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A GLOBALLY AND R-LINEARLY CONVERGENT HYBRID HS
AND PRP METHOD AND ITS INEXACT VERSION WITH APPLICATIONS*

ГЛОБАЛЬНО ТА R-ЛIНIЙНО ЗБIЖНИЙ ГIБРИДНИЙ HS ТА PRP МЕТОД
ТА ЙОГО НЕТОЧНА ВЕРСIЯ З ЗАСТОСУВАННЯМИ

We present a hybrid HS- and PRP-type conjugate gradient method for smooth optimization that converges globally and
R-linearly for general functions. We also introduce its inexact version for problems of this sort whose gradients or
function values are unavailable or difficult to compute. Moreover, we apply the inexact method to solve a nonsmooth
convex optimization problem by converting it into a one-time continuously differentiable function by the method of
Moreau – Yosida regularization.

Наведено гiбридний HS та PRP метод спряженого аргументу, глобально та R-лiнiйно збiжний для загальних функцiй.
Також введено неточний метод для таких проблем, в яких градiєнти або значення функцiй невiдомi або важко
визначаються. Крiм того, неточний метод застосовано до негладкої опуклої проблеми оптимiзацiї, що перетворює
її в однократно неперервно диференцiйовну функцiю за допомогою регуляризацiї Моро – Йосiди.

1. Introduction. Conjugate gradient methods are a class of important methods for solving the
large-scale unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable and its gradient is denoted by g(x). A general

scheme of conjugate gradient methods is

xk+1 = xk + αkdk,

where αk > 0 is a stepsize, and the search direction dk is given by

dk =







−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1,

where βk ia a parameter and gk = g(xk). The Fletcher – Reeves (FR) method [9], the Polak –
Ribiére – Polyak (PRP) method [17, 18], the Hestenes – Stiefel (HS) method [12] and the Dai – Yuan

(DY) method [7] are several well-known nonlinear conjugate gradient algorithms [16]. They are

specified by

βFR
k =

‖gk‖2
‖gk−1‖2

, βDY
k =

‖gk‖2
dTk−1

yk−1

,

βHS
k =

gTk yk−1

dTk−1yk−1

, βPRP
k =

gTk yk−1

‖gk−1‖2
,
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where yk−1 = gk − gk−1 and ‖ · ‖ stands for the Euclidean norm. If exact line search is used,

they are equivalent in the sense that all yield the same search directions and converge globally and
R-linearly for strongly convex functions [20]. However, for a general nonlinear function with inexact

line search, their behavior is markedly different.
Since 1985, many efforts have been devoted to study the global convergence properties of various

conjugate gradient methods with inexact line searches for general functions. Al-Baali [1] showed
that the FR method can produce sufficient descent directions and converges for nonconvex functions

with the strong Wolfe line search. Dai and Yuan [7] proved that the DY method is a descent method
and globally convergent in the case of the standard Wolfe line search. However, the HS method and

the PRP method may generate ascent directions even with the strong Wolfe line search [4], which

prevent them from global convergence. To guarantee global convergence of the PRP method, some
line searches which force it to generate descent direction were proposed [4, 14]. Recently, by the use

of an approximate descent backtracking line search, Zhou [25] showed that the original PRP method
converges globally even for nonconvex functions whether the search direction is descent or not.

A simple way for ensuring global convergence is that of using the steepest descent direction when
the sufficient descent condition is violated. However, it is not guaranteed that the resulting algorithm

will differ significantly from the steepest descent method. Some other globalization techniques for
conjugate gradient methods also have been proposed when solving nonconvex optimization. The

most famous one is the PRP+ globalization technique [13], namely, βPRP+
k = max{βPRP

k , 0}. After
this, almost all existing PRP type or HS type methods have adopted the PRP+ technique to obtain

global convergence for nonconvex functions such as [6, 11, 21]. But these modifed methods can not
reduce to the original PRP method when the exact line search is used and they are not the standard

conjugate gradient methods any more in this sense.

To improve practical computation efficiency and convergence properties of conjugate gradient
methods, many hybrid methods have been proposed, please see the recent survey [4] and references

therein. These hybrid methods can be divided into two classes, one is the hybrid FR and PRP type
methods such as the hybrid method [13] where βk = max

{

−βFR
k ,min{βPRP

k , βFR
k }

}

, another is

the DY and HS type methods such as that of [5] where βk = max
{

0,min{βHS
k , βDY

k }
}

.

