UDC 512.5
F. Behrouzi (Alzahra Univ. and School Math., Inst. Res. Fundam. Sci. (IPM), Tehran, Iran)

THE STONE -ČECH COMPACTIFICATION OF GROUPOIDS* КОМПАКТИФІКАЦІЯ СТОУНА-ЧЕХА ДЛЯ ГРУПОЇДІВ

Let G be a discrete groupoid and consider the Stone-Čech compactification βG of G. We extend the operation on the set of composable elements $G^{(2)}$ of G to the operation "*" on a subset $(\beta G)^{(2)}$ of $\beta G \times \beta G$ such that the triple $\left(\beta G,(\beta G)^{(2)}, *\right)$ is a compact right topological semigroupoid.

Нехай G - дискретний групоїд. Розглянемо компактифікацію Стоуна - Чеха βG групоїда G. Розширимо операцію на множині $G^{(2)}$ елементів G, що компонуються, до операції "*" на підмножині $(\beta G)^{(2)}$ множини $\beta G \times \beta G$ такої, що трійка $\left(\beta G,(\beta G)^{(2)}, *\right) є$ компактним топологічним напівгрупоїдом.

1. Introduction. A compactification of a topological space X is a compact space K together with an embedding $e: X \longrightarrow K$ with $e(X)$ dense in K. We usually identify X with $e(X)$ and consider X as a subspace of K. There exists a very special type of compactification of X in which X is embedded in such a way that every bounded, real-valued (complex-valued) continuous function on X will extend continuously to the compactification. Such a compactification of X is called the Stone-Čech compactification and denoted by βX.

As known, the Stone-Čech compactification βG of an infinite discrete group G can be turned into a (compact) semigroup by an operation, extended from $G[1,4]$. This operation can be taken in many ways depending on how we regard βG. We can regard βG as the maximal ideal space of $\mathcal{B}(G)$, the C^{*}-algebra of all bounded complex-valued functions on G. In this case, the product of two elements $\theta, \eta \in \beta G$, is described by the following steps:

$$
L_{g}(f)(h)=f(g h), \quad T_{\eta, f}(g)=\eta\left(L_{g} f\right), \quad \theta * \eta(f)=\theta\left(T_{\eta, f}\right)
$$

Let $g \in G$. By using the universal property of βG (see S 1 below), one can extend the continuous map $h \mapsto g h: G \longrightarrow \beta G$ to a continuous map $\eta \mapsto g * \eta: \beta G \longrightarrow \beta G$. Then the mappings $g \mapsto g * \eta$: $G \longrightarrow \beta G$ are in turn continuously extended to βG leading to a binary operation in βG. This operation in βG is associative, so βG is a compact right topological semigroup, that is, the map $\theta \mapsto \theta * \eta$: $\beta G \longrightarrow \beta G$ is continuous for every $\eta \in \beta G$. More generally, for any topological group, there are many compactifications. Each compactification can be described as the maximal ideal space of a function algebra.

In this paper, we deal with groupoids instead of groups. Unlike groups, in a groupoid G, the product is not defined for each two elements of G. But, the product defined on a subset of $G \times G$, the set of composable pairs. The product on composable elements is associative (see Definition 2.1 below). We will show that, like the group case, the operation of any groupoid G can be extend to βG such that this operation is still associative.

[^0]2. Preliminaries. The Stone-Čech compactification. For the convenience of the reader we repeat the relevant material about βX, the Stone-Čech compactification of X, from [3, 8] without proofs, thus making our exposition self-contained.

Let X be a topological space. Then $C_{b}(X)$ stands for the algebra of all bounded continuous complex-valued functions on the topological space X. Also, a subset E of X is called C^{*}-embedded if every function in $C_{b}(E)$ can be extended to a function in $C_{b}(X)$. A subset E is called zero-set if there exists a continuous function f in $C_{b}(X)$ such that $E=\{x \in X: f(x)=0\}$. Trivially, every subset E of a discrete space X is C^{*}-embedded and also is zero-set. Every (completely regular) space X has a compactification βX, with the following properties:

S1. (Stone) Every continuous mapping T from X into any compact space Y has a continuous extension \widetilde{T} from βX into Y.

S2. (Stone-Čech) Every function f in $C_{b}(X)$ has an extension to a function \tilde{f} in $C(\beta X)$.
S3. (Čech) Any two disjoint zero-sets in X have disjoint closures in βX.
S4. For any two zero-sets Z_{1} and Z_{2} in X,

$$
\overline{Z_{1} \cap Z_{2}}=\overline{Z_{1}} \cap \overline{Z_{2}} .
$$

S5. A subset S of X is C^{*}-embedded in X if and only if $\beta S=\bar{S}$.
S6. If S is open-and-closed in X , then \bar{S} is open-and-closed in βX.
Let E be a subset of a discrete space X. Then, by applying S1 and S5, we can deduce that every map f from E into compact space Y can be extended to a continuous map \widetilde{f} from $\widetilde{E}=\beta E$ into $Y(\mathrm{~S} 1, \mathrm{~S} 5)$.

Let X be a discrete space. It is customary to write $\mathcal{B}(X)$ rather than $C_{b}(X)$. So, $\mathcal{B}(X)$ by pointwise operations and the norm

$$
\|f\|_{X}=\sup _{x \in X}|f(x)|
$$

is a commutative unital C^{*}-algebra. Since $\mathcal{B}(X)$ is isometrically isomorphism to $C(\beta X)$ (by S2), we can identify βX with the maximal ideal space of $\mathcal{B}(X)$. So, the topology of βX coincides with the Gelfand topology. Thus a net $\left\{\theta_{i}\right\}_{i \in I}$ converges to θ in βX if and only if for every $f \in \mathcal{B}(X)$ the net $\left\{\theta_{i}(f)\right\}_{i \in I}$ converges to $\theta(f)$.

Groupoids. Here is some elementary definitions in groupoid literatures. For more details we refer the reader to [5-7].

