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SOLUTIONS FOR THE QUASILINEAR ELLIPTIC SYSTEMS
WITH COMBINED CRITICAL SOBOLEV -HARDY TERMS

PO3B’SI3KM 115 KBASUITHIMHAX EJINITAYHUX CUCTEM
3 KOMBIHOBAHUMHU KPUTUYHUMH YIEHAMMU COBOJIEBA - XAPII

We study the existence of multiple solutions for a quasilinear elliptic system. Based upon the Mountain —Pass theorem
of Ambrosetti and Rabinowitz and symmetric Mountain — Pass theorem of Rabinowitz, we establish several existence and
multiplicity results for the solutions and GG-symmetric solutions under certain suitable conditions.

BuBuaeThcs 3amaua iCHyBaHHS 06araThOX pO3B’s3KiB KBa3iMiHIAHOI eminTu4yHOl cucTemu. Ha OCHOBI Teopemu mepeBary
AmMOpo3ertTi i PaGiHOBHYA Ta cHMETpUYHOT TeopeMu NepeBay PaGiHOBHYA BCTAaHOBICHO KiJIbKa PE3yJIbTATIB PO iCHYBaHHS
Ta MHOYKHHHICTh PO3B’s13KiB Ta (G-CHMETPUYHHUX PO3B’SI3KIB 32 JSSIKUX MPUAHSATHHX YMOB.

1. Introduction. Our purpose in the first part of this paper is to establish the existence of nontrivial
solution to the following quasilinear elliptic system:

-2
—div(lz]| = VP2 I
div(|z|”*P|VulP~*Vu) ,u|w|p(a+1)
I SN 1 e e
= |x|b1p*(a7b1) a+ 3 |:C _ x0|cp*(a,c) (1‘) |x|dp*(a,d)7 x el
-2
—div(|z|- | Vo2V — L (1)
div(|z|”*P| V[P~ *Vv) ,u|x|p(a+1)
e T N e VN e R
= |x|b2p*(a,b2) a+f |ac _ x0|0p*(a’c) + (DU) |x|dp*(a,d)7 ARSI

u=v=0, x€oif),

where 0 € Q is a bounded domain in R, N > 3, with smooth boundary 92, A > 0 is a parameter,

N —p\? N — ) .
1§q<p,1<p<N,0§,u<ﬁé< p>,0§a< p;Q(m)lsnonnegatlveand
p—a p
continuous on ) satisfying some additional conditions which will be given later, Q(x¢) = ||Qlc0

for 0 # @ # Q. h(@) € C@) @8 > 1t 8= p'(a.0) £ b () £
pN

a <by,by,d < c<a+1) are critical Sobolev—Hardy exponents. Note that
N—p(1+a—b1)( = ) Yy exp

N
p*(0,0) =p* := ¥ P_ s the critical Sobolev exponent.
-Pp

lI>

In the second part of this paper, we consider the following quasilinear elliptic system:
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—2
- 5 —ap p—2 B |u|]77u _
div(|z|~*|Vul|P > Vu) ol
__o@ [uo~2Jo]u jut2u
= a+ B ’m_xO’cI)*(a’c) ($)W, r €,
—diva| P Vo2 e) — Y @)
M|:U|P(‘1+1)
p |u|a|v|ﬁ_20 |v|q_2v
- Wa) sy T €9
Oé+ﬂ (I’) ’x—xolcp*(a,c) ( )’m‘dp*(a,d)’ x R

u=v=0, x€oif,

where 0 €  is a bounded domain, G-symmetric domain (see Section 4 for details) in RY, N > 3,
with smooth boundary 92, A > 0 is a parameter, 1 < ¢ < p < p*(a,c), 1 <p< N,0<pu<p=

N —p\? N —
é( P ,0<a < P
p—a

p
The aim this part (second part) is to establish few results on the existence of G-symmetric

anda <d<c<a+1.

solutions for (2).

In this paper, if 1 <p < N and —o0 < a < P we denote by WaP(€, || =) the completion

of C§°(£2) with respect to the norm

p

Jull = | [ lal - ivupds
Q

Problem (1) is related to the well known Caffarelli — Kohn — Nirenberg inequality in [1, 2],

/ || 70" (@) |y,
RN

where l <p < N, —o0 < a <

p
p*(a,b)
PH(ab) gy SCmb/\x]“p]Vu\pdx forall uwe CP(RY), (3)

RN

Np
p N-p(l+a-0b)
If b = a + 1, then p*(a,b) = p and the following Hardy inequality holds [1, 3]:

N-—-p

,a<b<a+1,p*(ab) =

1
/ [ POy < £ / 2P| VuPds forall ue CSR(RN), @)
T

RN RN

RN N — D b .
where 7t = is the best Hardy constant.
p—a
In the space Wa* (Q, |x|~?), we employ the following norm if p < 7:

P
- |ul?
_ — ap P _
HuHu = ||uHWal’p(Q7|m|—ap) = / <|x| |Vul ’u‘x’p(aJrl) dx
Q

ISSN 1027-3190.  Vkp. mam. acypn., 2015, m. 67, Ne 6
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1/p
By (4) it is equivalent to the usual norm (/ ]w\“p]Vu\pdx> of the space WaP (2, |z]|~P).
Q

Now, we define the space W = WoP (S0, |2| %) x WaP (S0, |z| ") with the norm
[[Cw, )17 = Jlullf + ([0lI7-

Also, we can define the best Sobolev — Hardy constant

_ |ulP
2|~ VulP — p——r—= | da
Sp.ap(8) = inf /ﬂ ( |z [PatD)

u 1,p x|—e *L ’
EWa'? (]| ~o7)\{0} ( / | " (@B [y P (0) dw)p (a.5)
Q

From Kang [4] (Lemma 2.2), Su,mb(Q) is independent of 2 C RY. Thus, we will simply denote that
Su7a7b(RN) = Suvayb(Q) = SWIJ?'

