$ and hence $\theta \in \overline{G^v}$.

(2) The proof is similar to (1).

Lemma 3.2 is proved.

Definition 3.1. A semigroupoid is a triple $(\Lambda, \Lambda^{(2)}, *)$ such that Λ is a set, $\Lambda^{(2)}$ is a subset of $\Lambda \times \Lambda$, and

$$* \colon \Lambda^{(2)} \longrightarrow \Lambda$$

is an operation which is associative in the following sense: if $f, g, h \in \Lambda$ are such that either

- (i) $(f,g) \in \Lambda^{(2)}$ and $(g,h) \in \Lambda^{(2)}$, or
- (ii) $(f,g) \in \Lambda^{(2)}$ and $(f*g,h) \in \Lambda^{(2)}$, or
- (iii) $(g,h) \in \Lambda^{(2)}$ and $(f,g*h) \in \Lambda^{(2)}$,

then all (f,g), (g,h), (f*g,h) and (f,g*h) lie in $\Lambda^{(2)}$, and

$$(f * g) * h = f * (g * h).$$

Moreover, for $f \in \Lambda$, we will set

$$\Lambda^f = \{ g \in \Lambda \colon (f,g) \in \Lambda^{(2)} \}, \quad \Lambda_f = \{ g \in \Lambda \colon (g,f) \in \Lambda^{(2)} \}.$$

Let $(\Lambda, \Lambda^{(2)}, *)$ and $(\Lambda', \Lambda'^{(2)}, *')$ be semigroupoids. A map $T : \Lambda \longrightarrow \Lambda'$ is called homomorphism if $(f, g) \in \Lambda^{(2)}$, then $(T(f), T(g)) \in \Lambda'^{(2)}$ and T(f * g) = T(f) *' T(g).

Definition 3.2. Let $(\Lambda, \Lambda^{(2)}, *)$ be a semigroupoid and a topological space. Then

(i) Λ is called left topological semigroupoid if for every $f \in \Lambda$ the map $g \mapsto f * g \colon \Lambda^f \longrightarrow \Lambda$ is continuous.

(ii) Λ is called right topological semigroupoid if for every $f \in \Lambda$ the map $g \mapsto g * f : \Lambda_f \longrightarrow \Lambda$ is continuous.

Let Λ be a right topological semigroupoid. The topological center of Λ is the set of all $f \in \Lambda$ such that the map $g \mapsto f * g \colon \Lambda^g \longrightarrow \Lambda$ is continuous.

Theorem 3.4. If G is discrete groupoid, then $(\beta G, (\beta G)^{(2)}, *)$ is a compact right topological semigroupoid. Moreover, the topological center of βG contains G.

THE STONE - ČECH COMPACTIFICATION OF GROUPOIDS

Proof. Suppose that θ, η, γ are in βG . By Lemma 3.2, each one of conditions (i)–(iii) of Definition 3.1 implies that (f,g), (g,h), (f*g,h) and (f,g*h) lie in $\Lambda^{(2)}$. Therefore, it is enough to prove that if $(\theta, \eta) \in (\beta G)^{(2)}$ and $(\eta, \gamma) \in (\beta G)^{(2)}$, then $(\theta*\eta)*\gamma = \theta*(\eta*\gamma)$. For, first we show the following identity:

$$T_{\theta,T_{n,f}} = T_{\theta*\eta,f}.$$

Suppose that $g \in G$. Then

$$T_{\theta,T_{\eta,f}}(g) = \theta(L_g(T_{\eta,f})) = \theta(T_{\eta,L_gf}) = \theta * \eta(L_gf) = T_{\theta*\eta,f}(g).$$

Now, for any $f \in \mathcal{B}(G)$, we have

$$\theta * (\eta * \gamma)(f) = \theta(T_{\eta * \gamma, f}) = \theta(T_{\eta, T_{\gamma, f}}) = \theta * \eta(T_{\gamma, f}) = (\theta * \eta) * \gamma(f).$$

The above arguments show that βG is a semigroupoid. Also, by the Theorem 3.1, βG is a compact right topological semigroupoid such that the topological center of βG contains G.

