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HYPERSURFACES WITH NONZERO CONSTANT
GAUSS - KRONECKER CURVATURE IN M"+1(+1)*

T'IEPIIOBEPXHI 3 HEHYJIbOBOIO NOCTIHHOIO KPUBU3HOIO
FAYCA - KPOHEKEPA B M™+1(+1)

We study hypersurfaces in a unit sphere and in a hyperbolic space with nonzero constant Gauss—Kronecker curvature
and two distinct principal curvatures one of which is simple. Denoting by K the nonzero constant Gauss—Kronecker
curvature of hypersurfaces, we obtain some characterizations of the Riemannian products S™ !(a) x S*(v1 — a2),

a’ = 1/(1+K”%2) or S" " (a) x HY(—V/1+ a?), a® = 1/(}(% —1).

BuBYaIOThCS TiMEpHOBEpXHi B OXMHUYHINA cdepi Ta B rinepOOIiuHOMY MPOCTOpPi 3 HEHYJIbOBOIO IOCTIHOI KPHBU3HOIO
layca—Kponekepa Ta ABOMa pi3HHMU TOJOBHHMH KpuBH3HaMH (??77), 0fHA 3 SIKHX € TpocToro. SIkmo K — 1e HeHylIboBa
nocrtiitHa kpuBH3Ha ['ayca — KpoHekepa rineproBepXxoHb, TO JEsKi XapaKTEPHUCTHKH PIMAHOBUX TOOYTKIB MOKHA OTPHMATH

y B S (a) x S'(VI—a?), a® =1/(1+ K7-7) a6o S" " (a) x H (—V/I+a2), a® = 1/(K 72 —1).

1. Introduction. Let /" be an n-dimensional immersed hypersurface in a real space form M"+1(c),
c==1. Ifc=1or c= —1, we call M"*'c a unit sphere or a hyperbolic space. We notice that
there are many important rigidity results for hypersurfaces with constant mean curvature and two
distinct principal curvatures, see [1, 9], or with constant scalar curvature and two distinct principal
curvatures, see [5, 6]. Since the Gauss—Kronecker curvature of M™ is also an important rigidity
invariant under the isometric immersion, it is natural for us to ask such a question: if the nonzero
Gauss — Kronecker curvature is constant, can we obtain any rigidity results?

In this note we try to study hypersurfaces in M"*!(c) (¢ = 41) with nonzero constant Gauss —
Kronecker curvature and two distinct principal curvatures one of which is simple. We introduce the
well-known standard models of complete hypersurfaces with constant Gauss— Kronecker curvature
in M"1(c) (c = £1).

When ¢ = 1, we consider the standard immersions S™*(v/1 — a2) < R***+1 and S*(a) —
< RFF! where 0 < a < 1, 1 < k < n — 1, and take the Riemannian product immersion
Sk(a) x S" k(1T —a2) — S"*1(c) C R™2, then it has two distinct constant principal curvatures

V1-—a? a
Alz...:)\k:T, Ak—’—l::)\n:_ﬁ,

respectively. We easily see that the Riemannian product S*(a) x S"~*(/1 — a2) has constant Gauss —
k
V1—a? < a
V1—a?
_2_

fundamental form and the mean curvature of S"1(a) x S*(v/1 — a?), where a® = 1/(1 + Kn-2),
are

n—k
Kronecker curvature K = > . The square of the norm of the second

a
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2
AP =(n—1)Kn—2 + K n-2,

1 1 1
H = —{(n - 1)|K[n=2 — [K| n=2}.
n
When ¢ = —1, we consider the standard immersions H" *(—/1 + a2) < R 1 and

Sk(a) < RF1 where @ > 0, 1 < k < n — 1, and take the Riemannian product immersion
Sk(a) x H" *(—v/1+a%) — H"(c) € R?™2, then it has two distinct constant principal curva-
tures

S S VP G
1=... k o MR " e

respectively. We easily see that the Riemannian product S*(a) x H" *(—+/1 + a2) has con-
Vite) [

) (=
of the second fundamental form and the mean curvature of S" !(a) x H!(— m), Where
2 = 1/(K% —1), K > 1, and S'(a) x H" (=1 + a?), where a? Kn n=2/(1 —Kn n=2)
K <1, are

n—k
stant Gauss—Kronecker curvature K = ( > . The square of the norm

2

A =(n—-1)Kn—2 + K~
+ K

1

L
-2

H="{(n— )K" )