Definition 2.1. A groupoid is a set G endowed with a product map $(g, h) \mapsto g h: G^{(2)} \longrightarrow G$ where $G^{(2)}$ is a subset of $G \times G$ called the set of composable pairs and an inverse map $g \mapsto g^{-1}$: $G \rightarrow G$ such that the following relation are satisfied:
(1) $\left(g^{-1}\right)^{-1}=g$;
(2) if $(g, h) \in G^{(2)}$ and $(h, k) \in G^{(2)}$, then $(g h, k),(g, h k) \in G^{(2)}$ and we have

$$
(g h) k=g(h k) ;
$$

(3) $\left(g^{-1}, g\right) \in G^{(2)}$ and if $(g, h) \in G^{(2)}$, then $g^{-1}(g h)=h$;
(4) $\left(g, g^{-1}\right) \in G^{(2)}$ and if $(h, g) \in G^{(2)}$, then $(h g) g^{-1}=h$.

The unit space G^{0} is the subset of elements $g g^{-1}$ where g ranges over G. The rang map r : $G \longrightarrow G^{0}$ and the source map $d: G \longrightarrow G^{0}$ is defined by $r(g)=g g^{-1}$ and $d(g)=g^{-1} g$. The pair (g, h) belongs to the set $G^{(2)}$ if and only if $d(g)=r(h)$. For each $u \in G^{0}$, the subsets G_{u} and G^{u} are given by $G_{u}=d^{-1}(\{u\}), G^{u}=r^{-1}(\{u\})$.

Definition 2.2. A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure:
(1) $(x, y) \mapsto x y: G^{(2)} \longrightarrow G$ is continuous where $G^{(2)}$ has the induced topology from $G \times G$;
(2) $g \mapsto g^{-1}: G \longrightarrow G$ is continuous.

If G is a topological groupoid, then the maps r, d are continuous. In addition, if G^{0} is Hausdorff in the relative topology, then $G^{(2)}$ is closed in $G \times G$.
3. Discrete groupoids. Let G be a groupoid and $g \in G$. For any $f \in \mathcal{B}(G)$, we define the left g-translation and the right g-translation of f, respectively, by

$$
L_{g} f(x)=\left\{\begin{array}{ll}
f(g x), & x \in G^{d(g)}, \\
0, & x \notin G^{d(g)},
\end{array} \quad R_{g} f(x)= \begin{cases}f(x g), & x \in G_{r(g)} \\
0, & x \notin G_{r(g)}\end{cases}\right.
$$

Since f is bounded, so are $L_{g} f$ and $R_{g} f$. Therefore, for any $\theta \in \beta G$ and $f \in \mathcal{B}(G)$, we can consider two new functions

$$
T_{\theta, f}: G \longrightarrow \mathbb{C}, \quad S_{\theta, f}: G \longrightarrow \mathbb{C}
$$

given by

$$
T_{\theta, f}(g)=\theta\left(L_{g} f\right), \quad S_{\theta, f}(g)=\theta\left(R_{g} f\right)
$$

It is clear that $T_{\theta, f}$ and $S_{\theta, f}$ are bounded. Next, we collect some elementary properties of these functions.

Lemma 3.1. Let f be a bounded function on a groupoid G. Then for any $g, h \in G$ and any $\theta \in \beta G:$
(1) If $(g, h) \in G^{(2)}$, then $L_{h}\left(L_{g} f\right)=L_{g h} f$. Also, if $(g, h) \notin G^{(2)}$, then $L_{h}\left(L_{g} f\right)=0$.
(2) $L_{g}\left(T_{\theta, f}\right)=T_{\theta, L_{g} f}$ and $R_{g}\left(S_{\theta, f}\right)=S_{\theta, R_{g} f}$.

Proof. (1) Let $x \in G$ and $(g, h) \in G^{(2)}$. Suppose that $x \notin G^{d(h)}=G^{d(g h)}$. By the definition, $L_{h}\left(L_{g} f\right)(x)=0=L_{g h} f(x)$. Let $x \in G^{d(h)}=G^{d(g h)}$. Accordingly,

$$
L_{h}\left(L_{g} f\right)(x)=L_{g} f(h x)=f(g h x)=L_{g h} f(x)
$$

Therefore, $L_{g h} f=L_{h}\left(L_{g} f\right)$. Now, suppose that $(g, h) \notin G^{(2)}$. In this case, if $x \notin G^{d(h)}$, then $L_{h}\left(L_{g} f\right)(x)=0$. If $x \in G^{d(h)}$, then $L_{h}\left(L_{g} f\right)(x)=L_{g} f(h x)$. Since $g \notin G^{d(h)}=G^{d(h x)}$, we have $L_{g} f(h x)=0$.
(2) We only prove the first identity, the proof of the second one is similar. Let h be any element in G with $h \notin G^{d(g)}$. Then $L_{g}\left(T_{\theta, f}\right)(h)=0$. On the other hand, $T_{\theta, L_{g} f}(h)=\theta\left(L_{h}\left(L_{g} f\right)\right)=0$. Now, suppose that $h \in G^{d(g)}$. So,

$$
L_{g} T_{\theta, f}(h)=T_{\theta, f}(g h)=\theta\left(L_{g h} f\right)=\theta\left(L_{h}\left(L_{g} f\right)\right)=T_{\theta, L_{g} f}(h)
$$

Lemma 3.1 is proved.
According to G, we define the set of composable elements of βG by

$$
(\beta G)^{(2)}=\bigcup_{u \in G^{0}} \overline{G_{u}} \times \overline{G^{u}}=\bigcup_{u \in G^{0}} \beta G_{u} \times \beta G^{u}
$$

It is trivial that $G^{(2)} \subseteq(\beta G)^{(2)}$. In the following result, we extend the operation of $G^{(2)}$ to $(\beta G)^{(2)}$.

Theorem 3.1. Let G be a discrete groupoid. There is a unique operation $*$ on $(\beta G)^{(2)}$ satisfying the following conditions:
(1) For every $(g, h) \in G^{(2)}, g * h=g h$.
(2) For every $u \in G^{0}$ and $g \in G_{u}$, the map $\eta \mapsto g * \eta: \overline{G^{u}} \longrightarrow \beta G$ is continuous.
(3) For every $u \in G^{0}$ and $\eta \in \overline{G^{u}}$, the map $\theta \mapsto \theta * \eta: \overline{G_{u}} \longrightarrow \beta G$ is continuous.