Theorem 3.4 is proved.

Theorem 3.5. Let G be a discrete groupoid and let $(K, K^{(2)}, \star)$ be a compact right topological semigroupoid which is such that the following properties are satisfied:

(1) there is a morphism $e: G \to K$ such that e(G) is dense in K;

(2) the topological center of K contains e(G);

(3) $\bigcup_{u \in G^0} e(\overline{G_u}) \times e(\overline{G^u}) \subseteq K^{(2)}$.

Then there exists a continuous surjective homomorphism $T: \beta G \longrightarrow K$ such that for each $g \in G$, T(g) = e(g).

Proof. Since K is compact topological space, there exists a continuous surjective map T: $\beta G \longrightarrow K$ such that the following diagram is commutative:

Let $(\theta, \eta) \in (\beta G)^{(2)}$. By the definition, there exist $u \in G^0$ and a net $\{g_i\}_{i \in I}$ in G_u and a net $\{h_j\}_{j \in J}$ in G^u such that $g_i \longrightarrow \theta$ and $h_j \longrightarrow \eta$. Therefore, $e(g_i) \longrightarrow T(\theta)$ and $e(h_j) \longrightarrow T(\eta)$, and so the property (3) yields that $(T(\theta), T(\eta)) \in K^{(2)}$. Since $K^{(2)}$ is right topological semigroupoid and the topological center of K contains e(G), we have

$$T(\theta * \eta) = T(\lim_{i} \lim_{j} g_{i}h_{j}) = \lim_{i} \lim_{j} T(g_{i}h_{j}) =$$
$$= \lim_{i} \lim_{j} e(g_{i}h_{j}) = \lim_{i} \lim_{j} e(g_{i}) \star e(h_{j}) =$$
$$= \lim_{i} \lim_{j} T(g_{i}) \star T(h_{j}) = T(\theta) \star T(\eta).$$

Theorem 3.5 is proved.

We can start the definition of the product on $(\beta G)^{(2)}$ by extending the *h*-right translation map r_h^u : $x \mapsto xh$ (from G_u to βG) for $h \in G^u$ to the map $\widetilde{r_h^u} : \overline{G_u} \longrightarrow \beta G$. Then consider $\theta \in \overline{G_u}$ and define the map $\ell^u_{\theta} \colon G^u \longrightarrow \beta G$ by $\ell^u_{\theta}(h) = \widetilde{r^u_h}(\theta)$. We extend ℓ^u_{θ} to βG_u and denote it by $\widetilde{\ell^u_{\theta}}$. Now, define

$$\theta \Box \eta = \ell^u_\theta(\eta).$$

So, we have the following results:

- (1) For every $g, h \in G, g \Box h = gh$.
- (2) For every $u \in G^0$ and $\theta \in \overline{G_u}$, the map $\eta \mapsto \theta \Box \eta \colon G^u \longrightarrow \beta G$ is continuous. (3) For every $u \in G^0$ and $h \in G^u$, the map $\theta \mapsto \theta \Box h \colon G_u \longrightarrow \beta G$ is continuous.
- (4) For every $u \in G^0$ and $(\theta, \eta) \in \overline{G_u} \times \overline{G^u}$:

$$\theta \Box \eta = \lim_{j} \lim_{i} g_i h_j,$$

where $\{g_i\}_{i \in I}$ is a net in G_u and $\{h_j\}_{j \in J}$ is a net in G^u such that $g_i \longrightarrow \theta$ and $h_j \longrightarrow \eta$. (5) For every $u \in G^0$, $(\theta, \eta) \in \overline{G_u} \times \overline{G^u}$ and $f \in \mathcal{B}(G)$:

$$\theta \Box \eta(f) = \eta(S_{\theta, f}).$$

(6) $(\beta G, (\beta G)^{(2)}, \Box)$ is a compact left topological semigroupoid. **Lemma 3.3.** Suppose that G is a groupoid, $g \in G$ and $\theta \in \beta G$. Then (1) $L_g \hat{f} = \widehat{R_{g-1}} f$, (2) $T_{\theta,\hat{f}} = \widehat{S_{\theta^{-1},f}}.$ **Proof.** (1) Assume that $x \in G^{d(g)}$. Then $x^{-1} \in G_{r(q^{-1})}$ and we have

$$L_g \hat{f}(x) = \hat{f}(gx) = f(x^{-1}g^{-1}) = R_{g^{-1}}f(x^{-1}) = \widehat{R_{g^{-1}}f(x)}.$$