2
We obtain some characterizations of S"~1(a) x S'(v/1 —a2), a®> = 1/(1 + Kn—2

x HY(—V1+ a?), a®> = 1/(K% —1):

Theorem 1.1. Let M™ be an n-dimensional with n > 3 complete smooth connected and oriented

) and S"(a) x

hypersurface in M™Y(c) (c = 41) with nonzero constant Gauss — Kronecker curvature K and two
distinct principal curvatures one of which is simple.
(1) Whenc=1, K <0, if

_2_
2

AP < (n—1)Kn=2 + K n-2,

or
|A]2 > (n—1)Kn 2 4 K n-2,

2
then M™ is isometric to the Riemannian product S"(a) x S*(v/1 —a?), a®> =1/(1 + Kn—2

2) When c= -1, K > 1, if

)-

2
AP < (n— 1)K =2

or

|AP? > (n—1)Kn 2 4 K n-2

2
then M™ is isometric to the Riemannian product S"(a) x H*(—v1+a?), a®> = 1/(Kn-2 —1).
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Theorem 1.2. Let M™ be an n-dimensional with n > 3 complete smooth connected and oriented
hypersurface in M™Y(c) (c = 41) with nonzero constant Gauss — Kronecker curvature K and two
distinct principal curvatures one of which is simple.

(1) When c=1, K <0, if

1 1 _ 1
H < {(n— 1)|K[72 — | K| 77},

or

1 1 1
H > —{(n—1)|K[n=2 — ¢[K| n-2},
n

2
then M™ is isometric to the Riemannian product S"(a) x S*(v/1 —a?), a®> =1/(1 + Kn-2),
2) When c= -1, K > 1, if
1 1 1
H < —{(n—1)|K[r=2 — c|K| n=2},
n
or

1 1 1
H = —{(n - 1)|K[n=2 — ¢[K| n=2},
n

then M™ is isometric to the Riemannian product S"'(a) x H'(—v/1+ a?), a® = 1/(K$ -1).

2. Preliminaries. Let M""!(c) be an (n+1)-dimensional connected Riemannian manifold with
constant sectional curvature ¢ (¢ = +1). Let M™ be an n-dimensional complete smooth connected
and oriented hypersurface in M"*1(c). We choose a local orthonormal frame ey, ..., e, 1 in
M"*1(c) such that ey, ..., e, are tangent to M™. Let wy,...,wy11 be the dual coframe. We use
the following convention on the range of indices:

1<ABC,...<n+1, 1<ij,k ...<n.
The structure equations of M™*1(c) are given by

dwa =) wapAwp, wap+wpa=0,
B

1
dwap = ZWAC NweB +QaB, Qap = —3 Z Kapcpwe ANwp,
C C.D

Kapcp = c(6acdBp — 04pdBC),

where 245 and K4pcp denote the curvature form and the components of the curvature tensor of
M"H1(c), respectively.
Restricting to M™,

Wnt1 =0, @.1)

Wntli = Zhijwja hij = hji, (2.2)
J
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where h;; denotes the components of the second fundamental form of M™. The structure equations
of M™ are

dw; = E wij A\ wy, wij+wj¢:0,
J

1
dwij = Zwik ANwij + Qij, Qij = 3 Z Rijklwk A wi, (2.3)
% Tl
Riji = c(0idji — dudji) + (hixhji — hahjk), (2.4

where ();; and R;;;; denote the curvature form and the components of the curvature tensor of M™,
respectively. From (2.4), we have

n(n —1)(r —c¢) = n’H? — |A]?,

where n(n — 1)r = R is the scalar curvature, H is the mean curvature and |A|? is the squared norm
of the second fundamental form of M".

The function K = det(h;;) is called the Gauss—Kronecker curvature of M™. We choose
e1,...,en such that h;; = \;d;;, then we see that K = det (hsj) = MA2...\,. From (2.2) we
obtain

wn+1i:)\iwi, i:1,2,...,n.

