Ф. Н. Лиман, Т. Д. Лукашова (Сум. гос. пед. ун-т им. А. С. Макаренко)

О НОРМЕ РАЗЛОЖИМЫХ ПОДГРУПП В ЛОКАЛЬНО КОНЕЧНЫХ ГРУППАХ

We study the relationships between the norm of decomposable subgroups and the norm of Abelian non-cyclic subgroups in the class of locally finite groups. We also describe some properties of periodic locally nilpotent groups in which the norm of decomposable subgroups is a non-Dedekind norm.

Розглядаються взаємозв'язки між нормою розкладних підгруп та нормою абелевих нециклічних підгруп у класі локально скінченних груп. Також встановлено деякі властивості періодичних локально нільпотентних груп з недедекіндовою нормою розкладних підгруп.

В теории групп достаточно большое количество результатов связано с изучением свойств групп с заданными ограничениями на их подгруппы и системы таких подгрупп. С одной стороны, группа может иметь систему п одгрупп с заданными свойствами, но влияние этой системы подгрупп не является существенным, а с другой — наличие одной (как правило, характеристической) п одгруппы с определенным свойством может быть определяющим фактором для строения самой группы. В последнее время список таких подгрупп может быть существенно расширен за счет разнообразных Σ -норм группы.

Напомним, что Σ -нормой группы G называется пересечение нормализаторов всех подгрупп группы, входящих в систему Σ . Очевидно, что в случае совпадения Σ -нормы с группой в последней нормальными будут все подгруппы, входящие в Σ (при условии, что система Σ непуста). Впервые г руппы с таким свойством были рассмотрены еще в конце XIX века Р. Дедекиндом, который дал полное описание конечных групп, в се подгруппы которых нормальны (теперь их называют дедекиндовыми). Однако систематическое исследование групп с произвольными нормальными системами подгрупп было продолжено лишь во второй половине XX века, что определенным образом приостановило изучение Σ -норм. В настоящее время строение групп, совпадающих со своей Σ -нормой, известно для многих систем подгрупп Σ . Поэтому естественно было бы поставить вопрос об исследовании свойств групп, имеющих собственную Σ -норму.

Впервые такая задача была поставлена P. Бером еще в 30-х годах прошлого века (см., например, [1]) для системы Σ всех подгрупп данной группы. Соответствующую Σ -норму он назвал нормой группы и обозначил N(G). Понятно, что норма N(G) содержится во всех остальных Σ -нормах, а те в свою очерель, можно считать ее обобщениями.

В настоящей работе рассматривается одно из таких обобщений — *норма разложимых подгрупп* группы. Исходя из изложенного выше, так будем называть п ересечение нормализаторов всех разложимых подгрупп группы G; обозначим эту норму N_G^d . Напомним, что *разложимой* подгруппой группы G называется такая подгруппа, которую можно представить в виде прямого произведения двух нетривиальных множителей [2].

Из определения нормы N_G^d следует, что в случае $N_G^d = G$ в группе G будут нормальны все разложимые подгруппы (при условии, что система таких подгрупп непуста). Недедекиндовы группы с таким свойством были изучены в работе [2] и названы там di -группами.

Отметим, что в случае, когда группа G не содержит разложимых подгрупп, будем считать, что $N_G^d=G$. Строение локально конечных неабелевых групп, в которых система разложимых подгрупп пуста, описывает следующее утверждение.

Предложение 1 [2]. Неабелева локально конечная группа, не содержащая разложимых подгрупп, является группой одного из видов:

- 1) кватернионной 2-группой (конечной или бесконечной);
- 2) группой Фробениуса $G = A \times B$, где A локально циклическая p -группа, B циклическая q-группа, p и q простые числа и (p-1,q)=q.

Группой Фробениуса (см. [3]) будем называть полупрямое произведение $G = A \leftthreetimes B$ двух нетривиальных подгрупп A и B, где $B \cap g^{-1}Bg = E$ для любого элемента $g \in G \backslash B$ и $A \backslash E = G \backslash \bigcup_{g \in G} (g^{-1}Bg)$.