Forany 0 < p < @, a, 8 > 1 and a + 8 = p*(a,c), by (3), (4), 0 < t < p and the Young
inequality, the following best constant are well defined:

p p
/ 2|~ (|VulP + |VolP) — MM dx
) Q |x|p(a+1)
Su,aﬂ,a,c = lnf _p ’
(u,v)€EWN{(0,0)} ‘u’a‘v‘ﬁ p*(a,b)
</ _— dw)
Q ’m‘Cp (a,c)

Then we have (its proof is the same as that of Theorem 5 in [5])

B a
o\ atB B\ atB
Su7a7ﬁ7avc(u) = (E) + <a> SILL,G,,C‘

Throughout this paper, let R be the positive constant such that Q C B(0; Ry), where B(0; Ry) =
= {x € RY: |z| < Ro}. By Hélder and Sobolev - Hardy inequalities, for all u € I/VO1 P(Q1), we obtain

®)

(6)

p*(a?d)d;q q
|u|? dp* (a.d o |uP (@) rried
s < jar| " (@) e <
‘x’dp (a,d) ‘x’dp (a,d)
Q B(0;Ro) Q
p*(a,d)—q
Ry p*(a,d) "
< [ Ny / pm " @dN =1, (Saa) 7 lull? <
0
_49
< Do(Spad) Pllul?, (7
p(a,d)—q
omN/2 Ny RV~ (@d)\ p*(a.d)
where wy = —————— is the volume of the unit ball in R and Dy := 0 "
2
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Existence of nontrivial nonnegative solutions for elliptic equations with singular potentials were
recently studied by several authors, but, essentially, only with a solely critical exponent. We refer to
[6—13] and the references therein. For example, in [12] the author studied the following equation
via the Mountain — Pass theorem:

di <]Du\p2Du> lulP=2u  |uP 2y |ufPT )2y

] PG i P

[1>

where 1 < p < N, 0 < pu<p

= Np and p*(c) = Np
“N—(a+tl-bp YT N (ari-op

In [6], Deng and Huang studied the following quasilinear elliptic problem:

— N_
<W)pa0§a< La<be<atp)=
p

. (|VulP~2Vu uP?u |u[P" (@:0)=2q,
—div ( P — @ (:U)7|x|bp*(a7b) + h(z,u), x€Q, .
u=0, x¢€&odf,

where Q C RY is a smooth bounded domain, 0 € 2 and (2 is G-symmetric with respect to a subgroup
G of O(N), @, h satisfying some suitable conditions and obtained the existence of solutions via
variational methods.

In this work, motivated by the above works we are interested to study the problems (1) and (2)
by using the Mountain — Pass theorem of Ambrosetti and Rabinowitz and symmetric Mountain — Pass
theorem of Rabinowitz [14], respectively. We shall show that the system (1) has at least two positive
weak solutions and the system (2) has infinitely many G-symmetric solutions.

Throughout this paper, we assume that a < by, be, d < c<a+1, o, > 1and a+ 5 = p*(a,c).
For 0 < pu <, we set

p*(a,b1) —p rlah)
0 bi) := p*(a,b1)—p
(M, a, 1) p* (CL, bl) (Su,a,bl) >
T ﬂ R p*(a’7 C) B p 1 S pfg;7isczp
(/h o, 0, a, C) = pp*(a7 C) N_platl_o) ( ,u,a,ﬁ,a,c) ’
1Ql"

0" = {0(M7a7 b1)79(ﬂ7a7 b2)7T(,U,,C¥,,8,a, C)}

Moreover, assume that Q(x) satisfies some of the following assumptions:

(Hy) Q € C(Q), Q(x) > 0 and meas({z € Q, Q(x) > 0}) > 0.

(Hz) There exist ¥ > 0 such that Q(zp) = ||Q]lcc > 0 and Q(z) = Q(z0) + O(|z — 20[?), as
T — 2.

(H3) There exist 8y and p > 0 such that By, (z9) C Q and h(x) > fp for all z € B, (o).

Set hy := max{h,0} and h_ := max{—h,0}.

The main results of this paper can be included in the following three theorems.

Theorem 1. Assume that N > 3, pn € [0,71), 1 < g < p and (Hy). Then there exists Aj; > 0,
such that for 0 < A < A}, problem (1) has at lest one positive solutions.
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792 N. NYAMORADI

Theorem 2. Assume that

*(a,c)
2 — * p*(a,c) —Pp 1 f —
Nzp, O0sp<p, 0= o (a, ¢) pr(?vﬂfc) (Sp.a,pa.c)P (@)7P,
1@l
N — dp*(a,d)

(H))-(Hz), Q(0) = 0, ¢ > b(u)p +p — N +t and
constant defined as in Lemma 4. Then there exists N** > 0, such that for 0 < X < A**, problem (1)
has at least two positive solutions.

Theorem 3. Suppose that |G| = +oo and Q,h € C(Q)(L>¥(Q) is G-symmetric. Then for
A > 0 the problem (2) has infinitely many G-symmetric solutions.

< q < p hold, and b(y) is the

This paper is divided into four sections, organized as follows. In Section 2, we establish some
elementary results. In Section 3, we prove our main results (Theorems 1 and 2). In Section 4, we
prove another our main result (Theorem 3).