Hence, we get from the structure equations of M™",

dwni1i = dN Aw; + Nidw; = dA\ Aw; + A Z wij A\ Wj. (2.5)
J

On the other hand, we have on the curvature forms of M"*1(c),

1
Qnt1i = —5 > Knjiicpwo Awp =
C.D

1
=3 Z c(0n+109ip — bnt1pdic)we ANwp = —cwpi1 A w; = 0.
C.D

Therefore, from the structure equations of M"™*!(c), we obtain

dwpy1; = Z Wnt1j A Wji + Wngint1 AwWniti + Qng1i = Z Ajwij A wj. (2.6)
J J

From (2.5) and (2.6), we get

dX\; N\ w; + Z()\z — /\j)wij Nwj = 0. 2.7)
J

Putting

Yij = (N — A\j)wij, (2.8)

we have 1);; = 1;;. Hence (2.7) can be written as
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Z('@Z}U + 51](1)\]) Nwj = 0.

J

By E. Cartan’s Lemma, we get

Yij + 0ijdNj = Z Qijrwr, (2.9)
%

where ;1 are uniquely determined functions such that
Qiji = Qikj-

3. Proofs of theorems. The following Proposition 3.1 original due to Otsuki [7] is useful.

Proposition 3.1. Let M™ be a hypersurface in a real space form M"™1(c) (c = £1) such that
the multiplicities of the principal curvatures are constant. Then the distribution of the space of the
principal vectors corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal curvature is constant
on each integral submanifold of the corresponding distribution of the space of the principal vectors.

Let M™ be an n-dimensional complete smooth connected and oriented hypersurface with two
distinct principal curvatures one of which is simple and n > 3, that is, without loss of generality, we
may assume

)\1:)\22...:)\7171:)\, )\n:,u,

where \; for ¢ = 1,2,... n are the principal curvatures of M". Thus, we have

K=\"14
From K # 0, we conclude that A # 0. By changing the orientation for M"™ and renumbering
€1, ...,en if necessary, we may assume that A > 0. Thus

K
K= -1’ (3.1
AP —K
0#FN—pu= S (3.2)

We denote the integral submanifold through x € M™ corresponding to A by M {‘_l(x). Putting
n n
A=) Nkwr,  dp=)Y W,
k=1 k=1
from Proposition 3.1, we get
M=A2=...=XAp 1=0 on M (z). (3.3)
From (3.1), we obtain

dp = —(n;\nl)Kd)\. (3.4)

Thus, we also have
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pa=f2=...=pp-1=0 on M (). (3.5)

In this case, we may consider locally A as a function of the arc length s of the integral curve of the
principal vector field e, corresponding to the principal curvature p. From (2.9) and (3.3), we get,
for1<j<n-1,

n n n—1
Anwn =Y Niwi=dA=d\j =Y Qjjwr = ¥ _ Qjjktk + Qjjntn-
i=1 k=1 k=1
Therefore, we obtain
ijk = 0, 1< k <n-— 1, and ijn = )\,n . (36)

By (2.9) and (3.5), we have

n n n—1
Ponwn = D piw; = dp = dAy =Y Quakwk = ) Qunkwi, + Quanwn-
i=1 k=1 k=1
Hence, we obtain
Quik =0, 1<k<n-1, and Quun = fiyn- (3.7)
From (3.4), we get
Qunn = Hyn = —(nj\nl)K/\,n.

From the definition of v;;, if ¢ # j, we have ¢;; =0 for1 <7 <nm—-1and1<j <n-—1.
Therefore, from (2.9),ifi#jand 1 <i<n—1land 1 <j <n—1 we have

Qi =0, forany k. (3.9)
By (2.9), (3.6), (3.7) and (3.8), for j < n, we get

Yijn = Z Qjnkwi = Qjjnwj + Qjnnwn = A\ wj. (3.9)
k=1

From (2.8), (3.2) and (3.9), for j < n, we obtain

o w]n _ )\77L Wi = An_lAanw'
CA—p A=—p AN —K

w]'n

Thus, from the structure equations of M"™ we have

n—1
dw,, = Zwk A Wk + Wnn A wy, = 0.
k=1

Therefore, we may put w,, = ds. By (3.3), we get

dA = Apds, A, = @
ds
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Thus, we obtain

— n 1
B A\ 1%w:d(lo@m — K|n)
T K ds

w;. (3.10)