Proof. Let $u \in G^{0}$. Given any $g \in G_{u}$, define $\ell_{g}^{u}: G^{u} \longrightarrow G \subseteq \beta G$ by $\ell_{g}^{u}(x)=g x$. By S1, there is a continuous map $\widetilde{\ell_{g}^{u}}: \beta G^{u}=\overline{G^{u}} \longrightarrow \beta G$ such that $\left.\widetilde{\ell_{g}^{u}}\right|_{G^{u}}=\ell_{g}^{u}$. Now, let $\eta \in \overline{G^{u}}$ and define r_{η}^{u} : $G_{u} \longrightarrow \beta G$ by $r_{\eta}^{u}(g)=\widetilde{\ell_{g}^{u}}(\eta)$. Then there is a continuous map $\widetilde{r_{\eta}^{u}}: \beta G_{u}=\overline{G_{u}} \longrightarrow \beta G$ such that $\left.\widetilde{r_{\eta}^{u}}\right|_{G_{u}}=r_{\eta}^{u}$. For any $(\theta, \eta) \in \overline{G_{u}} \times \overline{G^{u}}$, set

$$
\theta * \eta=\widetilde{r_{\eta}^{u}}(\theta)
$$

For (1), suppose that $(g, h) \in G^{(2)}$. Then there is a $u \in G^{0}$ such that $(g, h) \in G_{u} \times G^{u}$. Therefore,

$$
g * h=\widetilde{r_{h}^{u}}(g)=r_{h}^{u}(g)=\widetilde{\ell_{g}^{u}}(h)=\ell_{g}^{u}(h)=g h .
$$

The map $\eta \mapsto g * \eta: \overline{G^{u}} \longrightarrow \beta G$ is just the map $\widetilde{\ell_{g}^{u}}$ and the map $\theta \mapsto \theta * \eta: \overline{G_{u}} \longrightarrow \beta G$, is just the map $\widetilde{r_{\eta}^{u}}$ and the continuity of these maps follow from the continuity of $\widetilde{r_{\eta}^{u}}$ and $\widetilde{\ell_{g}^{u}}$.

Theorem 3.1 is proved.
Theorem 3.2. Suppose that G is a discrete groupoid and $(\theta, \eta) \in(\beta G)^{(2)}$.
(1) If $\left\{g_{i}\right\}_{i \in I}$ and $\left\{h_{j}\right\}_{j \in J}$ are nets in G such that $\lim _{i} g_{i}=\theta$ and $\lim _{j} h_{j}=\eta$, then $\theta * \eta=$ $=\lim _{i} \lim _{j} g_{i} h_{j}$.
(2) $\theta * \eta(f)=\theta\left(T_{\eta, f}\right)$.

Proof. Since $(\theta, \eta) \in(\beta G)^{(2)}$, there is a $u \in G^{0}$ such that $(\theta, \eta) \in \overline{G_{u}} \times \overline{G^{u}}$. As $\overline{G_{u}}$ and $\overline{G^{u}}$ are open, we can suppose that $\left\{g_{i}\right\}_{i \in I}$ is a net in $\overline{G_{u}}$ and $\left\{h_{j}\right\}_{j \in J}$ is a net in $\overline{G^{u}}$. We have

$$
\begin{gathered}
\theta * \eta=\widetilde{r_{\eta}^{u}}(\theta)=\lim _{i} \widetilde{r_{\eta}^{u}}\left(g_{i}\right)=\lim _{i} r_{\eta}^{u}\left(g_{i}\right)=\lim _{i} \widetilde{\ell_{g_{i}}^{u}}(\eta)= \\
\quad=\lim _{i} \lim _{j} \widetilde{\ell_{g_{i}}^{u}}\left(h_{j}\right)=\lim _{i} \lim _{j} \ell_{g_{i}}^{u}\left(h_{j}\right)=\lim _{i} \lim _{j} g_{i} h_{j} .
\end{gathered}
$$

For (2), suppose that $\left\{g_{i}\right\}_{i \in I}$ is a net in $\overline{G_{u}}$ and $\left\{h_{j}\right\}_{j \in J}$ is a net in $\overline{G^{u}}$ such that $\lim _{i} g_{i}=\theta$ and $\lim _{j} h_{j}=\eta$. Then for any f in $\mathcal{B}(G)$, we have

$$
\begin{aligned}
& \theta * \eta(f)=\lim _{i} \lim _{j} f\left(g_{i} h_{j}\right)=L_{g_{i}} f\left(h_{j}\right)= \\
& =\lim _{i} \eta\left(L_{g_{i}} f\right)=\lim _{i} T_{\eta, f}\left(g_{i}\right)=\theta\left(T_{\eta, f}\right) .
\end{aligned}
$$

Theorem 3.2 is proved.
One can consider the inversion map defined by $g \mapsto g^{-1}: G \longrightarrow G$. By S2, this map has a continuous extension $\widetilde{\operatorname{inv}}: \beta G \longrightarrow \beta G$. We denote again the $\widehat{\operatorname{inv}}(\theta)$ by θ^{-1}. By the continuity, if $\left\{g_{i}\right\}_{i \in I}$ is any net in G converging to θ in βG, then $\left\{g_{i}^{-1}\right\}_{i \in I}$ converges to θ^{-1}. Consequently, $\left(\theta^{-1}\right)^{-1}=\theta$ and if $\theta \in \overline{G_{u}}$, then $\theta^{-1} \in \overline{G^{u}}$. Let $f \in \mathcal{B}(G)$ and define the transformation \hat{f} on G by $\hat{f}(g)=f\left(g^{-1}\right)$. This relation can be extended to βG, that is, for any $\theta \in \beta G$, we have $\theta^{-1}(f)=\theta(\hat{f})$. If G is a groupoid, then $\left(g, g^{-1}\right) \in G^{(2)}$ for all $g \in G$. But this property does not hold for the Stone-Čech compactification βG, unless G^{o} is finite.