2. Preliminary lemmas. The corresponding energy functional of problem (1) is defined by

1 o |ul? a |v[?
J(u,v) = 5/ <|33| p|vu|p—ﬂ| p(a ) + ||~ p|vv|p—ﬂm dx—
Q

A a |v]? 1 Juf " )
- o <|x|dp*<a,d> i |x|dp*(“vd)> T ) e
a Q

1 ‘U‘p*(a,bﬂ 1 ’u‘ah}’ﬁ
- doe — —— SR o B el IR
p*(a, by) / |p[b2p" (@52) x a—i—ﬁ/Q(x)\x—xo\Cp*(a,C) x,
Q Q

for each (u,v) € W. Then J € C*(W,R).

Lemma 1. Assume that N > 3,0 < p < @, (Hy), hy # 0 and (u,v) is a weak solution of
problem (1). Then there exists a positive constant d depending on N, ||, |hi|oo, Apus, 51, 52 and q
such that

_p_
J(u,v) > —dAr—q.

Proof. Since (u,v) is a weak solution of problem (1). Then, note that (J'(u,v), (u,v)) = 0, we
have

|uf? |vf?

), (,0) = [ (19l = iy el 00l = iy ) o=

|u|q |U|q |u|p (a,b1)
—)\/h(ac) <|x|dp*(a,d) + |x|dp*(ad | |b1p (a,b1) o
Q

p*(a,b2) B
[ e —/Q S 1 9)
Q

’x‘bgp (a,b2) 1. — o ’cp (a 9]
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Now, by using hy # 0, (9), (7), the Holder inequality and the Sobolev — Hardy inequality, by a direct
calculation, one can get

q p
) 22188 (5= g ) A (G~ ) PolSmad) P ihelt] 2 x5
Here dq := sup,, ,ecq [* — y| is the diameter of 2 and d is a positive constant depending on N, [€2],
|h+|00, Su,ad, bla b2 and q.

Lemma 1 is proved.

Recall that a sequence (uy,, vy )nen is a (PS). sequence for the functional J if J(uy,,v,) — ¢
and J'(uy,v,) — 0. If any (PS). sequence (u,, vy, )nen has a convergent subsequence, we say that
J satisfies the (PS). condition.

Lemma 2. Assume that N > 3,0 < p <, (Hy), hy # 0 and Q(0) = 0. Then J(u,v) satisfies
the (PS). condition with ¢ satisfying

_p_
¢ < ¢y :=minf* — dAP—q. (10)

Proof. 1t is easy to see that the (P.S). sequence (uy, vy )nen of J(u,v) is bounded in W. Then
(Up,vn) — (u,v) weakly in W as n — oo, which implies u,, — u weakly and v, — v weakly in
WO1 P(Q) as n — oo. Passing to a subsequence we may assume that

_ _ _ ~ |ulP —
ap p ap p R
|x| " P|Vuy, [Pdx — @, |z| " |V, [Pde — a, D dx — f3,
|v|P ~ | [P (@:01) _ |0y, [P (@:02) _
|z|p(a+D) dz — B, |z|brp* (a.b1) = |x|b2p*(a,bz)dx -7
Q(x) " [vnl” de — v

|Qj — X0 |Cp* (a,c)

weakly in the sense of measures. Using the concentration-compactness principle in [15], there exist
an at most countable set I, a set of points {z;}ic; € Q\ {0}, real numbers @, , az,, dz,, i € I, @,
ag, bo, by, ¢, ¢o and dg, such that

&> o P|VulPde + ) Gr,0p, + b0, &> 2] P|VolPdz + Y g0y, +dodo, (1)

i€l iel
B—ﬁdwﬁé g—ﬂd:ﬁ—gé (12)
— |$|p(a+1) 000, — |$|p(a+1) 000,
e e
Y= |x|b1p*(a,b1) + 6060, Y= |x|b2p*(a,b2)dx + 6060, (13)
a8
v = Q) ST Qs + QUO)dod, (14)
o — a2

where J, is the Dirac-mass of mass 1 concentrated at the point x.
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794 N. NYAMORADI

First, we consider the possibility of the concentration at {x;};,c; € 2\ {0}.
Let € > 0 be small enough, take 7,, € C°(Bac(x;)), such that 77$i|Bg(m,-) =1,0<m,, <1and

|V, (x)] < g Then
0(1) = (J" (un, vn), (0 tm, 715, vn)) =

= [ el TP 2V (0 ) + el F el 20, (0, 00) d—

e}

|t | |vn|ﬁ P [, [P |vy, [P
/Q |z — xq|P* (@ 12 — mg|eP(@c) i Ao —p |x|p(a+1)n§i + |z|P(a+D) M, | d —
Q Q

()

unl? | |7 B | [P (@:01) . |, [P (@:02)
—A [ h(x) nb + nb ) dx — P de+ | ————nP dx
|ap|dp™ (ad) i T | gp|dp* (a,d) T || brp* (a,b1) i || b2p* (a,b2) i
Q Q Q

(I1) (I17)

From (12)—(14), one can get

lim lim (/) = lim /nﬁidg—{—/nmldﬁ =0,

e—0n—o0 e—0
Q Q
(15)
. L » B . _
it (110) = iy | [zt i) <0, it (1) =0
Q Q
and
L un|*oal® ‘
il—%nh—{go/Q (=) |z — xo|P" |z — ol (@a) " M A = hm 7 dv = Q(zi)dz;.
Thus,

0 = lim lim (|x|_ap|Vun|p_2VunV(77£iun) + |x|_ap|an|p_2anV(n£ivn)) dr — Q(x;)dx;.

e—~0n—oo
(16)

Moreover, by a direct calculation, we have

lim lim /|:U|_“pun|Vun|p_2Vunv77§idx =

e—0n—o0
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= lim lim /|£C|_a(p_1)|$|_aun|vun|p_2vunvnxldx <

e—>0n—

Db
p*

< C'lim / |z~ = 0.
e—0
Bs($z)

Similarly,

lim lim /]w\_‘”’vn\V@n\p—QVunVﬂ%dw = 0.