Очевидно, что группа G имеет разложимые подгруппы тогда и только тогда, когда она имеет разложимые абелевы подгруппы. Поэтому дальнейшее исследование естественно проводить в зависимости от существования в группе тех или иных разложимых абелевых подгрупп. Поскольку во многих случаях разложимые абелевы подгруппы являются нециклическими, есть основания предполагать, что норма разложимых подгрупп непосредственно связана с нормой абелевых нециклических подгрупп N_G^A . Согласно [4] так будем называть пересечение нормализаторов всех абелевых нециклических подгрупп группы G при условии, что система таких подгрупп в G непуста.

Целью настоящей статьи является установление взаимосвязей между нормами N_G^d и N_G^A в классе локально конечных групп, а также изучение свойств локально нильпотентных периодических групп, в которых норма разложимых подгрупп недедекиндова. Отметим, что в случае совпадения нормы N_G^A с группой G в последней будут нормальными все абелевы нециклические подгруппы (при условии наличия таких подгрупп в группе).

1. О взаимосвязях между нормами абелевых нециклических и разложимых подгрупп в локально конечных группах. Все группы в этом пункте будем рассматривать при условии, что они содержат хотя бы одну нециклическую абелеву подгруппу. Такое ограничение связано с определением нормы абелевых нециклических подгрупп.

В дальнейшем нам понадобится следующая лемма.

Лемма 1.1. Пусть G — группа, содержащая неединичную N_G^d -допустимую под группу H такую, что $H \cap N_G^d = E$, где N_G^d — норма разложимых подгрупп группы G. Тогда подгруппа N_G^d дедекиндова.

Доказательство. Поскольку подгруппа H является N_G^d -допустимой, $G_1 = HN_G^d = H \times N_G^d$. Пусть x — произвольный элемент нормы N_G^d и $1 \neq h \in H$. Тогда

$$\langle x, h \rangle \lhd \langle h \rangle N_G^d \,, \qquad \langle x, h \rangle \cap N_G^d = \langle x \rangle \lhd N_G^d \,.$$

Следовательно, норма $\ N_G^d\$ дедекиндова, что и требовалось доказать.

Взаимосвязи между нормой N_G^d разложимых подгрупп и нормой N_G^A абелевых нециклических подгрупп в классе p -групп (p — простое число) описывает следующее утверждение.

Теорема 1.1. В произвольной локально конечной p -группе G нормы абелевых нециклических подгрупп и разложимых подгрупп совпадают: $N_G^A = N_G^d$.

Доказательство теоремы будет опираться на доказанные ниже леммы 1.2 – 1.4.

Лемма 1.2. В классе конечных p -групп нормы абелевых нециклических подгрупп N_G^A и разложимых подгрупп N_G^d совпадают.

Доказательство. Справедливость леммы следует из того, что в конечной p-группе каждая абелева нециклическая подгруппа является абелевой разложимой подгруппой и наоборот.

- **Лемма 1.3.** В бесконечной p -группе G нормы N_G^A и N_G^d совпадают, если выполняется одно из следующих условий:
 - 1) G не содержит квазициклических подгрупп;
- 2) G содержит квазициклические подгруппы, но ни одна из них не является ее максимальной абелевой подгруппой;
- 3) среди максимальных абелевых подгрупп группы G есть нормальная в P квазициклическая подгруппа.

Доказательство. 1. В этом случае множества разложимых абелевых и абелевых нециклических подгрупп совпадают, поэтому $N_G^A = N_G^d$.

- 2. Пусть P квазициклическая подгруппа группы G. Так как по условию P не максимальная абелева подгруппа, найдется подгруппа $\langle x \rangle$ простого порядка такая, что группа $H = \langle x \rangle \times P$ абелева. Поскольку H является N_G^d -допустимой подгруппой, $H^P = P$ также N_G^d -допустима. Следовательно, все абелевы нециклические подгруппы группы G будут N_G^d -допустимыми и $N_G^A = N_G^d$.
- 3. Пусть G неабелева p -группа и P нормальная квазициклическая подгруппа, являющаяся максимальной абелевой подгруппой в G. Покажем, что в этом случае G не содержит квазициклических подгрупп, отличных от P. В самом деле, если P_1 такая квазициклическая подгруппа группы G, что $P \neq P_1$, то из условия $[G:C_G(P)] < \infty$ следует, что $P_1 \subseteq C_G(P)$. Но в таком случае подгруппа $G_1 = P_1 \cdot P$ абелева, что противоречит максимальности P. Следовательно, P единственная квазициклическая подгруппа в G. Поэтому норма абелевых нециклических подгрупп совпадает с пересечением нормализаторов редуцированных абелевых нециклических подгрупп, каждая из которых разложима, и потому $N_G^A = N_G^d$.