Theorem 3.3. Let G be a discrete groupoid. For every $\theta \in \beta G,\left(\theta, \theta^{-1}\right) \in(\beta G)^{(2)}$ if and only if G^{0} is finite.

Proof. Assume that $\left(\theta, \theta^{-1}\right) \in(\beta G)^{(2)}$ for all $\theta \in \beta G$. Then, it follows that $\beta G=\bigcup_{u \in G^{0}} \overline{G_{u}}$. Since $\overline{G_{u}}$ is open in βG, by compactness of βG, there is $u_{1}, u_{2} \ldots, u_{n} \in G^{0}$ such that $\beta G=$ $=\bigcup_{k=1}^{n} \overline{G_{u_{k}}}$. Thus $G^{0}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Conversely, suppose that G^{0} is finite. Then, for every $\theta \in \beta G$, there exists $u \in G^{0}$ with $\theta \in \overline{G_{u}}$. Let $\left\{g_{i}\right\}_{i \in I}$ be a net in G_{u} converging to θ. So, $\left\{g_{i}^{-1}\right\}_{i \in I}$ is a net in G^{u} which converges to θ^{-1}. Thus $\left(\theta, \theta^{-1}\right) \in(\beta G)^{(2)}$.

Theorem 3.3 is proved.
Lemma 3.2. Let G be a discrete groupoid, $(\theta, \eta) \in(\beta G)^{(2)}$ and let $v \in G^{0}$. Then
(1) $\eta \in \overline{G_{v}}$ if and only if $\theta * \eta \in \overline{G_{v}}$;
(2) $\theta \in \overline{G^{v}}$ if and only if $\theta * \eta \in \overline{G^{v}}$.

Proof. (1) Let u be in G^{0} such that $(\theta, \eta) \in \overline{G_{u}} \times \overline{G^{u}}$. Then there exist nets $\left\{g_{i}\right\}_{i \in I}$ and $\left\{h_{j}\right\}_{j \in J}$, respectively, in G_{u} and G^{u} such that $g_{i} \longrightarrow \theta$ and $h_{j} \longrightarrow \eta$. Since $\overline{G_{v}}$ is open set βG containing η, we can assume that $\left\{h_{j}\right\}_{j \in J}$ is also a net in G_{v}. By the Theorem 3.2, $\theta * \eta=\lim _{i} \lim _{j} g_{i} h_{j}$. Since for any i and $j, g_{i} h_{j} \in \overline{G_{v}}$, by Theorem 3.2, we deduce that $\theta * \eta=\lim _{i} \lim _{j} g_{i} h_{j} \in \overline{G_{v}}$. Conversely, suppose that $\theta * \eta \in \overline{G^{v}}$. Let $\left\{g_{i}\right\}_{i \in I}$ and $\left\{h_{j}\right\}_{j \in J}$ are net respectively, in G_{u} and G^{u} such that $g_{i} \longrightarrow \theta$ and $h_{j} \longrightarrow \eta$. Since $\overline{G^{v}}$ is open and containing $\theta * \eta$, we can assume that $g_{i} h_{j} \in G_{v}$. Thus $h_{j} \in G_{v}$ and hence $\theta \in \overline{G^{v}}$.
(2) The proof is similar to (1).

Lemma 3.2 is proved.
Definition 3.1. A semigroupoid is a triple $\left(\Lambda, \Lambda^{(2)}, *\right)$ such that Λ is a set, $\Lambda^{(2)}$ is a subset of $\Lambda \times \Lambda$, and

$$
*: \Lambda^{(2)} \longrightarrow \Lambda
$$

is an operation which is associative in the following sense: if $f, g, h \in \Lambda$ are such that either
(i) $(f, g) \in \Lambda^{(2)}$ and $(g, h) \in \Lambda^{(2)}$, or
(ii) $(f, g) \in \Lambda^{(2)}$ and $(f * g, h) \in \Lambda^{(2)}$, or
(iii) $(g, h) \in \Lambda^{(2)}$ and $(f, g * h) \in \Lambda^{(2)}$,
then all $(f, g),(g, h),(f * g, h)$ and $(f, g * h)$ lie in $\Lambda^{(2)}$, and

$$
(f * g) * h=f *(g * h) .
$$

Moreover, for $f \in \Lambda$, we will set

$$
\Lambda^{f}=\left\{g \in \Lambda:(f, g) \in \Lambda^{(2)}\right\}, \quad \Lambda_{f}=\left\{g \in \Lambda:(g, f) \in \Lambda^{(2)}\right\}
$$

Let $\left(\Lambda, \Lambda^{(2)}, *\right)$ and $\left(\Lambda^{\prime}, \Lambda^{\prime(2)}, *^{\prime}\right)$ be semigroupoids. A map $T: \Lambda \longrightarrow \Lambda^{\prime}$ is called homomorphism if $(f, g) \in \Lambda^{(2)}$, then $(T(f), T(g)) \in \Lambda^{\prime(2)}$ and $T(f * g)=T(f) *^{\prime} T(g)$.

Definition 3.2. Let $\left(\Lambda, \Lambda^{(2)}, *\right)$ be a semigroupoid and a topological space. Then
(i) Λ is called left topological semigroupoid if for every $f \in \Lambda$ the map $g \mapsto f * g: \Lambda^{f} \longrightarrow \Lambda$ is continuous.
(ii) Λ is called right topological semigroupoid if for every $f \in \Lambda$ the map $g \mapsto g * f: \Lambda_{f} \longrightarrow \Lambda$ is continuous.

Let Λ be a right topological semigroupoid. The topological center of Λ is the set of all $f \in \Lambda$ such that the map $g \mapsto f * g: \Lambda^{g} \longrightarrow \Lambda$ is continuous.

Theorem 3.4. If G is discrete groupoid, then $\left(\beta G,(\beta G)^{(2)}, *\right)$ is a compact right topological semigroupoid. Moreover, the topological center of βG contains G.