To our knowledge, there is little study on hybrid HS and PRP type conjugate gradient methods.

One purpose of the paper is to investigate this problem. In fact, we propose a sufficient descent
hybrid HS and PRP method (1.4) below. Our motivation is based on the following two methods.

One is the three-term PRP method proposed by Zhang, Zhou and Li [22], whose search direction is

defined by

dk =







−gk, if k = 0,

−gk + βPRP
k dk−1 − θPRP

k yk−1, if k ≥ 1,
(1.2)

where θPRP
k =

gTk dk−1

‖gk−1‖2
. Another is the three-term HS method proposed by Zhang, Zhou and Li [24],

which generates the search direction

dk =







−gk, if k = 0,

−gk + βHS
k dk−1 − θHS

k yk−1, if k ≥ 1,
(1.3)
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where θHS
k =

gTk dk−1

dTk−1yk−1

.

It is clear that if the line search is exact, both methods reduce to the standard PRP method.

Extensive numerical results [22, 24] show that both methods are very efficient. The three-term PRP
method (1.2) converges globally for nonconvex functions [22]. The three-term HS method (1.3)

converges globally and R-linearly for strongly convex functions [24], but it has not been proved to be
globally convergent for general nonconvex functions. In order to utilize advantages of both methods

sufficiently, based on (1.2) and (1.3), we propose a hybrid HS and PRP method as follows, namely,

dk =







−gk, if k = 0,

−gk + βhybrid
k dk−1 − θhybridk yk−1, if k ≥ 1,

(1.4)

where

βhybrid
k =

gTk yk−1

max
{

dTk−1yk−1, ‖gk−1‖2
} , θhybridk =

gTk dk−1

max
{

dTk−1yk−1, ‖gk−1‖2
} . (1.5)

From (1.4), (1.5) and by direct computation, it is easy to get

gTk dk = −‖gk‖2, (1.6)

which is independent of convexity of the objective function and the line search used. It is clear that

the proposed method reduces to the standard HS or PRP method when exact line search is used since

gTk dk−1 = 0 in this case.
In general, conjugate gradient methods use the exact gradient and function values in their conver-

gence analysis. However, in many practical problems, the exact function value or exact gradient value
can not be obtained or may be very difficult to compute [3]. In these cases, the inexact algorithms

are often required. Another purpose of the paper is to present an inexact conjugate gradient method
only using approximate gradient or/and function values. In fact, we extend the above exact hybrid

HS and PRP method to inexact case.
The paper is organized as follows. In next section, we prove the global and R-linear convergence of

the proposed method with a descent backtracking line search for nonconvex optimization. In Section
3, we present the inexact algorithm in detail and show its global convergence by the use of some

approximate function value descent line search. In Section 4, we apply the inexact method to solve

a nonsmooth convex optimization problem by converting it into a once continuously differentiable
function by way of the Moreau – Yosida regularization technique.

2. Exact algorithm and its convergence properties. In this section, based on the above
discussion, we first describe the complete hybrid HS and PRP algorithm as follows.

Algorithm 2.1 (Exact version).
Step 0. Given an initial point x0 ∈ Rn. Choose some constants δ > 0 and ρ ∈ (0, 1). Let k := 0.

Step 1. Compute dk by (1.4), (1.5).
Step 2. Compute the stepsize αk = max{γkρj, j = 0, 1, 2, . . .} satisfying

f(xk + αkdk) ≤ f(xk)− δ‖αkdk‖2, (2.1)

where γk =
|gTk dk|
‖dk‖2

.
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Step 3. Let xk+1 = xk + αkdk.

Step 4. Let k := k + 1 and go to Step 1.

To ensure global convergence of Algorithm 2.1, we make the following standard assumption.
Assumption 2.1. (i) The level set Ω =

{

x ∈ Rn| f(x) ≤ f(x0)
}

is bounded.