Лемма доказана.

Следствие 1.1. Неабелева локально конечная p -группа G тогда и только тогда содержит нормальную квазициклическую подгруппу, являющуюся максимальной в G абелевой подгруппой, когда p=2 и $G=P\langle b \rangle$, где P — квазициклическая 2-подгруппа,

 $|b| \in \{2,4\}$, $b^2 \in P$, $b^{-1}ab = a^{-1}$ для любого элемента $a \in P$. При этом $N_G^A = N_G^d$.

Доказательство. Пусть P — нормальная в G квазициклическая подгруппа, являющаяся максимальной абелевой подгруппой в G. Если $p \neq 2$, то по следствию 1.13 работы [5] $P \subseteq Z(G)$. Но в таком случае для любого элемента $x \in G \setminus P$ подгруппа $\langle x, P \rangle$ будет абелевой, что противоречит условию. Следовательно, p = 2.

Поскольку $P \triangleleft G$, то $[G:C_G(P)]=2$. Из м аксимальности P следует, что $C_G(P)=P$. Если G содержит только одну инволюцию, то G — бесконечная кватернионная 2-группа и $N_G^d=N_G^A=G$. В противном случае существует инволюция $b\not\in G\setminus P$ и $G=P\leftthreetimes\langle b\rangle$, где $b^{-1}ab=a^{-1}$ для любого элемента $a\in P$. В этом случае $N_G^d=N_G^A=\langle a_2,b\rangle$, где $a_2\in P$ и $a_2=A$. Обратное утверждение очевидно.

Следствие доказано.

Далее рассмотрим случай, когда среди максимальных абелевых подгрупп p-группы G есть квазициклические подгруппы, но ни одна из них не является нормальной. Если при этом G — локально конечная p-группа, то из теоремы 1.5 [5] следует, что группа G не удовлетворяет условию минимальности для подгрупп. Но в таком случае G содержит бесконечную элементарную абелеву подгруппу и $N_G^A \subseteq N_G^d$.

Лемма 1.4. Если локально конечная $\,p\,$ -группа $\,G\,$ содержит ненормальную квазициклическую подгруппу, являющуюся максимальной абелевой подгруппой в $\,G\,$, то $\,N_G^A=N_G^d\,$.

Доказательство. Пусть P — ненормальная квазициклическая подгруппа, являющаяся максимальной абелевой подгруппой группы G. Учитывая предыдущее замечание, имеем $N_G^A \subset N_G^d$.

Докажем, что имеет место обратное включение. При этом достаточно показать, что подгруппа P будет N_G^d -допустимой. Если $N_G^d=E$, то $N_G^A=N_G^d=E$, и утверждение доказано.

В случае $1<\left|N_G^d\right|<\infty$ из условия $N_G^d\lhd G$ следует, что $P\subseteq C_G\left(N_G^d\right)$. Поскольку P — максимальная абелева подгруппа группы G , $N_G^d\subset P$, и поэтому P будет N_G^d -допустимой подгруппой в G .

Пусть $N_G^d = \infty$ и норма N_G^d недедекиндова. Тогда она либо не содержит разложимых подгрупп, либо в ней нормальны все разложимые подгруппы. В силу предложения 1 и леммы 2 работы [2] N_G^d содержит квазициклическую подгруппу P_1 , являющуюся характеристической в N_G^d . Но в таком случае $P_1 \triangleleft G$, $P_1 \neq P$, $P \subset C_G(P_1)$ и подгруппа $G_1 = P_1 \cdot P$ абелева, что невозможно по условию.

Пусть теперь N_G^d — бесконечная дедекиндова группа. Так как по условию P — максимальная абелева подгруппа и $P \neq G$, то N_G^d не удовлетворяет условию минимальности для

подгрупп, и потому нижний слой A нормы N_G^d является бесконечной элементарной абелевой подгруппой, нормальной в G .