e—0n—o00
Q

Combining (16) —(18), there holds

0 = lim lim (’x‘—apmwvun‘p + ‘x’—apmwvvn‘p)dx - Q(xz)da:, =
€

—0n—o0
Q

— 1 vY ~)) .
il—{% (%ida + Wxida) Q(xl)dxi'

Q
On the other hand, (6) implies that
_p
R NUSAGTNC
i N T ¥n
2 3 dw <
U /Q 2 — ol (* :

’x‘p(aJrl)

_ _ Up P+ N vn P
= / (’ﬂ PIV (e, un) [P+ [2]7P |V (02, 00) [P — 'umxz 2 ] > -
Q

Note that

lim lim /|x|_“p|Vnmi|p|un|pdx = lim lim /|x|_ap|V77$i|p|vn|pd:c:O,
e—0n—o0

e—~0n—o0

together with (17) and (18), we obtain that

e—~0n—oo

im i ap Pdp — —ap P
i%nlgngo/|x| N2, Vup [Pdr = lim lim /|x| |V (N, un)|Pde,

e—0n—o0

. . ap p — ap
ilgg)nll_)H;O/|x| [Nz, VU [Pdz = lim lim /|x| |V (N, vn) [Pd.

The relations (14), (15) and (20)—(22) imply that
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795

)

(18)

(19)

(20)

e2))

(22)



796 N. NYAMORADI
7}75#,047@(170 (Q(zi)dz,) P (ac < hm/|771 |Pdar + hm/|771 Pda. (23)

Combining (19) and (23),

1 p

p Sﬂvaﬂ,a,c (Q(xi)dmi)p*(a,c) < Q(Cﬂl)d%, (24)
Q%
which implies that
. 1 __ N
either Q(z;)dy, =0, or Q(z;)dy, > N paiisd (Spa8,a,c)Plat1=e). (25)
@™

Now, we consider the possibility of the concentration at 0.
For € > 0 be small enough, take 19 € Cg°(B2:(0)), such that no|p. o) = 1, 0 < 79 < 1 and

Vo (x)| < g Then
o(1) = {J'(tn, vn), (MGun, 0)) =

—a _ p un
:/]w‘ PIVu,|P QVunV(ngun)dx—,u andx—)\/h(x)‘ ’|dp lad dz—
Q Q 5

|un|p*(a’bl) P a |un|a|vn|ﬁ

_f el T _ P
|:!3|b11”‘(0hbl)770al:C a+f
Q Q

7 — | (@) 04T

From (12)-(14) and Q(0) = 0, we obtain that

o wal? o p a1 Jup [P (a-b1) (“bl L

sg%nl—{go |x|p( a+1) | zplat) T4 0 z—:g%nl—)rgo |x|b1p abl dr = ¢
and

i%#&/Q x_$wauﬂxi%£& o) et =0
Q
Thus,
0= hr% lim / 2| |V, [P~ 2V, V (nhu, )dz — pibo — Co. (26)
e—=0n—

Note that

lim lim [ |2 %u,|Vu, [P~ Vu, Vihdr = 0,

e—>0n—o0
Q
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together with (26), there holds

lim /ngda — uby = .
e—0
Q

On the other hand, (5) implies that

Sﬂ/vavbl 7dl‘

Thus

Note that

_p
!noun!p*@vbl) p*(a;b1)

|x|b1p* (a,b1)

e—0n—o0

Q

</ (|x|—“p|v<noun>|p—u|

p
Span @@ < lim lim / ([~ |V (o) [Pz — 1o,
Q

e—0n—o0

lim lim /|x|_ap|770Vun|pdx = lim lim
Q

together with (28), there holds

e—0n—oo

p
_p*(ab . -
S,u,a,blc(z]) (@b1) < il_{%/’nofpda—,ubo-
Q

Therefore, from (27) and (29),

which implies

similarly,

S,u,a,blag < Co,
that
N
either 6o =0, or ¢y> 5,(:;214’1),

either ¢o =0, or

Recall that u,, — u weakly and v, — v weakly in Wo"* (€, |z| %), we have

1/
p

ISSN 1027-3190.

c+o(l) = J(up,v,) =

_ [ty — ulP B [
ap _ p_ ap _ p_ _
<|x| |[Vu, — VulP — p 2P + |z|"*P| Vv, — V| ,u7|x|p(a+l) dx
1 ’un — u‘p*(aybl) 1 ‘Un — U’p*(avbQ) d
Tpiabn) ) P e T praby) ) bl
Q Q

Yrp. mam. ocypnu., 2015, m. 67, Ne 6
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/ 2|7V (o) P,
(9]
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@7

(28)

(29)

(30)
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(32)
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|un, — ul®|v, — U’B

PR— ) dzx + J(u,v). (33)
On the other hand, from o(1) = J'(uy,vy,), we obtain that
J (tup,vy) = 0. (34)

Thus, 0 = (J'(u,v), (u,v)). Together with o(1) = (J'(upn, vy ), (un,vy)), there holds

_ |ty — ulP |v, — 0[P
— ap p_ ap p_ _
o(1) = / <\x! |Vu, — VulP — u 2P + |z|7®| Vv, — VolP — 2P dx
|1y, — w[P"(a:b1) [vn — vfP"(@02) Uy — u|*|vp — v)?
|x|b1p*(a,b1) - |CE|b2p (a bg Q |1E — xo|€p*(a,c) dz. (35)
Q

From (33)-(35) and Lemma 1,

1 1 |un *7 1 |/U ’U|p ab2
)>(-- - -
”0”—<p p*(a,bn) o (@) d“<p b>/ e
Q

— oyl —_ |8
+ (5w ) [ o, (36)
Q

p  p*a,c) |z — zo|P" (@)

Passing to the limit in (36) as n — oo, we have

1 1 \. (1 1 \. (1 1 »
¢= <1_7 p(a, b1)> ‘ot <1_) "~ p*(a, bg)) co + (1_, " pH(a, c)) ;Q(%)dwz —dAr=a. (37)

By the assumption ¢ < ¢, and in view of (25), (31) and (32), there holds ¢y = ¢y = 0, Q(x;)dy, =0,
i € I. Up to a subsequence, (uy,v,) — (u,v) strongly in W as n — oo.