(ii) In some neighborhood N of Ω, f is continuously differentiable and its gradient is Lipschitz

continuous, namely, there is a constant L > 0 such that

∥

∥g(x) − g(y)
∥

∥ ≤ L‖x− y‖ ∀x, y ∈ N. (2.2)

From Assumption 2.1 and the line search (2.1), we have

∞
∑

k=0

‖αkdk‖2 < ∞,

which implies

lim
k→∞

αk‖dk‖ = 0. (2.3)

Lemma 2.1. Let Assumption 2.1 hold and {xk} be generated by Algorithm 2.1. Then there

exists a constant M1 > 0 such that

‖gk‖ ≤ ‖dk‖ ≤ M1‖gk‖. (2.4)

Proof. By (1.6), we get

‖gk‖2 = |gTk dk| ≤ ‖gk‖‖dk‖,

which shows that ‖gk‖ ≤ ‖dk‖. From (1.4), (1.5), (2.2) and the line search (2.1), we obtain

‖dk‖ ≤ ‖gk‖+ 2L‖gk‖αk−1

‖dk−1‖2
‖gk−1‖2

≤ (1 + 2L)‖gk‖ = M1‖gk‖,

where the last inequality follows from the fact αk ≤ γk =
|gTk dk|
‖dk‖2

and (1.6).

Lemma 2.1 is proved.
The following lemma gives a bound of the stepsize αk from below.

Lemma 2.2. Let Assumption 2.1 hold and {xk} be generated by Algorithm 2.1. Then there

exists two positive constant m̄1 and m1 such that

αk ≥ m̄1

−gTk dk
‖dk‖2

≥ m1. (2.5)

Proof. The proof of the first inequality in (2.5) is standard, for example, see Lemma 3.1 in [23].
The second inequality in (2.5) follows from (1.6) and (2.4) directly.

Theorem 2.1. Let Assumption 2.1 hold and {xk} be generated by Algorithm 2.1. Then

lim
k→∞

‖gk‖ = 0. (2.6)
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Proof. From (2.3) and (2.5), we get

lim
k→∞

‖dk‖ = 0,

which together with (2.4) yields (2.6).
The above theorem shows the global convergence property of Algorithm 2.1 without convexity

assumption on f. It only relies on the assumption that f has Lipschitz continuous gradients.
Now we turn to establishing the R-linear convergence property of Algorithm 2.1. To do this, we

need the following assumption.
Assumption 2.2. (i) f is twice continuously differentiable near x∗.
(ii) The sequence {xk} converges to x∗ where g(x∗) = 0 and the Hessian matrix ∇2f(x∗) is

positive definite.
Assumption 2.2 implies that f is strongly convex in some neighborhood N(x∗) of x∗, that is,

there are two positive constants m and M such that

m‖d‖2 ≤ dT∇2f(x)d ≤ M‖d‖2 ∀x ∈ N(x∗) ∀d ∈ Rn. (2.7)

From (2.7), it is easy to obtain (can see [2], Theorem 3.1)

m

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

m

∥

∥g(x)
∥

∥

2 ∀x ∈ N(x∗). (2.8)

By (2.4), (2.5) and (2.1), there is a positive constant m2 such that

f(xk+1) ≤ f(xk)− δm2
1

‖gk‖2
‖dk‖2

‖gk‖2 ≤ f(xk)−m2‖gk‖2. (2.9)

Without loss of generality, we assume {xk} ⊂ N(x∗). From (2.9) and (2.8), we get

f(xk+1)− f(x∗) ≤ (1−mm2)
(

f(xk)− f(x∗)
)

≤ . . . ≤ (1−mm2)
k
(

f(x0)− f(x∗)
)

. (2.10)

The following theorem shows the R-linear convergence property of Algorithm 2.1.
Theorem 2.2. Let Assumption 2.2 hold and the sequence {xk} be generated by Algorithm 2.1.

Then there exist three positive constants r ∈ (0, 1), C2 and C3 such that

f(xk+1)− f(x∗) ≤ C2r
k, ‖xk+1 − x∗‖ ≤ C3

√
r
k
.

Proof. The first inequality follows from (2.10) with r = 1 − mm2 and C2 = f(x0) − f(x∗)

directly. Inequalities (2.10) and (2.8) yield the second inequality with C3 =

√

2(f(x0)− f(x∗))

m
.