В группе H = AP рассмотрим подгруппы $H_k = A\langle b_k \rangle$, $k = 1, 2, 3, \ldots$, где $P = \langle b_1, b_2, \ldots, b_n, \ldots \rangle$, $b_{n+1}^p = b_n$, $n = 1, 2, 3, \ldots$. В силу леммы 1.9. [5] центр $Z(H_k)$ каждой из подгрупп H_k бесконечен. Значит, $Z(H_k) \cap A = A_k$, $|A_k| = \infty$ и $A_k = \langle a_1 \rangle \times \langle a_2 \rangle \times \ldots$. Не нарушая общности рассуждений, будем считать, что $\langle b_k \rangle \cap \langle a_i, a_j \rangle = E$ для некоторых $i \neq j$. Тогда для любого элемента $a \in A \subseteq N_G^d$ получим

$$[a,b_k] \in \langle a_i,b_k \rangle \cap \langle a_i,b_k \rangle = \langle b_k \rangle.$$

Следовательно, $P \triangleleft H = AP$ и по следствию 1.15 работы [5] $C_H(P)$ имеет конечный индекс в H . Но в таком случае P не является максимальной абелевой подгруппой группы G . Доказанная лемма 1.4 завершает доказательство теоремы 1.1.

Из приведенных выше рассуждений следует, что локально конечная p -группа G с бесконечной нормой N_G^d не содержит ненормальной квазициклической подгруппы P , являющейся максимальной абелевой подгруппой в G .

Следствие 1.2. Если локально конечная p -группа G содержит ненормальную квазициклическую подгруппу P, являющуюся максимальной абелевой подгруппой g G, то $\left|N_G^d\right| < \infty$.

Примером такой группы является известная p -группа Шмидта без центра [5, с. 72], в которой $N_G^d = N_G^A = E$.

Рассмотрим теперь взаимосвязи между нормами разложимых и абелевых нециклических подгрупп в непримарных локально конечных группах.

Теорема 1.2. Пусть G — конечная непримарная группа, содержащая абелеву нециклическую подгруппу. Тогда имеет место включение $N_G^A \supseteq N_G^d$, причем возможен случай $N_G^A \neq N_G^d$.

Доказательство. В исследуемой группе множество абелевых нециклических подгрупп является подмножеством множества абелевых разложимых подгрупп, следовательно, $N_G^A \supseteq N_G^d$. То обстоятельство, что указанные нормы могут быть различными, подтверждает следующий пример, завершающий доказательство теоремы.

Пример 1.1. Пусть $G = A \leftthreetimes B$ — конечная группа Фробениуса, в которой A — элементарная абелева группа порядка p^2 (p — простое число), B — непримарная подгруппа, (|B|,p)=1. Известно (см., например, [6]), что центр $Z(B) \neq E$. Поэтому $N_G^A = G$, а N_G^d не содержит A.

Аналогичное утверждение справедливо и в классе бесконечных периодических локально нильпотентных непримарных групп.

Теорема 1.3. Для любой бесконечной периодической локально нильпотентной непримарной группы G имеет место включение $N_G^A \supseteq N_G^d$, причем случай $N_G^A \ne N_G^d$ достигается.

Доказательство. Пусть F — абелева нециклическая подгруппа группы G. Если подгруппа F разложима, то она является N_G^d -допустимой подгруппой. Если подгруппа F неразложима, то она является квазициклической p -группой. Поскольку группа G локально нильпотентна и непримарна, найдется подгруппа $\langle b \rangle$ простого порядка $q \neq p$, перестановочная с F. Но в таком случае $F \times \langle b \rangle - N_G^d$ -допустимая подгруппа, а значит, $\langle F, b \rangle^q = F$ также является N_G^d -допустимой подгруппой. Следовательно, $N_G^A \supseteq N_G^d$.

Существование групп, в которых нормы абелевых нециклических и разложимых подгрупп различны, подтверждает пример, завершающий доказательство теоремы.

Пример 1.2. В группе $G = ((A \times \langle b \rangle) \times \langle c \rangle) \times \langle d \rangle$, где A — квазициклическая p -группа, |b| = |c| = p, |d| = q, $[b,c] = a \in A$, |a| = p (p и q — различные простые числа), норма абелевых нециклических подгрупп $N_G^A = G$, а норма разложимых подгрупп $N_G^d = A \times \langle d \rangle = Z(G) \neq N_G^A$.