Lemma 2 is proved.

If the restriction Q(0) = 0 is removed, we establish the following version of Lemma 2.

Lemma 3. Assume that N > 3,0 < p < i, (Hy) and hy # 0. Then J(u,v) satisfies the (PS).
condition with c satisfying

*(a,by) 1 a5 (ab) 1 e
. p*(a,b1) — p p*(ab1)-p  p*(a,b) —p p*(a,b2)—p
c<cy:=miny ————— [ =8 ab> , <—S ab> :
i { pp*(a,b1) (p e pp*(aby) \p "
p*(a.c)
Pa,0) ~p . Ls redm L e 38
pp*(a,c) N—p(a+1—c) ]_) o, Bya,c - . ( )
1Qllos

Proof. The proof is similar to Lemma 2 and is omitted.
Here, we recall a recent result on the extremal functions of S, , 5 [4].
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N —
Lemma 4 [4]. Assume that 0 < a < P

ya<b<a+land0 < p <. Then S, .y is

attained when Q = RY by the radial functions

X/E(x)éﬂhﬂ,’]a)(/p,ﬂ(%) Ve > 0, (39)
that satisfy
_ |Ve(2)]? |V () |P" (@) P ac)
ap P _ — — (a,c)—
[ (v = o Yo = [N e = (50007 @07,
Q

where U, ,,(x) = Uy ,(|x|) is the unique radial solution of the following problem:

. a _ |u|P~2u [P (@:0)=2q, _
~div(a VUV ey = e e RAOh

ue WHRY), w>0, in RY\{0},

with

Up (1) = (W)ﬁ

p

Furthermore, Uy, ,, have the following properties:

}i_)n% r Wy, (1) = Cy > 0, Tgrfoo P, (1) = Cy > 0,
lim r* DL ()] = Cra(p) >0, Jim PO UL (r)] = Cof(n) > 0,

where C;, i = 1,2, are positive constants and o(u) and B(u) are zeros of the function
FO=@-1F = (N-pla+D))" " +pu (>0, 0<u<p,
that satisfy

N —pla+1) N—p(a—i—l).

0<
<a(p) < p—

<B(p) <

Furthermore, there exist the positive constants Cs = C3(, p,a,c) and Cy = Cy(, p, a,c) such that

a(p) B\ ° _
< Uyt (¥ ) <y, 5= NorlerD)

Lemma 5. Under the assumptions of Theorem 2, there exists (uy,v1) € W\{(0,0)} and A; > 0,
such that for 0 < X\ < Ay, there holds

_p_
sup J(tuy, tvr) < Y(u, o, B,a,c) — dAP—4. (40)
>0
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Proof. First, we will give some estimates on the extremal function V¢ (x) defined in (39). Let
Ve(z) be the function in Lemma 4, p > 0 small enough such that B,(0) C 2, ¥ € C5°(B,(0)) with

0<% <1in B,(0) and ¢ = 1 in B, /5(0), then the function given by [4]:

satisfies
p*(a,c)
Jtellp = (Spae) P @I=P 4+ O <€6(u)p+p(a+1)fN> ,
|ue [P" (@) p*(a.c) ) N
o] o 4 = (Spac)P(@)=P + 0O <e(5(u>+c)p (a.0)- > ’
€T )
—dp* _ .. N —dp*(a,d)
ceN dp*(a,d) q(S, if , <q< p* a.d),
|ue |9 ]%(N)d “(a.d) (a,d)
Ue B ) dp*(a,
B — Ce?Br)—=0) |1 f gz 904
|x|dp*(a,d) T = € ‘ n(e)‘)a I q 5(,&) *
CealB=0), it 1<g< Nod(ed)
Bk
whereé:w<ﬁ(‘u)g%.

Now, we consider the functional : W — R defined by

|uf?

1 ,a —a ol
1) = 3 [ (I 190 iy + 90 = i ) e
Q

1 ul*lol?
_ S o IO ol
p*(a,c) /Q(x)|x—x0|cp*(a,0) *
Q

43)

Let u; = a'/Pu,, v; = BYPu, and define the function g1(t) := J(tug,tvy), t > 0. Note that
limg 4 o0 91(t) = —00 and g1(t) > 0 as t is close to 0. Thus sup;~( g1(t) is attained at some finite
te > 0 with ¢/ (t.) = 0. Furthermore, C' < t. < C”; where C’ and C” are the positive constants

independent of e. We have

I(tug.tv)) = | o+ 3 —ap| 7y, [P uel” 1\ g
(tur, tvr) = E(OH‘ ) ||~ Vue| _MW x

Q

tp* (O/,C)

*(a,c)
(aa/pﬁﬁ/p)/Q(yO)Ldg;] _
Q

P (a.¢) [ — ol @

tp* (a,c)
p*(a;c)

|ue [P (@)

dz =

(a®/P §5/P) / Q) — Q)

Q

‘x — X ‘ cp* (a,c)
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tp* (avc)

p*(a,c)

|ue [P (a:€)

= y(tuy, tvy) — dx. (44)

T —x cp*(a,c)
|z — o

mwwwm/ﬂxm—Quw>
Q

Note that
p*(a,c)

