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p-REGULARITY THEORY. TANGENT CONE DESCRIPTION
IN SINGULAR CASE

TEOPIA p-PET'YJIAPHOCTI. OIIUC JOTUYHOI'O KOHYCA
B CUHI'YVIAPHOMY BHUITIAJIKY

We present the new proof of the theorem which is one of the main results of the p-regularity theory. This gives a detailed
description of the structure of the zero set of an singular nonlinear mapping. We say that /': X — Y is singular at some
point zg, where X and Y are Banach spaces if ImF’(zq) # Y. Otherwise, the mapping F is said to be regular.

HagenieHO HOBE JJOBEICHHS TEOPEMH, LIO € OHUM 3 OCHOBHHX PE3yJIbTaTiB Teopii p-peryispHocti. JlaHo neraibHHMil onuc
CTPYKTYpH MHOXMHH HYJIIB CHHIYJISIPHOTO JiHilHOrO BimoOpaxkenHus. Kaxytb, mo F': X — Y € CHHTYIspHHUM y TOHI
xo, e X Ta Y — GaHaxoBi npoctopH, skmo ImF’(zo) # Y. B NpoTHIEKHOMY BHIAIKY BifloOpakeHHs F Ha3HBa€ThCS
PEryJsApHUM.

A description of the solution set in regular case of the equation
F(z) =0, ey

where X, Y are Banach spaces, we may obtain by means of the Lyusternik theorem, which says that
the tangent cone of the solution set is equal to the kernel of the first derivative of F' evaluated at
some point xg € X.

In this paper we consider the case when the regularity condition does not hold, i.e., Im F'(z¢) #
# Y, but the mapping F' is p-regular. Let us remind the definition of p-regularity and construction of
p-factor operator [1, 2].

For F': X — Y, p-times Fréchet differentiable mapping, we construct the p-factor operator under
the assumption that Y is decomposed into a direct sum

Y=Y1&..8Y, ©)

where Y7 = Im F’(x¢) (the closure of the image of the first derivative of F' evaluated at z), and the
remaining spaces are defined as follows. Let Z; = Y, Z5 be closed complementary subspace to Y;
(we assume that such closed complement exists), and let Pz, : Y — Z5 be the projection operator
onto Z, along Y;. Let Y» be the closed linear span of the image of the quadratic map Py, F) (x¢)[]2.
More generally, define inductively,

Y; = spanIm Pz, FO (x)[ ' C Z;, i=2,...,p—1,

where Z; is a choice of closed complementary subspace for (Y7 & ... ® Y;_1) with respect to Y,
i=2,...,pand Py, : Y — Z, is the projection operator onto Z; along (Y1 ®...® Y;_1) with respect
toY,i=2,...,p. Finally, Y, = Z,. The order p is chosen as the minimum number for which (2)
holds. Now, define the following mappings (see [3, 7]):

Ji:U=Y filz)=PyF(x), i=1,...p,
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1098 A. PRUSINSKA, A. TRET’YAKOV

where U is a neighborhood of =g, Py,: Y — Yj is the projection operator onto Y; along (Y1 & ...
. BY, 1 @Y1 ®...eY,) withrespectto Y, i =1,...,p.

If F)(xq) =0, where i = 1,...,p — 1, then we say that F' is completely degenerate at xy € X
up to the order p.

Note that

i we)y=0, i=1,... k=1, k=1,..p. 3)
Definition 1. The linear operator Ay, € L(X,Y1 & ... &Y),) is defined for some h € X by

1
(p—1)!

Ap(z) = fl(xo)x] + fo(xo)[h, ] + ... + ) (zo)[hy ..., hya], x€ X,

and is called the p-factor operator.
We will also use more exact notation A, = (Ap1 + Apo + ...+ Ap ), where

1 -
M= G )i, k=1

It is also convenient to use the following equivalent definition of p-factor operator Ap€ L(X, Y x...
... x Y,) for some fixed h € X,

Ap(z) = <f{(x0)[x],fg(xo)[h,x], . @jl)!f;m(xo)[h, s h, x}), zeX.

Note that in completely degenerate case the p-factor operator has the form F(®)(zq)[h]P~!.

In other words, we construct a decomposition of ,,non regular part” of the mapping F' on partial
mappings f; in such a way that all of those mappings are completely degenerate up to the order i — 1,
where : = 2,...,p.

For our further considerations we need the following generalization of the notion of regular

mapping.
Definition 2. We say that the mapping F is p-regular at xo along h if

ImA;, =Y.
Let us introduce a corresponding nonlinear operator
Olal = f{(wo)la] + f (wo) @l + ... + FP (wo)[a?
and k-kernel, k = 1,...,p of F(%) (z0),
Ker® F) () = {h e X : F®) (z0)[]* = o}.