Also, if $x \notin G^{d(g)}$, then $x^{-1} \notin G_{r(g^{-1})}$, and so

$$L_g \hat{f}(x) = 0 = R_{g^{-1}} f(x^{-1}) = \widehat{R_{g^{-1}f}}(x).$$

(2) Let x be any element in G. Then

$$T_{\theta,\hat{f}}(x) = \theta(L_x\hat{f}) = \theta(\widehat{R_{x^{-1}}f}) = \theta^{-1}(R_{x^{-1}}f) =$$
$$= S_{\theta^{-1},f}(x^{-1}) = \widehat{S_{\theta^{-1},f}}(x).$$

Lemma 3.3 is proved.

Theorem 3.6. Let G be a discrete groupoid and $(\theta, \eta) \in (\beta G)^{(2)}$. Then $(\eta^{-1}, \theta^{-1}) \in (\beta G)^{(2)}$ and we have

$$\eta^{-1} * \theta^{-1} = (\theta \Box \eta)^{-1}.$$

Proof. Let $u \in G^0$ be such that $\theta \in \overline{G_u}$ and $\eta \in \overline{G^u}$. Then $\eta^{-1} \in \overline{G_u}$ and $\theta^{-1} \in \overline{G^u}$. Thus $(\eta^{-1}, \theta^{-1}) \in (\beta G)^{(2)}$, and so

$$\eta^{-1} * \theta^{-1}(f) = \eta^{-1}(T_{\theta^{-1},f}) = \eta(\widehat{T_{\theta^{-1},f}}) = \eta(S_{\theta,\hat{f}}) = \theta \Box \eta(\hat{f}) = (\theta \Box \eta)^{-1}(f).$$

Theorem 3.6 is proved.

THE STONE - ČECH COMPACTIFICATION OF GROUPOIDS

Example 3.1. An interesting example of a groupoid is an equivalence relation R on a set X. Here, $R^{(2)} = \{((g,h), (h,k)) : (g,h), (h,k) \in R\}$ and the product map and inversion map are given by (g,h)(h,k) = (g,k) and $(g,h)^{-1} = (h,g)$. So, the set of units is $\{(g,g) : g \in X\}$. Also, $G^{(g,g)} = \{g\} \times [g]$ and $G_{(g,g)} = [g] \times \{g\}$. Here [g] denotes the equivalence class of g. In this case, the set of composable elements is

$$(\beta G)^{(2)} = \bigcup_{g \in G} \overline{[g] \times \{g\}} \times \overline{\{g\} \times [g]}.$$

To specify the product, let us first determine $\overline{[g] \times \{g\}}$ and $\overline{\{g\} \times [g]}$. Consider the bijection $\Pi_1 : [g] \times \{g\} \longrightarrow [g]$ defined by $\Pi_1((h,g)) = h$. Thus, there exists homeomorphism $\widetilde{\Pi_1} : \beta([g] \times \{g\}) \longrightarrow \beta[g]$ which is an extension of Π_1 . If we repeat the argument for $\{g\} \times [g]$ we obtain the homeomorphism $\Pi_2 : \beta(\{g\} \times [g]) \longrightarrow \beta[g]$ which is an extension of the bijection $\widetilde{\Pi_2} : \{g\} \times [g] \longrightarrow \beta[g] \rightarrow [g]$ defined by $\Pi_2((g,h)) = h$. Let $f \in \mathcal{B}(G)$ and $g \in X$ and define $f_g : [g] \longrightarrow \mathbb{C}$ by $f_g(h) = f(g,h)$. Also, for $\theta \in \beta G$ define