3. Inexact algorithm and its global convergence. In this section, we consider the inexact
version of Algorithm 2.1 with approximate gradient or/and function values. For simplicity, we denote
fa(x, ǫ) and ga(x, ǫ) as the approximations of f(x) and g(x) with the possible error ǫ, respectively.
More accurately, we assume that, for each x ∈ Rn, the approximations fa(x, ǫ) and ga(x, ǫ) can be
made arbitrarily close to the exact values f(x) and g(x) by choosing the parameter ǫ small enough,
namely,

|fa(x, ǫ)− f(x)| ≤ ǫ, (3.1)
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‖ga(x, ǫ)− g(x)‖ ≤ ǫ. (3.2)

With these approximations, we define the inexact method of Algorithm 2.1 as follows:

dk =







−ga(xk, ǫk), if k = 0,

−ga(xk, ǫk) + βkdk−1 − θky
a
k−1, if k ≥ 1,

(3.3)

where yak−1 = ga(xk, ǫk)− ga(xk−1, ǫk−1),

βk =
ga(xk, ǫk)

T yak−1

max
{

dTk−1y
a
k−1, ‖ga(xk−1, ǫk−1)‖2

} , (3.4)

θk =
ga(xk, ǫk)

Tdk−1

max
{

dTk−1y
a
k−1, ‖ga(xk−1, ǫk−1)‖2

} . (3.5)

It is clear that
dTk g

a(xk, ǫk) = −
∥

∥ga(xk, ǫk)
∥

∥

2
. (3.6)

However, the direction dk defined by (3.3) – (3.5) with inexact gradient ga(xk, ǫk) is not necessarily
a descent direction of the objective function f at xk. Then some line search procedures such as the
Wolfe (or strong Wolfe) line search and the line search given by (2.1) can not be used any more. In
this case, we have to modify the line search (2.1).

Let {ǫk} and η be a given positive sequence and a positive constant satisfying

∞
∑

k=0

ǫk ≤ η < ∞. (3.7)

Set γk =
|ga(xk, ǫk)T dk|

‖dk‖2
, we determine the stepsize by the following approximate descent line

search, that is, compute αk = max{γkρj , j = 0, 1, 2, . . .} satisfying

fa(xk + αkdk, ρ1ǫk) ≤ fa(xk, ǫk)− δ‖αkdk‖2 + 2ǫk, (3.8)

where ρ, ρ1 ∈ (0, 1) are two constants.
The following result shows that the line search (3.8) terminates finitely.
Proposition 3.1. The line search (3.8) is well-defined.

Proof. Suppose it is not true. Then for all j ≥ 0, (3.8) does not hold, namely,

fa(xk + γkρ
jdk, ρ1ǫk) > fa(xk, ǫk)− δ‖γkρjdk‖2 + 2ǫk, (3.9)

which together with (3.1) yields

f(xk + γkρ
jdk) + ρ1ǫk > f(xk)− ǫk − δ‖γkρjdk‖2 + 2ǫk.

This implies
f(xk + γkρ

jdk)− f(xk) > −δ‖γkρjdk‖2 + (1− ρ1)ǫk.

Let j → ∞ in the above inequality, we have
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0 ≥ (1− ρ1)ǫk,

which is a contradiction since ρ1 ∈ (0, 1) and ǫk > 0.

Proposition 3.1 is proved.
For clarity, we give the complete inexact algorithm as follows.
Algorithm 3.1 (Exact version).
Step 0. Given an initial point x0 ∈ Rn. Choose some constants δ > 0 and ρ, ρ1 ∈ (0, 1). Let

k := 0.

Step 1. Compute the search direction dk by (3.3) – (3.5).
Step 2. Compute the stepsize αk by (3.8).
Step 3. Let the next iterate be xk+1 = xk + αkdk.

Step 4. Let k := k + 1. Go to Step 1.
We suppose that the following assumption is satisfied.
Assumption 3.1. (i) The level set Ω = {x ∈ Rn| f(x) ≤ f(x0) + (3 + ρ1)η} is bounded.

(ii) In some neighborhood N of Ω, f is continuously differentiable and its gradient is Lipschitz

continuous, namely, (2.2) holds.

It is clear that the sequence {xk} ⊂ Ω. In fact, from (3.1), (3.8) and (3.7), we have

f(xk+1) ≤ fa(xk+1, ρ1ǫk) + ρ1ǫk ≤ f(xk) + ǫk − δ‖αkdk‖2 + 2ǫk + ρ1ǫk =

= f(xk)− δ‖αkdk‖2 + (3 + ρ1)ǫk ≤ f(xk) + (3 + ρ1)ǫk ≤ f(x0) + (3 + ρ1)η. (3.10)

Moreover, (3.10) and (3.7) imply that
∑∞

k=0
‖αkdk‖2 < ∞, which shows

lim
k→∞

αk‖dk‖ = 0. (3.11)