From (3.10) and the structure equations of M"*1(c), for j < n, we have

n—1
dwjn = Z Wik N Win + Win A Wnn + Wint1 N Wntin + an =
k=1
n—1
= E Wik N Win + Wint1 A Wntin — CWj A Wp =
k=1

dl )\n_Kl/n n—1
_ (Og‘ r ‘ )ijk/\wk_()\u—|—c)w]'/\d8.

k=1

Differentiating (3.10), we obtain

_ (log A" — K['/") d(log |\" — K|'/™)

dwjn, = 752 ds N\ wj + 75 dw;j =
d?(log |\" — K|Y/™) d(log |\" — K|'/m)
= 12 ds N\ wj; + s Wik AWy =
k=1
2
d*(log [\" — K['/™) | d(log |\ — K|'/™)
1 ds? + ds wj A Fds
d(log |\" — K[/™)
pdlog ¥ KIS
5 k=1
From the previous two equalities, we get
d(log |\ — K|V") [ d(log |X" — K|'/")
— - =0. 11
752 7 AM+¢)=0 (3.11)
If we define w = |A\" — K|~/ from (3.11) we have
d2
CF L m(\utc) =0. (3.12)

ds?

On the other hand, from (3.10), we have V. e, = Zil wni(en)e; = 0. By the definition of
geodesic, we know that any integral curve of the principal vector field corresponding to the principal
curvature p is a geodesic. Thus, we see that w(s) is a function defined in (—oo, +00) since M™ is
complete and any integral curve of the principal vector field corresponding to p is a geodesic.

We can prove the following lemma.

Lemma 3.1. I[fc=1o0r c= —1and K > 1, then the positive function w is bounded from
above.
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Proof. From (3.2), we know that A — K # 0. Thus (3.1) and (3.12) imply that

d?w A2+ K
I +w e =0, (3.13)

that is

d2
df b [c—l—K(Kiw m2/n-1] — . (3.14)
D dw . .
Multiplying (3.14) by 2d— and integrating, we get
s

2
<a§v> +cw? + (K +w )" = C,
s

where C' is a constant. Thus, we obtain

+(K+w ™" < Q. (3.15)

_w2

If the positive function w is not bounded from above, that is, w — +o00. From (3.15), we have that
¢+ K?/™ <0, a contradiction with the assumption. Thus we conclude.

We can also prove the following lemma.

Lemma 3.2. (1) Let

Pr(t)=ct n YLK, t>0.

(1) For ¢ =1, if K < 0, then Pk (t) is a strictly monotone increasing function of t and has a
positive real root ty = (—K)ﬁ;

(ii) For ¢ = —1, if K > 0, then Pk (t) is a strictly monotone decreasing function of t and has
a positive real root tg = K %

(2) Let

1
|A2(t) = Ty (G )2 + K2}, t >0,

to=(—K )ﬁforc—lK<0andt0—Kﬁforc——l K > 0. Then

() Ift > |K| and to > |K|, then t < to holds if and only if |A]2(t) < (n — V)t2/™ + t52/™ and
t > to holds if and only if |A|*(t) > (n — 1)t2/n +t_2/n,

(i) Ift < |K| and ty < |K]|, then t < to holds if and only if |A|*(t) > (n — 1)t2/n+t_2/n nd
t > to holds if and only if |A]?(t) < (n — 1)t 2/n+t_2/n

(3) Let
1

H(t) = ntn—1)/n

{(n=1t+ K}, t>0.

Then
(1) For c=1, K < 0and tg = (—K)n=2, if t > K, then t < to holds if and only if

n — n . . 1 n — n
H(t) < {(n—l)tl/ —ty Y } and t > to holds if and only if H(t) > E{(n—l)t(l)/ —tol/ s
(il) For c=—1, K >0 and ty = K72,
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]' n — n
(@) if t > K and tog > K, then t < ty holds if and only if H(t) < g{(n — l)t(l)/ +1, 1

} and
. . 1 1/n —1/n
t > to holds if and only if H(t) > —{(n — 1)t/ +t, '}
n

1 n —1/n
(b) if t < K and to < K, then t < to holds if and only if H(t) > ~{(n— Dt/ +t5""} and

1 n - n
t > to holds if and only if H(t) < —{(n — 1)ts/" +t;/"}.
n
Proof. (1) Obvious fact.