$$U_{\theta,f}: X \longrightarrow \mathbb{C}$$

by $U_{\theta,f}(g) = \theta(f_g)$. Let $\{(g_i,g)\}_{i \in I}$ and $\{(g,h_j)\}_{j \in J}$ be nets, respectively, in $\overline{[g] \times \{g\}}$ and $\overline{\{g\} \times [g]}$ such that $(g_i,g) \longrightarrow \theta'$ and $(g,h_j) \longrightarrow \eta'$ in βG . Since $\overline{[g] \times \{g\}}$ and $\overline{\{g\} \times [g]}$ are homeomorphic to βX , we can assume that there exist θ and η in βX such that $g_i \longrightarrow \theta$ and $h_j \longrightarrow \eta$ and $\widetilde{\Pi_1}(\theta') = \theta$ and $\widetilde{\Pi_2}(\eta') = \eta$. For any $f \in \mathcal{B}(G)$, we have

$$\theta' * \eta'(f) = \lim_{i} \lim_{j} f((g_i, g)(g, h_j)) = \lim_{i} \lim_{j} f(g_i, h_j) =$$
$$= \lim_{i} \lim_{j} f_{g_i}(h_j) = \lim_{i} \eta(f_{g_i}) =$$
$$= \lim_{i} U_{\eta, f}(g_i) = \theta(U_{\eta, f}).$$

Note that, we can deduce that the composable elements $(\beta G)^{(2)}$ is homeomorphic to the disjoint union of $\beta[g] \times \beta[g]$'s, that is,

$$\bigsqcup_{g \in X}^{\circ} \beta[g] \times \beta[g].$$

Example 3.2. Another example of a groupoid is the transformation group groupoid. Suppose that the group S acts on a set U on the right. The image of the point u by the transformation s is denoted u.s. We let G be $U \times S$ and define the following groupoid structure: (u, s) and (v, t) are composable if and if v = u.s, (u, s)(u.s, t) = (u, st), and $(u, s)^{-1} = (u.s, s^{-1})$. Then r(u, s) = (u, e) and d(u, s) = (u.s, e). The map $(u, e) \mapsto u$ identifies G^0 with U. It is easy to check that

$$G^u = \{u\} \times S, \quad G_u = \{(u.s^{-1}, s) \colon s \in S\}.$$

By the same argument mentioned in Example 3.1, we can identify G^u with S and obtain a homeomorphism between βG^u and βS . Also, the map $(u.s^{-1}, s) \mapsto s$ is a bijection from G_u onto S. So, this map has a continuous extension from βG_u onto βS . Thus, the set composable elements is homeomorphic to

$$\bigsqcup_{u\in U}^{\circ}\beta S\times\beta S.$$

Let $(\theta', \eta') \in \overline{G_u} \times \overline{G^u}$. Let $\{(u.s_i^{-1}, s_i)\}_{i \in I}$ and $\{(u, t_j)\}_{j \in J}$ be nets in βG such that $(u.s_i^{-1}, s_i) \longrightarrow (u.s_i^{-1}, s_i)$ $\longrightarrow \theta'$ and $(u, t_j) \longrightarrow \eta'$. Therefore, there exist η and θ in βS such that $s_i \longrightarrow \theta$ and $t_j \longrightarrow \eta$. For any $f \in \mathcal{B}(G)$, one has

$$\theta' * \eta'(f) = \lim_{i} \lim_{j} (u.s_i^{-1}, s_i)(u, t_j) =$$
$$= \lim_{i} \lim_{j} (u, s_i t_j)(f) =$$
$$= \lim_{i} \lim_{j} f_u(s_i t_j) = \theta * \eta(f_u),$$

where f_u is a map from S into \mathbb{C} defined by $f_u(s) = f(u, s)$.