P p*(a.c) 1 1 A p*(a,c)—p
ap (LAt p :<__ > . . AB>0. (45
t>0 \ P p*(a,c) P p*a0) Bp*(ac)

From (Hs), (41), (42) and (45) it follows that straightforward

1 1 1 p*(a.0) -
supy(tug, tvy) < (1—) - p*(a,c) N—p(atl—c) (Spep,a,c) @977 + 0O (eﬁ(“)p“’(“ﬂ) N).
> , N—plarli—c)
= 1Qlloc"

(46)

On the other hand, (H2) implies that there exists 71 < r, such that for z € B, (yo), |Q(z) — Q(x0)| <
< Clx — x0|?. Thus

|ue|P” (@)

[ @@ - @) " sds) < € [ @) - Q) e -
Q

& — wo[or @0 T

o — o fud”

¢ ] Thmmeres 9T
Bar(z0)
= O(!~P"(@0)) (47)
From (44), (46), one can get
igg I(tuy,tvr) = I(teuy, tevr) < Y(p, o, B,a,¢) + O <eﬁ(“)p+p(“+1)_N> . (48)

Observe that there exists A7 > 0, such that for 0 < A < A} and

_p_
Y(p,a,B,a,c) —dA\P—4 >0,

Then for 0 < A < Aj, there exists ¢; € (0, 1), such that

1 _p_
sup J(tup,tvy) < sup —tp/ (|z|~®|Vur |P + |z]|~P|Voi [P) do < Y(u, a, B,a,¢) — dAP—a.
0<t<ty 0<t<t: P

On the other hand, we have

q p*(a,bl) p*(avbl)
/ h(m) ‘ul, t ’ul,

A
. 3 "
sup J(tulg tvl) S sup I(tula tvl) q t ‘x’dp* (a,d) p*(a’ bl) ‘x’blp* (a’bl)
Q

t>t1 t>t1
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q tp*(a’bl) p*(a,b1)
< sup |:I(tu1,tvl) — ét({/h(:c)ilul‘ dr — -1 [u1] dx| <
q
Q

@ @D b)) Jafr e

<Y(u, o, B,a,¢)+ 0O <€B(M)p+p(a+1)—N> B

Jue [P @0) |uc|?
—C P @) ————dx — \C o] Tidp (ad)
From (42),
‘Ue‘p*(a’bl)

b (@i = © (P00 @Y.
(o1 a,01

Also, from (43), it follows that

|ue|? |ue|?
_ > _ >
/h(x) |x|dp*(a’d) dw — ﬂo |x|dp*(a,d) d.%' -
Q Q

—dv* (ad)— .. N —dp*(a,d)
CeN—dp™(a.d)—qs if ———"2 < q<p*(a,d),
o © (%d)
> { CetBW=9)1n(e)]), if q= — ﬁé’ )(“’ ).
Cea(B()=0) if 1<q< Y- (0d)
Bw)
N _ *
Since ¢ > Y= (@) 50y (52) we have
Bu)
sup J(tuy, tvy) < T(p, a, B,a,¢) + O <€B(u)p+p(a+1)*N> 10 <€(ﬁ(u)+b1 >p*(a,b1>fN) _
t>t1
CeN—dp™(ad)—qs if w < q < p*(a,d)
A ]%(M)d “(ad)
C'e?B)=9) | In(¢)]), if g= P9
| In(e)]) M)

Note that B(u)p +pla+1) — N < (B(p) + b1)p*(a,b1) — N, then we have

sup J(tuy, tv1) < Y(u, o, B,a,¢) + O (e(ﬁ(qul)p*(“’bl)_N) -

t>t1
CeN-dp (ad)-a if Y0 G pra,a),
-\ J%(M)d *(a,d)
CetBW=9|1n(e)|), if q=— L DD
" 1n(e)|) 3(n)

(50)

62

(52)

(53)
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N — dp*(a,d)

Note that N > p?, B(u) > . Thus

[N — dp*(a,d) - qa]f% < B(u)p+pla+1) = N — [N — dp*(a,d) — q0].

Choose A = €, where [N —dp*(a,d)—q¢d] ]% <7 < B(p)p+pla+1)—N—[N—dp*(a,d)—qd].

Then
_p_ pT

MNO(N—dP (@d)=ad) — O(T+N=dp™(ad)=ad)  and  dAP—a = O(ep—1).

T 74N —dp*(a,d) —qd < B(p)p+pla+1) — N, taking

Since 7+ N — dp*(a,d) — gd <

€ small enough we deduce that there exists § > 0, such that

p P
0 <e<ﬁ<“>+b1>p*<avb1>—N) —NO(N W @Dy - _g\D=a WA 0 < AP <4, (54)
Choose A; = min {A’l‘, ué} . Then for all A € (0,A;) we have
p

_p_
sup J(tuy, tv1) < Y(u,a, 5, a,¢) — dAP—4.
t>t1

Together with (49), we get the conclusion of Lemma 5.
3. Proof of the main results. Proof of Theorem 1. Let

ri= H(U,U)H,
f(r):= lrp L s P ppiab)

P (ax)
_ S P pptab) _ 1 S P oQ|
p*(a, b2) H,a,b2 p* (a, C) Ho,B,a,¢ oo

From (6) and (7),
J(u,v) = f(r) = h(r),

Note that p < p*(a, b1), p*(a,bs), p*(a,c), it is easy to see that there exists o > 0 such that f(r)
achieves its maximum at g and f(g) > 0. Therefore, there exists Aj; > 0, such that for 0 < A\ < Ay,

" in)i|"| I(u,v) > f(0) — h(0) > 0. (55)
u,v)||=0

On the other hand, set B, = {(u,v); ||(u,v)| < o} . For (u,v) # (0,0), we can choose d > 0 small
enough, such that (du, dv) € B, and