Proof. Suppose that θ, η, γ are in βG. By Lemma 3.2, each one of conditions (i)-(iii) of Definition 3.1 implies that $(f, g),(g, h),(f * g, h)$ and $(f, g * h)$ lie in $\Lambda^{(2)}$. Therefore, it is enough to prove that if $(\theta, \eta) \in(\beta G)^{(2)}$ and $(\eta, \gamma) \in(\beta G)^{(2)}$, then $(\theta * \eta) * \gamma=\theta *(\eta * \gamma)$. For, first we show the following identity:

$$
T_{\theta, T_{\eta, f}}=T_{\theta * \eta, f} .
$$

Suppose that $g \in G$. Then

$$
T_{\theta, T_{\eta, f}}(g)=\theta\left(L_{g}\left(T_{\eta, f}\right)\right)=\theta\left(T_{\eta, L_{g} f}\right)=\theta * \eta\left(L_{g} f\right)=T_{\theta * \eta, f}(g) .
$$

Now, for any $f \in \mathcal{B}(G)$, we have

$$
\theta *(\eta * \gamma)(f)=\theta\left(T_{\eta * \gamma, f}\right)=\theta\left(T_{\eta, T_{\gamma, f}}\right)=\theta * \eta\left(T_{\gamma, f}\right)=(\theta * \eta) * \gamma(f) .
$$

The above arguments show that βG is a semigroupoid. Also, by the Theorem 3.1, βG is a compact right topological semigroupoid such that the topological center of βG contains G.

Theorem 3.4 is proved.
Theorem 3.5. Let G be a discrete groupoid and let $\left(K, K^{(2)}, \star\right)$ be a compact right topological semigroupoid which is such that the following properties are satisfied:
(1) there is a morphism $e: G \rightarrow K$ such that $e(G)$ is dense in K;
(2) the topological center of K contains $e(G)$;
(3) $\bigcup_{u \in G^{0}} e\left(\overline{G_{u}}\right) \times e\left(\overline{G^{u}}\right) \subseteq K^{(2)}$.

Then there exists a continuous surjective homomorphism $T: \beta G \longrightarrow K$ such that for each $g \in G$, $T(g)=e(g)$.

Proof. Since K is compact topological space, there exists a continuous surjective map T : $\beta G \longrightarrow K$ such that the following diagram is commutative:

Let $(\theta, \eta) \in(\beta G)^{(2)}$. By the definition, there exist $u \in G^{0}$ and a net $\left\{g_{i}\right\}_{i \in I}$ in G_{u} and a net $\left\{h_{j}\right\}_{j \in J}$ in G^{u} such that $g_{i} \longrightarrow \theta$ and $h_{j} \longrightarrow \eta$. Therefore, $e\left(g_{i}\right) \longrightarrow T(\theta)$ and $e\left(h_{j}\right) \longrightarrow T(\eta)$, and so the property (3) yields that $(T(\theta), T(\eta)) \in K^{(2)}$. Since $K^{(2)}$ is right topological semigroupoid and the topological center of K contains $e(G)$, we have

$$
\begin{gathered}
T(\theta * \eta)=T\left(\lim _{i} \lim _{j} g_{i} h_{j}\right)=\lim _{i} \lim _{j} T\left(g_{i} h_{j}\right)= \\
=\lim _{i} \lim _{j} e\left(g_{i} h_{j}\right)=\lim _{i} \lim _{j} e\left(g_{i}\right) \star e\left(h_{j}\right)= \\
=\lim _{i} \lim _{j} T\left(g_{i}\right) \star T\left(h_{j}\right)=T(\theta) \star T(\eta) .
\end{gathered}
$$

Theorem 3.5 is proved.

We can start the definition of the product on $(\underset{\sim}{\beta} G)^{(2)}$ by extending the h-right translation map r_{h}^{u} : $x \mapsto x h$ (from G_{u} to βG) for $h \in G^{u}$ to the map $\widetilde{r_{h}^{u}}: \overline{G_{u}} \longrightarrow \beta G$. Then consider $\theta \in \overline{G_{u}}$ and define the map $\ell_{\theta}^{u}: G^{u} \longrightarrow \beta G$ by $\ell_{\theta}^{u}(h)=\widetilde{r_{h}^{u}}(\theta)$. We extend ℓ_{θ}^{u} to βG_{u} and denote it by $\widetilde{\ell_{\theta}^{u}}$. Now, define

$$
\theta \square \eta=\widetilde{\ell_{\theta}^{u}}(\eta) .
$$

So, we have the following results:
(1) For every $g, h \in G, g \square h=g h$.
(2) For every $u \in G^{0}$ and $\theta \in \overline{G_{u}}$, the map $\eta \mapsto \theta \square \eta: G^{u} \longrightarrow \beta G$ is continuous.
(3) For every $u \in G^{0}$ and $h \in G^{u}$, the map $\theta \mapsto \theta \square h: G_{u} \longrightarrow \beta G$ is continuous.
(4) For every $u \in G^{0}$ and $(\theta, \eta) \in \overline{G_{u}} \times \overline{G^{u}}$:

$$
\theta \square \eta=\lim _{j} \lim _{i} g_{i} h_{j},
$$

where $\left\{g_{i}\right\}_{i \in I}$ is a net in G_{u} and $\left\{h_{j}\right\}_{j \in J}$ is a net in G^{u} such that $g_{i} \longrightarrow \theta$ and $h_{j} \longrightarrow \eta$.
(5) For every $u \in G^{0},(\theta, \eta) \in \overline{G_{u}} \times \overline{G^{u}}$ and $f \in \mathcal{B}(G)$:

$$
\theta \square \eta(f)=\eta\left(S_{\theta, f}\right)
$$

(6) $\left(\beta G,(\beta G)^{(2)}, \square\right)$ is a compact left topological semigroupoid.

Lemma 3.3. Suppose that G is a groupoid, $g \in G$ and $\theta \in \beta G$. Then
(1) $L_{g} \hat{f}=\widehat{R_{g-1} f}$,
(2) $T_{\theta, \hat{f}}=\widehat{S_{\theta-1}, f}$.