It is easy to see that W[h]P = Ap(h).
Definition 3. We say that the mapping F is p-regular at xg if it is p-regular along any h from
the set

m@w%{ﬂKwﬁ%m%\w}
=1
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Let us consider two examples of p-regular mappings.
Example 1. Let us consider the equation (1) with
2} — a3 + 23 + 23
F(z) = , =€ R3,
(@) x%—x%+x§+x2$3+x§
F: R — R?, x9 = (0,0)T. It is easy to verify F'(x) = (0,0)” and it is obvious that F’(zg) is not
surjective. However, the mapping F' is 2-regular at xg. Indeed,

2 0 0
0 -2 0
0 0 2
F"(0) =
2 0 0
0 -2 1
0o 1 2
and
1 1 1 ) 1
Ker?F"(0) =spang | 1|, | -1 ¢, h=11], h=1|-1],
0 0 0 0

where F"(0)h = <§ :; (1)> , F"(0)h = (; ; 02> are not degenerate, which means that

the condition of 2-regularity of F' at x is valid.
Example 2. Consider the type of (1) equation

Au— (e —10)g(u) =0

on Q = [0, 7] x [0, 7] in R? with u = 0 on 9. If we denote F(u,c) = Au — (¢ — 10)g(u), then the
mapping F'(u,e) is 2-regular at the point (ug,£9) = (0,0) (see [7, p. 403], Example 1).

For a linear surjective operator A: X ~— Y between Banach spaces we denote by A~! its right
inverse. Therefore A=': Y — 2% and we have

Ay ={z e X: Az =y}
We define the norm of A~! via the formula

||A_1H = ||51H1p1 inf{HxH cx € A_l(y)}.
y =

We say that A~! is bounded if |[A7!|| < occ.
Lemma 1 [4]. Let X and Y be Banach spaces, and let A € L(X,Y). We set

C(A) = sup (yll =" inf{l|z]|: = € X, Az = y}).
yey
IfTm A =Y, then C(A) < oo.
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We shall give a ,multivalued” generalization of the contraction mapping principle that is of
independent interest. Let distyr( A1, A2) be the Hausdorff distance between sets A; and As.

Lemma 2 (contraction multimapping principle) [4]. Let Z be a complete metric space with dis-
tance p. Assume that a multimapping

®: B(zg,¢) — 27,

on a ball B(zy,e) = {z: p(z,20) < €} (¢ > 0) where the sets ®(z) are non-empty and closed for
any z € B(zo,¢). Further, assume that there exists a number 6,0 < 0 < 1, such that

1) distH(@(zl), @(zg)) < 0p(z1, z2) for any z1, z9 € B(2p,¢),

2) p(z0,®(20)) < (1 —0)e.
Then, there exists an element z € B(z, ) such that

z € P(z2). @)
Moreover, among the points z satisfying (4) there exists a point such that
2
[z = 20| < mﬂ(%ﬂ’(%)) &)

Now we introduce an inverse multivalued operator for Ay as follows:

Nt = {ee X (AGold Bt 2P hd) = e )

where y = (y1,...,yp) and y; € Vi, i =1,...,p.
Definition 4. The mapping F' is called strongly p-regular at the point xq if there exist v > 0
such that

sup [[A, | < oo,
heH,

where

H,Z {h €X: Hf,gk)(azo)[h]k‘ Wi <vk=1....plh] = 1}'

The following theorem is a generalization of the Banach open mapping theorem.
Theorem 1. [f||A; || < oo, then there exists C(h) > 0 such that

_ Y Y
Izl < e (Il + el ++ - ol ),

where h # 0,y = (y1,...,yp) and y; € Y, i =1,...,p.
The proof was given in [6].
The next theorem was first given and proved in [3, p. 158]. We give new improved proof of this

theorem.
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Theorem 2. Let X and Y be Banach spaces, U a neighborhood of ©o € X andlet F': U —Y
be a (p + 1)-times continuously Fréchet differentiable mapping in U. Assume that F is strongly
p-regular at xy. Then there exists a neighborhood U' C U of the point xo, a mapping n — x(n):
U’ — X and constants 31 > 0 and B2 > 0, such that for n € U’ :

F(n+xz(n)) = F(xo), (6)
Hfz fz 330 HY
lz(n)llx < B Z Hn w1 )
and
p .
lz(m)llx < B2 Y Ifi(n) — filzo)lly,'- ®)
=1

Before stating the proof of the theorem, we prove the following lemma.