I(du,dv) < 0. (56)
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Thus,

—o0o < inf  I(u,v) <0. (57)
(u,v)EByg

Now we can apply the Ekeland variational principle in [16] and obtain {(u,,v,)} C B,, such that

1

I(up,vy) < inf  I(u,v) + —, 58
(i) < inf 1(0,0) + (58)

1
I(un, vp) < I(u,v) + — | (un = u, v = V)], (59)

for all (u,v) € Br. Define

1

J1(u, v) = J(u,0) + — || (un = u, vp = V). (60)

By (59), we have (uy,vy,) is the minimizer of Ji(u,v) on B,. (55), (57) and (58) imply that there
exists € > 0 and k& € N, such that for n > k, {(u,v), ||(u,v)| < o — €}. Therefore, for n > k and
(¢,) € W, we can choose ¢ > 0 small enough, such that (u,, + t¢, v, + t¢) € B, and

J1 (U, + td, vy + t@) — J1 (U, vp)

> 0.
7 >
That is,
J(Up + tp, v, + ) — J(Up, vy 1
( Lol T tn) 4 Ly, gy = 0 (61)
n
Passing to the limit in (61) as » — 0, one can get
1
<J,(un, Un)a (Qb, g0)> > _EH(gb’ QD)H’
which implies that
, 1
[ (un, vn)|| < —. (62)
n
Combining (58) and (62), there holds
lim J(up,v,) = inf J(u,v) <0, 63
Jim_ J(up, vp) Wt (u,v) (63)
lim J(ty,,v,) = 0. (64)
n—o0

We note that there exists Aj; € (0,A11), such that for 0 < A < Ajy, and ¢o > inf(, e, 1(u,v),
where cq is defined in Lemma 3. Thus, (63) and (64) and Lemma 5 imply that for 0 < A <
< Aiy, (up,vn) — (u,v) strongly in W. Therefore, (u,v) is a nontrivial solution of problem (1)
satisfying J(u,v) = inf(, )ep, J(u,v) < 0. Note that J(u,v) = J(|ul,|v|) and

(lul, [o]) € {(u, v), [[(u, 0)] < 0 — €},
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we have I(|ul,|v]) = inf(,ep, J(u,v) and J'(|ul, |v]) = 0. Then problem (1) has a nontrivial
nonnegative solution. By the strongly maximum principle, we get the conclusion of Theorem 1.

Proof of Theorem 2. 1In view of the proof of Theorem 1, we know that for 0 < A < Aqq,
there exists ¢ > 0, such that inf}(y, )= I (v, v) > ¥ > 0. Moreover, (63) and (64) hold. We note
that there exists Ajo € (0, A1), such that for 0 < A < Ajg, ¢ > inf(y v)eB, J(u,v), where c, is
defined in Lemma 2. Thus (63) and (64) and Lemma 2 imply that (u,,v,) — (u,v) strongly in
W. Standard argument shows that for 0 < A < Ajs, problem (1) has at least one positive solution
satisfying J(u,v) < 0 and J'(u,v) = 0.

Now we prove a second positive solution. It is easy to see J(0,0) = 0. Set A** = min{Aj2, A1},
where A; is given in Lemma 5. Then it follows from Lemma 5 there exists (u’,v") € W\ {0}, such
that for 0 < A < A**,

sup J(tu, tv') < c,.
>0

On the other hand we obtain that lim; ., J(lu',lv") = —oo. Thus there exists I’ > 0 such that
|(Uu U] > o and J(I'u',I'v") < 0. Let

c:=inf sup J
€L ¢e(0,1] ),

where

= {y € C%([0,1],W) | 7(0) = (0,0), ¥(1) = (I'u/,I'"V) } .
Thus, it follows from the Mountain pass theorem in [14] that there exists a sequence (uy,v,) € W
such that

nlLHgO J (U, vp) = ¢

and
lim J' (ty,vy,) = 0.

n—oo

Moreover, ¢ € (0, ¢, ). From Lemma 2, (uy,, v,) — (@, v) strongly in W, which implies that J (@, v) =
= c and J'(u,v) = 0, Therefore, (u,v) is a second nontrivial solution of problem(1). Set u™ =
= max{u, 0}, vt = max{v,0}. Replacing

|u|? et o | [P" (@:b1) i
|x|dp (a,d) |x|dp (ad |x|b1p*(a,b1) ’
Q
,U,p*(a,bz) " Q ‘u, Mﬁ
‘x’bgp*(a,bg) ) ’x_wolcp ac)
(uh) p (vT)e p (lbl)
|z|d" (@) |z|dp" (@) x|b1p e @
Q Q

(UJr)p*(bz) )6
o e Q o= wo’c” o —zgrea
Q
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and repeating the above process, we have a nonnegative solution (u,v) of problem (1) satisfying
J(u,v) > 0. Then by the strongly maximum principle, we have a second positive solution.
Theorem 2 is proved.

4. Symmetric solution. In this section, similar to the method in [6], we prove the existence of
infinitely many G-symmetric solutions of problem (2).

The corresponding energy functional of problem (2) is defined by

j(“ v) = ! 2|~ [VulP — Mﬂ + |z|7®| VP — ,uih}'p do—
or) EEGR [Pl D

) e ol juf*[ol?
-5 [ 10 (s + e +5/ O e Y
Q

First, we present some notations and definitions that will be used in this section. Let O(N) be
the group of orthogonal linear transformations of RY with natural action and let G C O(N) be a
subgroup with the property that Fix{G} = {0}, where Fix{G} = {z € RY: gz = x Vg € G} is
the fixed point set of the action of G on RY. For 2 # 0 we denote the cardinality of G, = {gz:
g € G} by |Gz| and set |G| = infy,cpn |Gz|. Note that, here, |G| may be +o00. We call Q a
G-symmetric subset of RY | if € Q, then gz € Q for all g € G. For any function f(x) defining on
RN, We call f(z) a G-symmetric function if for all ¢ € G and € RY, f(gx) = f(z) holds. In
particular, if f is radially symmetric, then the corresponding group G is O(N) and |G| = +oco. Other
further examples of G-symmetric functions can be found in [17].