Proof. (1) Assume that $x \in G^{d(g)}$. Then $x^{-1} \in G_{r\left(g^{-1}\right)}$ and we have

$$
L_{g} \hat{f}(x)=\hat{f}(g x)=f\left(x^{-1} g^{-1}\right)=R_{g^{-1}} f\left(x^{-1}\right)=\widehat{R_{g^{-1}}}(x) .
$$

Also, if $x \notin G^{d(g)}$, then $x^{-1} \notin G_{r\left(g^{-1}\right)}$, and so

$$
L_{g} \hat{f}(x)=0=R_{g^{-1}} f\left(x^{-1}\right)=\widehat{R_{g^{-1} f}}(x) .
$$

(2) Let x be any element in G. Then

$$
\begin{aligned}
& T_{\theta, \hat{f}}(x)= \theta\left(L_{x} \hat{f}\right)=\theta\left(\widehat{R_{x-1}} f\right)=\theta^{-1}\left(R_{x^{-1}} f\right)= \\
&=S_{\theta^{-1}, f}\left(x^{-1}\right)=\widehat{S_{\theta^{-1}, f}}(x) .
\end{aligned}
$$

Lemma 3.3 is proved.
Theorem 3.6. Let G be a discrete groupoid and $(\theta, \eta) \in(\beta G)^{(2)}$. Then $\left(\eta^{-1}, \theta^{-1}\right) \in(\beta G)^{(2)}$ and we have

$$
\eta^{-1} * \theta^{-1}=(\theta \square \eta)^{-1} .
$$

Proof. Let $u \in G^{0}$ be such that $\theta \in \overline{G_{u}}$ and $\eta \in \overline{G^{u}}$. Then $\eta^{-1} \in \overline{G_{u}}$ and $\theta^{-1} \in \overline{G^{u}}$. Thus $\left(\eta^{-1}, \theta^{-1}\right) \in(\beta G)^{(2)}$, and so

$$
\begin{aligned}
\eta^{-1} * \theta^{-1}(f) & =\eta^{-1}\left(T_{\theta^{-1}, f}\right)=\eta\left(\widehat{T_{\theta^{-1}, f}}\right)=\eta\left(S_{\theta, \hat{f}}\right)= \\
& =\theta \square \eta(\hat{f})=(\theta \square \eta)^{-1}(f) .
\end{aligned}
$$

Theorem 3.6 is proved.

Example 3.1. An interesting example of a groupoid is an equivalence relation R on a set X. Here, $R^{(2)}=\{((g, h),(h, k)):(g, h),(h, k) \in R\}$ and the product map and inversion map are given by $(g, h)(h, k)=(g, k)$ and $(g, h)^{-1}=(h, g)$. So, the set of units is $\{(g, g): g \in X\}$. Also, $G^{(g, g)}=\{g\} \times[g]$ and $G_{(g, g)}=[g] \times\{g\}$. Here $[g]$ denotes the equivalence class of g. In this case, the set of composable elements is

$$
(\beta G)^{(2)}=\bigcup_{g \in G} \overline{[g] \times\{g\}} \times \overline{\{g\} \times[g]}
$$

To specify the product, let us first determine $\overline{[g] \times\{g\}}$ and $\overline{\{g\} \times[g]}$. Consider the bijection Π_{1} : $[g] \times\{g\} \longrightarrow[g]$ defined by $\Pi_{1}((h, g))=h$. Thus, there exists homeomorphism $\widetilde{\Pi_{1}}: \beta([g] \times$ $\times\{g\}) \longrightarrow \beta[g]$ which is an extension of Π_{1}. If we repeat the argument for $\{g\} \times[g]$ we obtain the homeomorphism $\Pi_{2}: \beta(\{g\} \times[g]) \longrightarrow \beta[g]$ which is an extension of the bijection $\widetilde{\Pi_{2}}:\{g\} \times[g] \longrightarrow$ $\longrightarrow[g]$ defined by $\Pi_{2}((g, h))=h$. Let $f \in \mathcal{B}(G)$ and $g \in X$ and define $f_{g}:[g] \longrightarrow \mathbb{C}$ by $f_{g}(h)=f(g, h)$. Also, for $\theta \in \beta G$ define

$$
U_{\theta, f}: X \longrightarrow \mathbb{C}
$$

by $U_{\theta, f}(g)=\theta\left(f_{g}\right)$. Let $\left\{\left(g_{i}, g\right)\right\}_{i \in I}$ and $\left\{\left(g, h_{j}\right)\right\}_{j \in J}$ be nets, respectively, in $\overline{[g] \times\{g\}}$ and $\overline{\{g\} \times[g]}$ such that $\left(g_{i}, g\right) \longrightarrow \theta^{\prime}$ and $\left(g, h_{j}\right) \longrightarrow \eta^{\prime}$ in βG. Since $\overline{[g] \times\{g\}}$ and $\overline{\{g\} \times[g]}$ are homeomorphic to βX, we can assume that there exist θ and η in βX such that $g_{i} \longrightarrow \theta$ and $h_{j} \longrightarrow \eta$ and $\widetilde{\Pi_{1}}\left(\theta^{\prime}\right)=\theta$ and $\widetilde{\Pi_{2}}\left(\eta^{\prime}\right)=\eta$. For any $f \in \mathcal{B}(G)$, we have

$$
\begin{gathered}
\theta^{\prime} * \eta^{\prime}(f)=\lim _{i} \lim _{j} f\left(\left(g_{i}, g\right)\left(g, h_{j}\right)\right)=\lim _{i} \lim _{j} f\left(g_{i}, h_{j}\right)= \\
=\lim _{i} \lim _{j} f_{g_{i}}\left(h_{j}\right)=\lim _{i} \eta\left(f_{g_{i}}\right)= \\
=\lim _{i} U_{\eta, f}\left(g_{i}\right)=\theta\left(U_{\eta, f}\right) .
\end{gathered}
$$