Как показывают следующие примеры, в классе бесконечных локально конечных и не локально нильпотентных групп возможны случаи, когда $N_G^A \neq N_G^d$ и $N_G^A \subset N_G^d$ или $N_G^A \supset N_G^d$.

Пример 1.3. Пусть $G = A \setminus \langle b \rangle$ — группа Фробениуса, в которой A — бесконечная элементарная абелева 7-группа, |b| = 6 и $b^{-1}ab = a^5$ для любого элемента $a \in A$.

Поскольку G — группа Фробениуса и $N_G\left(\langle b \rangle\right) = \langle b \rangle$, $N_G\left(\langle a^{-1}ba \rangle\right) = \langle a^{-1}ba \rangle$, $\langle b \rangle \cap \langle a^{-1}ba \rangle = E$ для $1 \neq a \in A$, то $N_G^d = E$. С другой стороны, $N_G^A = G$, следовательно, в этой группе $N_G^A \supset N_G^d$.

Пример 1.4 (см. [6]). Пусть $G = A \times b$ — группа Фробениуса, в которой A — бесконечная элементарная абелева p -группа ($p \neq 3$), B — квазициклическая 3-группа.

В этой группе $N_G^d=A$. Поскольку $N_G\left(B\right)=B$, $N_G\left(a^{-1}Ba\right)=a^{-1}Ba$ и $a^{-1}Ba\cap B=E$ для $a\neq 1$, то $N_G^A=E$. Следовательно, в этой группе $N_G^A\subset N_G^d$.

Теорема 1.4. В произвольной локально конечной группе G, содержащей абелеву нециклическую подгруппу, либо $N_G^A = N_G^d$, либо $N_G^A \supset N_G^d$, либо $N_G^A \subset N_G^d$.

Доказательство. Достаточно показать, что не существует локально конечной группы G, в которой $N_G^A \neq N_G^d$, $N_G^A \not\supset N_G^d$ и $N_G^A \not\subset N_G^d$.

Допустим, что такая группа G существует. Тогда в силу теорем 1.1 и 1.2 группа G бесконечна и непримарна. Кроме того, из условия $N_G^A \neq N_G^d$ следует, что она содержит абелеву нециклическую подгруппу P, не являющуюся N_G^d -допустимой, и непримарную

циклическую подгруппу $\langle b \rangle$, не являющуюся N_G^A -допустимой. Ясно, что P неразложима, и потому является квазициклической группой. Покажем, что P — максимальная абелева подгруппа группы G. В самом деле, иначе существует неединичная подгруппа $\langle g \rangle$ такая, что $P \cap \langle g \rangle = E$. Тогда подгруппа $P \times \langle g \rangle$ является N_G^d -допустимой, поэтому N_G^d -допустимой будет и подгруппа $\langle P,g \rangle^{|g|} = P$, что противоречит ее выбору. Таким образом, P — максимальная в G абелева подгруппа.

Предположим, что $\left|N_G^d\right|=\infty$. Тогда $\left[G:C_G(N_G^d)\right]<\infty$ и P принадлежит централизатору $C_G(N_G^d)$. Но это невозможно, так как подгруппа P не является N_G^d -допустимой. Таким образом, $\left|N_G^d\right|=\infty$.

Из последнего замечания следует, что N_G^d содержит бесконечную абелеву подгруппу M . Поскольку $\langle b \rangle$ непримарна, $\langle b \rangle \triangleleft G_1 = \langle b \rangle M$. Тогда $\left[G_1 : C_{G_1}(b) \right] < \infty$ и $C = C_{G_1}\left(b \right)$ — бесконечная непримарная абелева группа.

Пусть C не удовлетворяет условию минимальности для подгрупп. Тогда в ней найдутся такие нециклические подгруппы C_1 и C_2 , что $C_1 \cap \langle b \rangle = C_2 \cap \langle b \rangle = E$. В этом случае подгруппы $C_i \times \langle b \rangle$, i=1,2, являются N_G^A -допустимыми, а значит, N_G^A -допустимой будет и подгруппа $\langle b \rangle = (C_1 \times \langle b \rangle) \cap (C_2 \times \langle b \rangle)$, что невозможно вследствие ее выбора.