For a bounded and G-symmetric domain Q@ C RY, 0 € €, the natural functional space
to study problem (2) is the Banach space Wg(Q2) = W;’g(Q, |z|~9P) x W;’g(Q, |z|~?P) which
Wl’p (9, |z| %) is the subspace of W, P (€, |2|~%P) consisting of all G-symmetric functions.

Lemma 6. Assume that N > 3,0 < pu <, hy # 0and Q € C(Q) (N L>®(Q) is G-symmetric.
Then J(u,v) satisfies the (PS). condition in W¢; with ¢ satisfying

p*(a,c)
* _ 1 (a,c)—
Ry s S <_Su,aﬁ,a,c>p( . (66)

pp*(a, c) N-platl=c) \ p
Qe
Proof. The proof is similar to the Lemma 3.3 of [6] and the Lemma 3 and is omitted.
Corollary 1. If |G| = oo, then the functional J satisfies (PS). condition for every c € R.

To prove Theorem 3 we need the following version of symmetric mountain pass theorem (see
[14], Theorem 9.12).

Theorem 4. Let E be an infinite dimensional Banach space and F € C'(E,R) be an even
Sfunctional satisfying (PS). condition for each ¢ and F = 0. Further, we suppose that:

(i) there exist constants & > 0 and p > 0 such that F > & for all ||u|| = p;

(ii) there exist an increasing sequence of subspaces {E,} of E, with dimE,, = m, such that
for every m one can find a constant R,;, > 0 such that F < 0 for all u € E,, with ||u|| > R,,.

Then F possesses a sequence of critical values {c,, } tending to oo as m — oc.
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Proof of Theorem 3. The proof is similar to that of Theorem 2.2 in [6]. From o+ 8 = p*(a, ¢),
the Young inequality and (5) it follows that

/Q 2 |u|a|v|5 4 || Q|00 |u|a+ﬁ . B11Qllos |,U|04+B
|£C — $O|Cp*(a,c) - a+ ﬁ |$ _ x0|cp a,c) o+ ﬁ |£C _ xo|€p*(a,c) >
Q Q
]| Qoo L Bl1Qlso _pila)
< P p*(a,c) S P p*(ac) 67
< rta e Swee) 7l 4+ Sae) ol (©7)

So, by (7), (65) and (67), one can get
J(z) = J(u,v) >

1

SRS

1 _
>l + S 01 = ADo(Spaa) 2l + 10—
Qe o LDy BlQe -l
_ p p*(a,c) _ P p*(a,c)
e S 7 ) — TS (S [l

Since 1 < ¢ < p < p*(a,c), we see that

- 1 B g
J(2) > 12| L—)nzup T XDo(Spad) ] _

|| Qllos _p*(a0) . Bl1Qlos _p*(a0) .
- S, ae P ||z|P (@) - El¥lo g P ||z||P (@0,
g Buead)” el s Buad)” el
p*(a,d)—q

Nuoy B~
N — dp*(a,d)

(a,d)
Now, taking ||z|| = p such that pP~7 = 2p\ < ) (Sa.a)” P > 0 with

A > 0. Finally, we take B > 0 such that

~ g ., .
J(Z) > )\DO(Sp,a,d) ppq - ﬁpp (@) _ ﬁpp (a:c) >0

for every z = (u,v) € Wg(Q2) and ||z|| = p. Therefore, there exist @ > 0 and p > 0 such that
J(z) > @ for every z with ||z|| = p.

On the other hand, to find a suitable sequence of finite dimensional subspaces of W (2), we
set w = {x € Q;Q(x) > 0}. Since the set w is G-symmetric, we can define W (w), which is the
subspace of G-symmetric functions of W|q—,. By extending functions in Wg(w) to 0 outside w
we can assume Wg(w) C Wg(Q2). Let {E,,} be an increasing sequence of subspaces of W (w)
with dimFE,,, = m for each m. Now, we take @1 m,...,Pmm € C5°(2) such that 0 < ¢;,,, < 1,
supp(@i,m) [1supp(@jm) = @, @ # j, and [supp(p;im)(w| > 0, for all 4,5 € {1,...,m}. Let
€im = (0Pim,bpim) € Ep, i =1,...,m, and E,,, = span{ei m,...,emm}, where a,b are tow
positive constants. By construction, dimFE,,, = m. Now, for z = (u,v) = Z:: tim€im € Ky, one
can get
B

‘u’ ‘U‘ﬁ 1 ‘Zz 1 zm@zm‘ zmgpi,m
Oc—i-ﬁ ]m—x!cl’ ¢ a+ 3 \x—xolq’ aC
w
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then there exists a constant C'(m) > 0 such that

al,,|B
a+5/Q [ul*]v] P _gr > e(m), forall (u,v) € By, with ||z] = ||(u,0)] = 1.

|$ _ x0|cp (a,c)

Consequently, if 0 # u € E,,, then we write z = (u,v) = (tuy,tv1), with t = ||z|| and ||(u1,v1)|| =
1. Thus we have

~ ~ 1 P* (ax) luy|®|v1|®

J(2) < Jo(u,v) = =7 — L _ om0 <
p

—— dx
a+f |z — xo|P (@) ™ ~ p
w

for ¢ large enough. By Corollary 1 and Theorem 4 we conclude that there exists a sequence of critical
values ¢, — 00 as m — 0.
Theorem 3 is proved.
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