Lemma 3. Let all the assumptions of Theorem 2 hold. Then for any € > 0 there exist constants
d > 0 and R > 0 such that for any h € X, ||h|| < § and for any x1, x2 € X, ||z;]| < ||h||/R,
1 = 1,2, the following estimation is satisfied:

HF(Q?O + h—i—ml) — F(JJ() + h—i—ajg) — Ah(xl — QTQ)HY =

= |[fi(zo + h 4 @1) — fi(zo + h 4 22) — fi(zo) [h] (21 — 22) ||y, +

fo(zo +h+21) = fp(zo + h+ 22) — v _1 0 £ (o) (WP~ (21 — @2)

<

Yp

p
<& bl ey — 2.
=1

Proof. First we prove that for any £ = 1, ..., p inequality

< sup
0€[0,1]

<

Yk

fu(@o+h+21) = fr(zo + h+x2) - G _1 D)1 20 (o) [W]F (w1 — 22)

fr(xo+h+x1 + 20+ 0(x1 —x2)) — ! fék)(wo)[h]kfl

(k—1)! lz1 — z2llx (9

Yy

is satisfied.
By Taylor’s expansion,

fe(zo+h+z1 + 20+ 0(21 — 22)) =

1 —
= f];(l'o) +..o+ (k’ — 1)'flgk)(‘r0) [h—{—fﬂg —|—9(CL’1 - xz)]k ! +Wk(x0,haxlam279)a

where ||wy (0, h, 21, 22,0)|| = o([|[wo + h + x1 + z2 + 6]]).
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Let € > 0 be sufficiently small number. Define

2 2 4p—
R =max {1, i S}

h
” ” 1 =1,2,s0

By an assumption, z; <
|lzo + h+z1 + 22+ 6] < 4|
The last inequality yields
Hwk(aﬁg,h,xl,xQ,H)H = 0(Hh||k*1).

Then there exists 0 > 0 such that for ||h|| < ¢ and z; < H | , © = 1,2, the inequality (9) holds and

(|wr (o, hy 21, 22, 0)]] < thHk_l-

By (3), (9) and the last estimation we obtain

‘ fk(xo + h + .Tl) - fk($0 + h + $2) — (k_]-]_)lflgk) (xo)[h]kfl(xl o 582) S
1 1
< s || oy (@ollh +aab(en —22))* ! = e i o) (e —azl+
2
A o = sl (10)

Let us observe that forany k=1,...,p — 1,

k—1 .
I (@o) [+ w2 + 0(x1 — 2)]" " = Z Ci_ o 1P (o) [h]F " [y + O(a1 — 29)] =

O+ A o )

We may estimate the second term in the last equation. Since

3|k
Hm +0(x1 — xQ)H < |L2H7
then
S £ @) (B + B2y — 2)])|| <
3 h 4k—1
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Thus by definition of R,

k=1 4
>~ b fi o) 1 [z + 0wy — )] < (k= DGR

The last inequalities and (10) yield for k =1,...,p

1
|t et an) = S+ 0 20) = s O ) o - )| <
<§hk—1 Ehk—l _ — c|[plE-L _
< | IRl™ + Sl |1 = @af| = €| AI" [z — @2
Hence fork=1,...,p
L w k-1
fk($0+h+x1)*fk($o+h+x2)*(k_l),fk () [h]" ™ (z1 — 22)|| <
< el|all* iz — 2] (11)

Adding up the inequalities in (11) for £k = 1, ..., p finishes proof of the lemma.
Proof of Theorem 2. Let us consider U as a sufficiently small neighborhood of x( and divide
our consideration into 2 cases.

Case 1. We consider n € U such that h,, = o

Y
H ” & H,, that is there exists k& < p such that
nm— o

Hf,ﬁk) (o) [Py
or
| £ @) = ol | > Alin = ol ™

Taking x(n) = n — xo we get

1
15u(0) = ool = | g 8wl = ol + )| 2 57l = ol
where [|wi(n)]| = o(”n - x0||k). Hence,
S 2k || fi(n) = fr(xo)ll _ 2K! 5~ 1 fi(n) = fiwo)
[zl = [In — 2ol < TR Z Hn—xolll :

which finishes the proof of the first case.
=%

Case 2. We consider all n € U such that h,, = I H
n—Zo

€ H,, and hence fori=1,...,p

12 (@o)n = wol* || < lIn = woll’,

where + is a sufficiently small number that does not depend on 1. We also use notation h = 1 — xg.
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h
Let suppep, A, ]| = C < oo. Note that by, = 7 — x¢ and h,, = —— € H,, the statement of

h
Theorem 1 holds with C'(h) = C for all h = n — x. "
Let ¢ > 0 be a sufficiently small number such that p!C's < 1. Then Lemma 3 and inequalities (11)
imply that there exist numbers ¢ and R, such that Bos(0) C (U—2¢),0 < <r,andfork =1,...,p,
and h € Bg(O) x1,T2 € B||h/RH(0)a