Note that, we can deduce that the composable elements $(\beta G)^{(2)}$ is homeomorphic to the disjoint union of $\beta[g] \times \beta[g]^{\prime}$, that is,

$$
\bigsqcup_{g \in X}^{\circ} \beta[g] \times \beta[g]
$$

Example 3.2. Another example of a groupoid is the transformation group groupoid. Suppose that the group S acts on a set U on the right. The image of the point u by the transformation s is denoted $u . s$. We let G be $U \times S$ and define the following groupoid structure: (u, s) and (v, t) are composable if and if $v=u . s,(u, s)(u . s, t)=(u, s t)$, and $(u, s)^{-1}=\left(u . s, s^{-1}\right)$. Then $r(u, s)=(u, e)$ and $d(u, s)=(u . s, e)$. The map $(u, e) \mapsto u$ identifies G^{0} with U. It is easy to check that

$$
G^{u}=\{u\} \times S, \quad G_{u}=\left\{\left(u \cdot s^{-1}, s\right): s \in S\right\}
$$

By the same argument mentioned in Example 3.1, we can identify G^{u} with S and obtain a homeomorphism between βG^{u} and βS. Also, the map $\left(u . s^{-1}, s\right) \mapsto s$ is a bijection from G_{u} onto S. So, this map has a continuous extension from βG_{u} onto βS. Thus, the set composable elements is homeomorphic to

$$
\bigsqcup_{u \in U}^{\circ} \beta S \times \beta S
$$

Let $\left(\theta^{\prime}, \eta^{\prime}\right) \in \overline{G_{u}} \times \overline{G^{u}}$. Let $\left\{\left(u . s_{i}^{-1}, s_{i}\right)\right\}_{i \in I}$ and $\left\{\left(u, t_{j}\right)\right\}_{j \in J}$ be nets in βG such that $\left(u . s_{i}^{-1}, s_{i}\right) \longrightarrow$ $\longrightarrow \theta^{\prime}$ and $\left(u, t_{j}\right) \longrightarrow \eta^{\prime}$. Therefore, there exist η and θ in βS such that $s_{i} \longrightarrow \theta$ and $t_{j} \longrightarrow \eta$. For any $f \in \mathcal{B}(G)$, one has

$$
\begin{gathered}
\theta^{\prime} * \eta^{\prime}(f)=\lim _{i} \lim _{j}\left(u \cdot s_{i}^{-1}, s_{i}\right)\left(u, t_{j}\right)= \\
=\lim _{i} \lim _{j}\left(u, s_{i} t_{j}\right)(f)= \\
=\lim _{i} \lim _{j} f_{u}\left(s_{i} t_{j}\right)=\theta * \eta\left(f_{u}\right)
\end{gathered}
$$

where f_{u} is a map from S into \mathbb{C} defined by $f_{u}(s)=f(u, s)$.
4. Topological groupoids. Let G be a topological groupoid such that for every $u \in G^{0}, G^{u}$ is C^{*}-embedded. Let $\widetilde{l_{g}^{u}}$ be the extension of the map l_{g}^{u} mentioned in the previous section. Then for each fixed $\eta \in \overline{G^{u}}$, we may consider the mapping r_{η}^{u} from G_{u} into βG. Defined by $r_{\eta}^{u}(g)=\widetilde{l_{g}^{u}}(g)$. But unlike the discrete case, nothing guarantees that the mapping r_{η}^{u} is continuous for every $\eta \in \overline{G^{u}}$. Therefore we might not able to extend these mappings to βG leading to a continuous operation on βG.

We can start this process by extending the mappings $r_{h}^{u}: G_{u} \longrightarrow \beta G$ to mappings $\widetilde{r_{h}^{u}}: \overline{G_{u}} \longrightarrow$ $\longrightarrow \beta G$, where $h \in G^{u}$. If for every $\theta \in \overline{G_{u}}$ we define $l_{\theta}^{u}: G^{u} \longrightarrow \beta G$ by $l_{\theta}^{u}(h)=\widetilde{r_{h}^{u}}(\theta)$, again nothing guarantees the continuity of the mappings l_{θ} for each $\theta \in \overline{G_{u}}$.

Let G be a topological groupoid. As the previous section, we can define left g-translation $L_{g} f$ and right g-translation. But these map are not continuous in general. As we know we can regard βG as the maximal ideal space of $C_{b}(G)$. It seems that we can not define the extended operation on βG in the term of elements of the maximal ideal space of $C_{b}(G)$. Because the mapping $g \mapsto \eta\left(L_{g} f\right)$ is not well-defined.

Lemma 4.1. Suppose that $u \in G^{0}, \eta \in \overline{G^{u}}$ and $f \in C_{b}\left(G^{u}\right)$. Let $F_{1}, F_{2} \in C_{b}(G)$ such that $\left.F_{1}\right|_{G^{u}}=\left.F_{2}\right|_{G^{u}}=f$. Then $\eta\left(F_{1}\right)=\eta\left(F_{2}\right)$.

Let $u \in G^{0}, g \in G_{u}$ and let $h \in G^{u}$. For $f \in C_{b}(G)$ define $\mathcal{L}_{g}^{u} f: G^{u} \longrightarrow \mathbb{C}$ by $\mathcal{L}_{g}^{u} f(x)=f(g x)$. Also, define $\mathcal{R}_{h}^{u} f: G_{u} \longrightarrow \mathbb{C}$ by $\mathcal{R}_{h}^{u} f(x)=f(x h)$.