Следовательно, C — группа с условием минимальности для подгрупп. Но в таком случае норма N_G^d также удовлетворяет условию минимальности для подгрупп и по результатам работы [7] является конечным расширением полной подгруппы \tilde{P} . По следствию 1.3 [5] группа $H = PN_G^d$ также удовлетворяет условию минимальности для подгрупп. Далее, из того, что P — максимальная абелева подгруппа группы G, делаем вывод, что $\tilde{P} = P$. Но тогда P является нормальной подгруппой в H. Полученное противоречие доказывает, что рассматриваемый случай невозможен.

Теорема доказана.

2. Локально нильпотентные периодические группы с недедекиндовой нормой разложимых подгрупп. В работе [2] было установлено, что произвольная недедекиндова локально нильпотентная периодическая di-группа, содержащая хотя бы одну разложимую подгруппу, является p-группой, в которой нормальны все абелевы нециклические подгруппы. Негамильтоновы группы с таким свойством изучались в работе [8] и были названы \overline{HA} -группами. Аналогичное утверждение в классе периодических локально нильпотентных групп имеет место и для нормы N_G^d разложимых подгрупп.

Согласно теореме 1.1, описание локально конечных p-групп, имеющих недедекиндову норму N_G^d разложимых подгрупп, сводится к описанию групп с недедекиндовой нормой N_G^A абелевых нециклических подгрупп. Изучению таких групп были посвящены работы [9, 10].

Опираясь на эти результаты, нетрудно убедиться в справедливости следующих утверждений.

Лемма 2.1. Норма N_G^d локально конечной р-группы G недедекиндова и не содержит разложимых подгрупп тогда и только тогда, когда $G = N_G^d$ и G является кватернионной 2-группой порядка больше 8 (конечной или бесконечной).

Доказательство. Достаточность условий леммы следует из предложения 1. Докажем их необходимость.

Пусть G — локально конечная p-группа, а ее норма N_G^d недедекиндова и не содержит разложимых подгрупп. Тогда в силу предложения 1 p=2 и N_G^d является кватернионной 2-группой (конечной или бесконечной), причем $N_G^d = A\langle b \rangle$, $b^2 \in A$, |b| = 4, |A| > 4, A — циклическая или квазициклическая 2-группа, $b^{-1}ab = a^{-1}$ для любого элемента $a \in A$.

Покажем, что G содержит одну инволюцию. Допустим, что это не так , и $x \in G \setminus N_G^d$, |x|=2 . Тогда $[x,b^2]=1$, где b^2 — инволюция нормы N_G^d . Поскольку подгруппа $\langle x,b^2\rangle$ N_G^d -допустима, то $\langle x,b^2\rangle \lhd G_1=\langle x\rangle N_G^d$ и $\Big[G_1:C_{G_1}(\langle x,b^2\rangle)\Big] \le 2$. Если $[x,b]\ne 1$, то $[x,b]=b^2$ и |xb|=2 . Тогда абелева подгруппа $\langle xb,b^2\rangle$ будет N_G^d -допустимой, что невозможно, так как элемент $a\in A$, |a|=8 , не принадлежит нормализатору $N_G\left(\langle xb,b^2\rangle\right)$ этой подгруппы. Значит, [x,b]=1 . Поскольку $\langle x,b\rangle$ — разложимая абелева подгруппа, она N_G^d допустима. Но и в этом случае нормализатору подгруппы $\langle x,b\rangle$ не принадлежит элемент $a\in A$, |a|=8 .

Таким образом, группа G содержит всего одну инволюцию, а значит, все ее абелевы подгруппы неразложимы. В силу предложения 1 G является кватернионной 2-группой (конечной или бесконечной). Поскольку по условию норма N_G^d недедекиндова, |G| > 8 и $G = N_G^d$.

Лемма доказана.

Следствие 2.1. Локально конечная p-группа G, имеющая недедекиндову норму N_G^d , не содержит разложимые подгруппы тогда и только тогда, когда такие подгруппы не содержит ее норма N_G^d .

Лемма 2.2. Бесконечная локально конечная p-группа G, имеющая недедекиндову норму N_G^d разложимых подгрупп, является конечным расширением квазициклической подгруппы.