4. Topological groupoids. Let G be a topological groupoid such that for every $u \in G^0, G^u$ is C*-embedded. Let l_q^u be the extension of the map l_q^u mentioned in the previous section. Then for each fixed $\eta \in \overline{G^u}$, we may consider the mapping r_η^u from G_u into βG . Defined by $r_\eta^u(g) = \tilde{l_g^u}(g)$. But unlike the discrete case, nothing guarantees that the mapping r_n^u is continuous for every $\eta \in \overline{G^u}$. Therefore we might not able to extend these mappings to βG leading to a continuous operation on $\beta G.$

We can start this process by extending the mappings $r_h^u: G_u \longrightarrow \beta G$ to mappings $\widetilde{r_h^u}: \overline{G_u} \longrightarrow \beta G$, where $h \in G^u$. If for every $\theta \in \overline{G_u}$ we define $l_{\theta}^u: G^u \longrightarrow \beta G$ by $l_{\theta}^u(h) = \widetilde{r_h^u}(\theta)$, again nothing guarantees the continuity of the mappings l_{θ} for each $\theta \in \overline{G_u}$.

Let G be a topological groupoid. As the previous section, we can define left g-translation L_{qf} and right g-translation. But these map are not continuous in general. As we know we can regard βG as the maximal ideal space of $C_b(G)$. It seems that we can not define the extended operation on βG in the term of elements of the maximal ideal space of $C_b(G)$. Because the mapping $g \mapsto \eta(L_q f)$ is not well-defined.

Lemma 4.1. Suppose that $u \in G^0$, $\eta \in \overline{G^u}$ and $f \in C_b(G^u)$. Let $F_1, F_2 \in C_b(G)$ such that $F_1|_{G^u} = F_2|_{G^u} = f$. Then $\eta(F_1) = \eta(F_2)$.

Let $u \in G^0$, $g \in G_u$ and let $h \in G^u$. For $f \in C_b(G)$ define $\mathcal{L}_g^u f \colon G^u \longrightarrow \mathbb{C}$ by $\mathcal{L}_g^u f(x) = f(gx)$. Also, define $\mathcal{R}_h^u f: G_u \longrightarrow \mathbb{C}$ by $\mathcal{R}_h^u f(x) = f(xh)$. **Definition 4.1.** Let $u \in G^0$, $\eta \in \overline{G^u}$, $\theta \in \overline{G_u}$. For $f \in C_b(G)$, set

$$\mathcal{T}^{u}_{\eta,f} \colon G_u \longrightarrow \mathbb{C} \quad \mathcal{T}^{u}_{\eta,f}(g) = \eta(\mathcal{L}^{u}_g f),$$

where $\widetilde{\mathcal{L}_g^u f}$ is an extension of $\mathcal{L}_g^u f$ in $C_b(G)$. By Lemma 4.1, $\mathcal{T}_{\eta,f}^u$ is well-defined. Also defined

$$\mathcal{S}^{u}_{\theta,f} \colon G^{u} \longrightarrow \mathbb{C}, \quad \mathcal{S}^{u}_{\theta,f}(h) = \theta(\widetilde{\mathcal{R}^{u}_{h}f}),$$

where $\widetilde{\mathcal{R}_h^u f}$ is an extension of $\widetilde{\mathcal{R}_h^u f}$ in $C_b(G)$.

Theorem 4.1. Let G be a topological groupoid and let $f \in C_b(G)$. Then the followings are equivalent:

(1) For every $u \in G^0$ and for every $\theta \in \overline{G_u}$, l^u_{θ} is continuous.

(2) For every $u \in G^0$ and for every $\eta \in \overline{\overline{G^u}}$, r_{η}^u is continuous.

464

- (3) For every $u \in G^0$, for every $\eta \in \overline{G_u}$ and every $f \in C_b(G)$, $\mathcal{T}_h^u f$ is continuous.
- (4) For every $u \in G^0$, for every $\theta \in \overline{G_u}$ and every $f \in C_b(G)$, $\mathcal{S}^u_{\theta,f}$ is continuous.