Definition 4.1. Let $u \in G^{0}, \eta \in \overline{G^{u}}, \theta \in \overline{G_{u}}$. For $f \in C_{b}(G)$, set

$$
\mathcal{T}_{\eta, f}^{u}: G_{u} \longrightarrow \mathbb{C} \quad \mathcal{T}_{\eta, f}^{u}(g)=\eta\left(\widetilde{\mathcal{L}_{g}^{u} f}\right)
$$

where $\widetilde{\mathcal{L}_{g}^{u} f}$ is an extension of $\mathcal{L}_{g}^{u} f$ in $C_{b}(G)$. By Lemma 4.1, $\mathcal{T}_{\eta, f}^{u}$ is well-defined. Also defined

$$
\mathcal{S}_{\theta, f}^{u}: G^{u} \longrightarrow \mathbb{C}, \quad \mathcal{S}_{\theta, f}^{u}(h)=\theta\left(\widetilde{\mathcal{R}_{h}^{u} f}\right)
$$

where $\widetilde{\mathcal{R}_{h}^{u}} f$ is an extension of $\widetilde{\mathcal{R}_{h}^{u}} f$ in $C_{b}(G)$.
Theorem 4.1. Let G be a topological groupoid and let $f \in C_{b}(G)$. Then the followings are equivalent:
(1) For every $u \in G^{0}$ and for every $\theta \in \overline{G_{u}}, l_{\theta}^{u}$ is continuous.
(2) For every $u \in G^{0}$ and for every $\eta \in \overline{G^{u}}, r_{\eta}^{u}$ is continuous.
(3) For every $u \in G^{0}$, for every $\eta \in \overline{G_{u}}$ and every $f \in C_{b}(G), \mathcal{T}_{h}^{u} f$ is continuous.
(4) For every $u \in G^{0}$, for every $\theta \in \overline{G_{u}}$ and every $f \in C_{b}(G), \mathcal{S}_{\theta, f}^{u}$ is continuous.

Proof. First, we prove the following identities, for any $u \in G^{0}, g \in G_{u}, h \in G^{u}$ and $f \in \mathcal{B}(G)$, are satisfied

$$
\begin{gather*}
f\left(r_{\eta}^{u}(g)\right)=\widehat{f}\left(l_{\eta^{-1}}^{u}\left(g^{-1}\right)\right), \tag{4.1}\\
f\left(r_{\eta}^{u}(g)\right)=\mathcal{T}_{\eta, f}^{u}(g), \tag{4.2}\\
f\left(l_{\theta}^{u}(h)\right)=\mathcal{S}_{\theta, f}^{u}(h) . \tag{4.3}
\end{gather*}
$$

Let $u \in G^{0}$ and $\eta \in \overline{G^{u}}$. Let $\left\{h_{j}\right\}_{j \in J}$ be a net in G^{u} such that $h_{j} \longrightarrow \eta$. So, $\eta^{-1} \in \overline{G_{u}}$ and $h_{j} \longrightarrow \eta^{-1}$. For (4.1),

$$
\begin{aligned}
f\left(r_{\eta}^{u}(g)\right) & =f\left(\widetilde{l_{g}^{u}}(\eta)\right)=\lim _{j} f\left(l_{g}^{u}\left(h_{j}\right)\right)=\lim _{j} f\left(g h_{j}\right)= \\
= & \lim _{j} \widehat{f}\left(h_{j}^{-1} g^{-1}\right)=\lim _{j} f\left(r_{g^{-1}}^{u}\left(h_{j}^{-1}\right)\right)= \\
& =\widehat{f}\left(\widetilde{r_{g^{-1}}^{u}}\left(\eta^{-1}\right)\right)=\widehat{f}\left(l_{\eta^{-1}}^{u}\left(g^{-1}\right)\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
f\left(r_{\eta}^{u}(g)\right) & =f\left(\widetilde{l_{g}^{u}}(\eta)\right)=\lim _{j} f\left(l_{g}^{u}\left(h_{j}\right)\right)=\lim _{j} f\left(g h_{j}\right)= \\
& =\lim _{j} \mathcal{L}_{g}^{u} f\left(h_{j}\right)=\eta\left(\widetilde{\mathcal{L}_{g}^{u}} f\right)=\mathcal{T}_{\eta, f}^{u}(g) .
\end{aligned}
$$

Similarly, one can prove (4.3). The identity (4.1) implies that (1) $\Leftrightarrow(2)$ and the identity (4.2) implies that $(2) \Leftrightarrow(3)$ and the identity (4.3) implies that $(1) \Leftrightarrow(4)$.

Theorem 4.1 is proved.
Example 4.1. Let G be the groupoid $[0, \infty) \times[0, \infty)$. Consider the sequence $((1, n))_{n=1}^{\infty}$. So there exist a subnet $\left(\left(1, n_{k}\right)\right)_{k=1}^{\infty}$ and $\eta \in \beta G$ such that $\left(1, n_{k}\right) \longrightarrow \eta$ in βG. Let f be a function in $C_{b}([0, \infty))$ such that $f(n)=1$ for every n and $f(t)=0$ if $n+\frac{1}{n}<t<n+1-\frac{1}{n+1}$. Define F : $G \longrightarrow \mathbb{C}$ by $F(x, y)=f(x+y)$. Then for every $m \in \mathbb{N}, \mathcal{T}_{\eta, F}\left(\frac{1}{m}, 1\right)=\lim _{k} f\left(n_{k}+\frac{1}{m}\right)=0$. But $\mathcal{T}_{\eta, F}(0,1)=f\left(n_{k}\right)=1$. Therefore, $\mathcal{T}_{\eta, F}$ is not continuous.

1. Filali M., Protasov I. Ultrafilters and topologies on groups // Math. Stud. Monogr. Ser. - Lviv: VNTL, 2010.
2. Filali M., Vedenjuoksu T. The Stone-Čech compactification of a topological group and the β-extension property // Houston J. Math. - 2010. - 36, № 2. - P. 477 - 488.
3. Gillman L., Jerison M. Rings of continuous functions. - Princeton: van Nostrand, 1960.
4. Hindman N., Strauss D. Algebra in the Stone-Čech compactification theory and applications. - Berlin: Water de Gruyter, 1998.
5. Muhly P. Coordinates in operator algebra (Book in preparation).
6. Paterson A. L. T. Groupoids, inverse semigroups, and their operator algebras // Progr. Math. - Boston, MA: Birkhäuser Boston Inc., 1999. - 170.
7. Renault J. A groupoid approach to C^{*}-algebras // Lect. Notes Math. - 1980. - 793.
8. Walker R. The Stone-Čech compactification. - Berlin: Springer-Verlag, 1974.

Received 27.11.12, after revision - 28.11.14

[^0]: * This paper was partially supported by a grant from IPM (No. 89470014).