Доказательство. Пусть G — бесконечная локально конечная p -группа и N_G^d — ее норма разложимых подгрупп. Если норма N_G^d не содержит разложимые подгруппы, то по лемме $2.1~G=N_G^d$ — бесконечная кватернионная 2-группа. Пусть N_G^d содержит разложимую подгруппу. По теореме $1.1~N_G^d=N_G^A$. Следовательно, G — бесконечная локально конечная p -группа, в которой норма N_G^A абелевых нециклических подгрупп является негамильтоновой

 $\overline{HA_p}$ -группой. По следствию 4 [10] G является конечным расширением квазициклической p -группы, что и требовалось доказать.

Теорема 2.1. Периодическая локально нильпотентная группа G, содержащая абелеву нециклическую подгруппу, тогда и только тогда имеет недедекиндову норму N_G^d разложимых подгрупп, когда G — локально конечная p-группа c недедекиндовой нормой N_G^A абелевых нециклических подгрупп.

Доказательство. Достаточность условий теоремы непосредственно следует из теоремы 1.1.

Докажем их $\mathit{необходимость}$. Пусть G — периодическая локально нильпотентная группа с недедекиндовой нормой N_G^d разложимых подгрупп. Тогда N_G^d имеет недедекиндову силовскую p-подгруппу $(N_G^d)_p$ для некоторого простого числа p. По лемме 1.1 $N_G^d = (N_G^d)_p$, более того, G также является p-группой. Используя теперь теорему 1.1, приходим к выводу, что $N_G^A = N_G^d$. Следовательно, G является p-группой с недедекиндовой нормой абелевых нециклических подгрупп N_G^A .

Теорема доказана.

Следствие 2.2. Произвольная бесконечная периодическая локально нильпотентная группа G, имеющая недедекиндову норму N_G^d , является конечным расширением квазициклической p-подгруппы.

Следствие 2.3. Если норма N_G^d периодической локально нильпотентной группы G бесконечна и недедекиндова, то в G нормальны все абелевы нециклические и все разложимые подгруппы.

Доказательство. Справедливость утверждения следует из теоремы 2.1 и следствия 4 работы [10].

- 1. Baer R. Der Kern, eine charakteristische Untergruppe // Comp. Math. 1934. 1. P. 254 283.
- 2. $\mathit{Лиман}$ Ф. М. Групи, усі розкладні підгрупи яких інваріантні // Укр. мат. журн. 1970. 22, № 6. С.725 733.
- 3. Блудов В. В. О группах Фробениуса // Сиб. мат. журн. 1997. 38, № 6. С. 1219 1221.
- 4. Лукашова Т.Д. Про норму абелевих нециклічних підгруп нескінченних локально скінченних p -груп (p ≠ 2) // Вісн. Київ. ун-ту. Фіз.-мат. науки. 2004. № 3. С. 35 39.
- 5. Черников С. Н. Группы с заданными свойствами системы подгрупп. М.: Наука, 1980. 384 с.
- 6. *Бусаркин В. М.*, *Старостин А. И.* О расщепляемых локально конечных группах // Мат. сб. 1963. **62(104)**, № 3. С. 275 294.
- 7. *Шунков В. П.* О локально конечных группах с условием минимальности для абелевых подгрупп // Алгебра и логика. 1970. № 5. С. 579 615.
- 8. *Лиман* Ф. Н. Периодические группы, все абелевы нециклические подгруппы которых инвариантны // Группы с ограничениями для подгрупп. Киев: Наук. думка, 1971. С. 65 96.
- 9. $\upDelta U$ м., $\upDelta V$ м., $\upDelta V$ м. Про нескінченні 2-групи з недедекіндовою нормою абелевих нециклічних підгруп // Вісн. Київ. ун-ту. Фіз.-мат. науки. $\upDelta U$ С. 56 − 64.
- 10. Лиман Ф. Н., Лукашова T. Д. Бесконечные локально конечные группы с локально нильпотентной недедекиндовой нормой абелевых нециклических подгрупп // Вестн. Воронеж. гос. ун-та им. П. М. Машерова. 2012. № 6 (72). С. 5 12.

Получено 08.05.14