Lemma 3.1. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm 3.1. If
∥

∥ga(xk, ǫk)
∥

∥ ≥ τ1 with some positive constant τ1 for all k, then there exists a positive constant M3

such that

‖dk‖ ≤ M3. (3.12)

Proof. From (2.2), (3.2), (3.7) and (3.11), we have

‖yak−1‖ = ‖ga(xk, ǫk)− ga(xk−1, ǫk−1)‖ ≤

≤ ‖ga(xk, ǫk)− gk‖+ ‖gk − gk−1‖+ ‖ga(xk−1, ǫk−1)− gk−1‖ ≤

≤ ǫk + ǫk−1 + L‖αk−1dk−1‖ → 0. (3.13)

This together with the assumption yield (3.12) by the same argument as that of Lemma 3.1 in [22].
Lemma 3.1 is proved.
Lemma 3.2. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm 3.1.

Then there exist a constant m3 > 0 such that

αk ≥ ‖ga(xk, ǫk)‖2
‖dk‖2

or αk ≥ m3

‖ga(xk, ǫk)‖2
‖dk‖2

− m3ǫk
‖dk‖

. (3.14)
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Proof. (i) If αk = γk, by (3.6), then the first inequality holds.
(ii) If αk 6= γk, then α′

k = αk/ρ can not satisfy the line search (3.8). This together with (3.1)
yields

f(xk + α′

kdk) > f(xk)− δ‖α′

kdk‖2 + (1− ρ1)ǫk > f(xk)− δ‖α′

kdk‖2.
By the mean value theorem and (2.2), it is easy to obtain that

f(xk + α′

kdk)− f(xk) ≤ α′

kg
T
k dk + L‖α′

kdk‖2.

Then the above two inequalities and (3.6) imply

α′

k ≥ −gTk dk
(L+ δ)‖dk‖2

=
−ga(xk, ǫk)

T dk + (ga(xk, ǫk)− gk)
Tdk

(L+ δ)‖dk‖2
≥

≥ −ga(xk, ǫk)
Tdk − ‖ga(xk, ǫk)− gk‖‖dk‖
(L+ δ)‖dk‖2

≥ ‖ga(xk, ǫk)‖2 − ǫk‖dk‖
(L+ δ)‖dk‖2

,

where the last inequality uses (3.2), which implies (3.14) with m3 =
ρ

L+ δ
.

Lemma 3.2 is proved.
Theorem 3.1. Let Assumption 3.1 hold. Then the sequence {xk} be generated by Algorithm 3.1

converges globally in the sense that

lim inf
k→∞

∥

∥∇f(xk)
∥

∥ = 0. (3.15)

Proof. Suppose it is not true. Then there exists a constant τ1 > 0 such that ‖gk‖ ≥ 2τ1 ∀k ≥ 0,

which together with (3.2) yields
∥

∥ga(xk, ǫk)
∥

∥ ≥ τ1 (3.16)

for sufficiently large k. Then from Lemma 3.1 and (3.14), we have that for sufficiently large k,

αk ≥ m3

M3

(

τ21
M3

− ǫk

)

≥ m3τ
2
1

2M2
3

,

which together with (3.11) means
‖dk‖ → 0.

Then from the definition of the search direction (3.3) and (3.16), we have

∥

∥ga(xk, ǫk)
∥

∥ ≤ ‖dk‖+ 2
‖ga(xk, ǫk)‖‖yak−1‖‖dk−1‖

‖ga(xk−1, ǫk−1)‖2
≤ ‖dk‖+ 2

‖ga(xk, ǫk)‖‖yak−1‖‖dk−1‖
τ21

→ 0,

which contradicts (3.16).
Theorem 3.1 is proved.
Remark 3.1. We can obtain the strong convergence of Algorithm 3.1, that is limk→∞ ‖gk‖ = 0,

by the same argument as that of Algorithm 2.1 if we suitably choose the positive sequence {ǫk}.
For example, let ǫ−1 = 1, ǫk = min

{

ǫk−1

2
,

1

‖dk‖

}

for k ≥ 0, then the sequence {ǫk} satisfies

ǫk < ǫk−1 ≤
1

‖dk−1‖
, and

∑∞

k=0
ǫk < ∞.
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Lemma 3.3 ([8], Lemma 3.3). Let {ak} and {rk} be positive sequences satisfying ak+1 ≤ (1 +

+ rk)ak + rk and
∑∞

k=0
rk < ∞. Then {ak} converges.