C(k—1)! 1 _
H(h\k—l) fe(wo +h+z1) — fe(zo +h + 22) — 1) ék)(xo)[h]k Yoy —z9)|| <
< C(k —1Dleljzg — x2|. (12)
Adding up the inequalities in (12) for k = 1,...,p we obtain
p
Ck—-1)! 1 k _
Z ||(h||k_1) ‘ fe(zo+h+z1) — fr(xo + h + 22) — Wfé V(o) [1]F (21 — @0)|| <
k=1 '
< oz — o (13)
with o = p!Ce. Note that 0 < o < 1.
Let us define r(h) = ||h||/R and a neighborhood V' C B;(0) such that
p
C(k—1)!
> St itz + 1) = fulan)] < (1= ar(i) (14)

k=1

for all i € V. Such a neighborhood exists by the definition of the set /., and property (3).
Now let us fix an element ~ € V' and consider multivalued mapping

CI)h . Br(h)(o) — 2X, CI)h($) =T — Agl (F(afo + h+ 33) — F(.%()))

Because of the choice of the number r(h) and the neighborhood V' for all z € B,.(;,)(0) and h € V/
we have xg + h+z € U.

For any y € Y the set A,:ly is a linear manifold parallel to KerAy,. Thus the set ®5(x) is closed
for any z € B, (0).

Next we verify that all assumptions of Lemma 2 are satisfied for ®;,(x) with B,.(;(0) and wo = 0.
First, it will be shown that assumption 1 of the mentioned lemma holds for all z1, x2 € B, (0).
We have

diStH((I)h(iL‘l), <I>h(x2)) = inf {||z1 — ZQH 1z € ‘I’h(l‘i),’i = 1,2} =

= inf{Hzl — ZQH . Ahzi = Ahl'i — F(.’L'() +h+.’L‘i) +F(a}0), 1= 1,2} =
= inf{”z”: fi(xo)z = fi(wo) (w1 — x2) — fi(wo + h+x1) + fi(wo + h + x2),. ..

T (p _1 1)!fzgp)(ﬂfo)[h]p_1z =
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— (p_l 1)!f15p)(:ro)[h]p—1(x1 —x9) — fplwo+h+h1) + fp(zo+ h+ x1)}. (15)
By Theorem 1 and (13) we get

dista(®p(x1), Pp(r2)) =
Fi(wo) (21 — 22) — fr(zo +h +x1) + fi(zo + h + 29)
= ||A,! : <

(p —1 1)!f’(’p) (z0)[RIP (21 — 22) — fp(zo + A+ h1) + fp(zo + b+ 21)

_Z |h||k 1

U o + bt 21) — fulwo + b+ w2) - £ o) [p)F (1 — wa) || <

1
(k—1)!

< afla; - 2o

for all z1, x2 € B,(1,)(0).

Hence the assumption 1 of the lemma holds.

Next we verify that assumption 2 is also satisfied. Using the approach similar to above we get
by (3), (14), and (15),

dist (0, @4, (0)) = inf {”ZH : fi(xo)z = fi(zo + h) — fi(zo),

B (p—l 1)'f1§p) (xo)[h]k’—l[h]p—lz = fp(xo +h) — fp(xo)} <

<y St Mo 1) = el < (1= a)r(h).

k=1
Then for any h € V' the mapping ®,(x) satisfies assumptions of the Lemma 2. Hence there exists
x(h) € ®p(x(h)) which means that
0€ A (F (2o + h+ x(h) — F(xo)).
Thus F(xg + h + x(h)) = F(zo) forall h € V.
In addition, by (5),

p
0000 2 =5 3 g I+~ Aol

o]l < 5

fr(xo+h)—f
_512 | fi (o - k(iUO)H’

Cyp!

forall h € V, and 5, = T
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Taking x(n) = z(h) and U’ = 29 + V we obtain that (6) and (7) hold for all € U".
Note that

fr(xo +h) — fr(zo)
[A]lF=1

< Ch| fulzo + h) — fulzo)|*/*

forall k =1,...,pand h € V, with some C; > 0. Then inequality (7) implies (8) with 83 = C1pf
which ends the proof of the theorem.
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