Proof. First, we prove the following identities, for any $u \in G^0$, $g \in G_u$, $h \in G^u$ and $f \in \mathcal{B}(G)$, are satisfied

$$f(r_{\eta}^{u}(g)) = \hat{f}(l_{\eta^{-1}}^{u}(g^{-1})), \tag{4.1}$$

$$f(r^u_\eta(g)) = \mathcal{T}^u_{\eta,f}(g), \tag{4.2}$$

$$f(l^u_{\theta}(h)) = \mathcal{S}^u_{\theta,f}(h). \tag{4.3}$$

Let $u \in G^0$ and $\eta \in \overline{G^u}$. Let $\{h_j\}_{j \in J}$ be a net in G^u such that $h_j \longrightarrow \eta$. So, $\eta^{-1} \in \overline{G_u}$ and $h_j \longrightarrow \eta^{-1}$. For (4.1),

$$\begin{split} f(r_{\eta}^{u}(g)) &= f(\widetilde{l_{g}^{u}}(\eta)) = \lim_{j} f(l_{g}^{u}(h_{j})) = \lim_{j} f(gh_{j}) = \\ &= \lim_{j} \widehat{f}(h_{j}^{-1}g^{-1}) = \lim_{j} f(r_{g^{-1}}^{u}(h_{j}^{-1})) = \\ &= \widehat{f}(\widetilde{r_{g^{-1}}^{u}}(\eta^{-1})) = \widehat{f}(l_{\eta^{-1}}^{u}(g^{-1})). \end{split}$$

On the other hand

$$f(r_{\eta}^{u}(g)) = f(\widetilde{l_{g}^{u}}(\eta)) = \lim_{j} f(l_{g}^{u}(h_{j})) = \lim_{j} f(gh_{j}) =$$
$$= \lim_{i} \mathcal{L}_{g}^{u} f(h_{j}) = \eta(\widetilde{\mathcal{L}_{g}^{u}}f) = \mathcal{T}_{\eta,f}^{u}(g).$$

Similarly, one can prove (4.3). The identity (4.1) implies that $(1) \Leftrightarrow (2)$ and the identity (4.2) implies that $(2) \Leftrightarrow (3)$ and the identity (4.3) implies that $(1) \Leftrightarrow (4)$.

Theorem 4.1 is proved.

Example 4.1. Let G be the groupoid $[0, \infty) \times [0, \infty)$. Consider the sequence $((1, n))_{n=1}^{\infty}$. So there exist a subnet $((1, n_k))_{k=1}^{\infty}$ and $\eta \in \beta G$ such that $(1, n_k) \longrightarrow \eta$ in βG . Let f be a function in $C_b([0, \infty))$ such that f(n) = 1 for every n and f(t) = 0 if $n + \frac{1}{n} < t < n + 1 - \frac{1}{n+1}$. Define F: $G \longrightarrow \mathbb{C}$ by F(x, y) = f(x + y). Then for every $m \in \mathbb{N}$, $\mathcal{T}_{\eta, F}\left(\frac{1}{m}, 1\right) = \lim_k f\left(n_k + \frac{1}{m}\right) = 0$. But $\mathcal{T}_{\eta, F}(0, 1) = f(n_k) = 1$. Therefore, $\mathcal{T}_{\eta, F}$ is not continuous.

- 1. Filali M., Protasov I. Ultrafilters and topologies on groups // Math. Stud. Monogr. Ser. Lviv: VNTL, 2010.
- Filali M., Vedenjuoksu T. The Stone Čech compactification of a topological group and the β-extension property // Houston J. Math. – 2010. – 36, № 2. – P. 477–488.
- 3. Gillman L., Jerison M. Rings of continuous functions. Princeton: van Nostrand, 1960.
- 4. *Hindman N., Strauss D.* Algebra in the Stone-Čech compactification theory and applications. Berlin: Water de Gruyter, 1998.
- 5. Muhly P. Coordinates in operator algebra (Book in preparation).
- Paterson A. L. T. Groupoids, inverse semigroups, and their operator algebras // Progr. Math. Boston, MA: Birkhäuser Boston Inc., 1999. – 170.
- 7. Renault J. A groupoid approach to C^* -algebras // Lect. Notes Math. 1980. 793.
- 8. Walker R. The Stone-Čech compactification. Berlin: Springer-Verlag, 1974.

Received 27.11.12, after revision -28.11.14