Corollary 3.1. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm 3.1.
If the function f is convex, then the sequence {f(xk)} converges to the minimum of (1.1).

Proof. From Assumption 3.1 and Theorem 3.1, there exists a subsequence {xki}∞i=0 which
converges to some minimizer x∗ satisfying g(x∗) = 0. From (3.10), we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗) + (3 + ρ1)ǫk, (3.17)

which together with Lemma 3.3 and (3.7) shows that the sequence {f(xk)−f(x∗)} converges. Since
the subsequence {f(xki)} converges to f(x∗), therefore {f(xk)} converges to f(x∗).

Corollary 3.1 is proved.
4. Application to nonsmooth convex optimization. In this section, we consider the following

convex optimization problem:
minF (x), x ∈ Rn, (4.1)

where F : Rn → R is a possibly nondifferentiable convex function. Then general methods such as
conjugate gradient methods for smooth optimization can not be used to solve (4.1) directly.

An efficient way is to convert the nonsmooth problem (4.1) into an equivalent smooth problem
by the Moreau – Yosida regularization such as [10, 15, 19], that is,

min f(x), x ∈ Rn, (4.2)

where f is defined by

f(x) = min
z∈Rn

{

F (z) +
1

2λ
‖z − x‖2

}

(4.3)

and λ is a positive parameter. It is well-known that problems (4.1) and (4.2) are equivalent in the
sense that the solution sets of the two problems coincide with each other. Moreover, the function f is

convex and differentiable with Lipschitz continuous gradient [10, 19] given by g(x) =
1

λ

(

x− p(x)
)

,

which satisfies

‖g(x) − g(y)‖ ≤ 1

λ
‖x− y‖ ∀x, y ∈ Rn, (4.4)

where g(x) = ∇f(x) and p(x) is the unique minimizer in (4.3), i.e.,

p(x) = arg min
z∈Rn

{

F (z) +
1

2λ
‖z − x‖2

}

since this is a strongly convex minimization problem.
It is clear that it is impossible in general to compute exactly the function f defined by (4.3) and

its gradient g at an arbitrary point x. But for each x ∈ Rn, we may obtain approximate values of the
gradient and the function by some existing methods such as [10, 19]. Therefore we can suppose that,
for each x ∈ Rn, we can evaluate f(x) and g(x) approximately but with any desired accuracy, that
is, for each x ∈ Rn and any ǫ > 0, we can find a vector pa(x, ǫ) ∈ Rn such that

F
(

pa(x, ǫ)
)

+
1

2λ
‖pa(x, ǫ)− x‖2 ≤ f(x) + ǫ. (4.5)

With this pa(x, ǫ), we define the approximations to f(x) and g(x) by
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fa(x, ǫ) = F
(

pa(x, ǫ)
)

+
1

2λ
‖pa(x, ǫ)− x‖2 (4.6)

and

ga(x, ǫ) =
1

λ

(

x− pa(x, ǫ)
)

, (4.7)

respectively. The following lemma shows that the approximations fa(x, ǫ) and ga(x, ǫ) satisfy (3.1)
and (3.2), respectively.

Lemma 4.1 ([10], Lemma 3.1). Let pa(x, ǫ) be a vector satisfying (4.5), fa(x, ǫ) and ga(x, ǫ)

be defined by (4.6) and (4.7), respectively. Then

f(x) ≤ fa(x, ǫ) ≤ f(x) + ǫ and ‖ga(x, ǫ)− g(x)‖ ≤
√

2ǫ

λ
.

From (4.4), Lemma 4.1 and Corollary 3.1, we have the following result.
Corollary 4.1. Let the problem (4.2) be solved by Algorithm 3.1. If the condition (i) in Assump-

tion 3.1 holds, then the sequence {f(xk)} converges to the minimum of (4.2).
5. Conclusions. We have proposed a hybrid HS and PRP method which converges globally

and R-linearly for general optimization problems. It is also extended to inexact case which admits
approximate function and gradient values. Hence this inexact method is very suitable for solving
such problems whose exact gradient and function values are not available or difficult to compute.
We have applied this inexact algorithm to solve nonsmooth convex problems by way of Moreau –
Yosida regularization. We believe that the basic idea of this paper can be applied to other conjugate
gradient methods. How to extend the proposed methods or linear conjugate gradient methods to fully
derivative-free ones for solving large-scale nonlinear equations will be our further study.
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