(2) We have
Al2 2Un — 1 (2—3n)/n
AP _ 2= D@
dt n
) . d|A|%(t) ) .
it follows that the solution of o 0 is t = |K|. Therefore, we know that ¢t < |K| if and

only if |A|%(t) is a decreasing function, ¢ > | K| if and only if |A|?(t) is an increasing function and
|A|?(¢) obtain its minimum at ¢t = |K|.

If ty > |K|, since t > |K]| if and only if |A|?(¢) is an increasing function, we infer that if
t > |K|, then ¢t < to holds if and only if

AP () < |AP(to) = (n—1)tg + K*} =

1
S L
tg(n_l)/n

= W (TL— 1)t0+ |:<Ct0 +K> —Cto :| =

n—2

2
= 2(ril)/n{(n_1)t3+ [—cto” ] } = (n =1t + 17",
tO

where ¢ =1, tg = (—K)% and K <0Qorc= -1, tg = K% and K > 0. By the same reason,
the rest of case (2) follows.
(3) Since
dH (t) __n-1 (t
dt n2t2n—1)/n

- K),

we see that H(¢) is an increasing function if ¢ > K and H(t) is a decreasing function if ¢ < K,
then it follows the result of (3).
Proof of Theorem 1.1. Putting ¢t = \"(> 0), from (3.1), we see that the square of the norm of

K? 1
2 _ (1122 _ 12 21 _ 412
second fundamental form |A|* = (n — 1)A\* + 20D t2(n_1)/n{(n Dt + K2} = |AJ“(t).

From (3.13), we have

d’w P (t
g2 T % t"_(Q) =0. (3.16)

(1) When ¢ = 1, we consider two cases ¢t > |K| and ¢ < |K].
Case (i). If t > |K|, we also consider two subcases |K| > tg and |K| < ¢y, where ¢y =
_n_

= (—K)n—Q'
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If | K| > to, since t > | K|, we get t > ty. Since we assume that K < 0, by Lemma 3.4, we infer

d? d
that Py (t) > Pk (to) = 0. From (3.16), we have d—? < 0, this implies that 12(3) is a strictly
s

5
monotone decreasing function of s and thus it has at most one zero point for s € (—oo, +00). If
dw(s)

has no zero point in (—oo, +00), then w(s) is a monotone function of s in (—oo, +00). If

5
dw(s . . . . .
A has exactly one zero point s in (—oo, +00), then w(s) is a monotone function of s in both

(—o%,so] and [sg, +00).
On the other hand, from Lemma 3.2, we know that w(s) is bounded. Since w(s) is bounded
and monotonic when s tends to infinity, we know that both lim,_, o, @ (s) and lim,_, . w(s) exist
and then we get
lim dw(s) _ lim dw(s)
8§——00 ds s§—+00 ds

= 0. (3.17)

This is impossible because is a strictly monotone decreasing function of s. Therefore, we

s
know that the case |K| > to does not occur. It follows that |K| < tp.
If |[K| < to, since t > |K|, from Lemma 3.2 and (3.16), we have

AR < (o VK2 o a3 — (112 1 =2m
A2 < (n- DK + K (n = 1)t + 152",

2
holds if and only if ¢ < tq if and only if Py (¢) < 0 and if and only if ‘il—f > 0. Also
S

AR>S (o VK2 o a3 — (112 1 =2m
Al > (n—1)K + K (n—1)ty/ " +t,7",

d? d
holds if and only if ¢ > #, if and only if Pk (t) > 0 and if and only if —df < 0. Thus dﬂ is
s s
d
a monotonic decreasing function of s € (—oo, +00), this implies that TZ(S) has at most one zero
s

dw(s)

ds
w(s)

point for s € (—o0,+00). If has no zero point in (—oo, 4+00), then w(s) is a monotone

function of s in (—oo, +00). If has exactly one zero point sg in (—o0, 4+00), then w(s) is a
monotone function of s in both (—oo, s¢] and [sp, +00). Therefore, we see that w(s) is monotonic

when s tends to infinity. Since w(s) is bounded and monotonic when s tends to infinity, we know that

both lims_, _ w@(s) and lims_, o w(s) exist and (3.17) holds. From the monotonicity of YZ(S),
s
d
we have dC) = 0 and w(s) = constant. Combining @ = |A\" — K|~!/" and (3.1), we conclude

that A and p are constant, that is, M™ is isoparametric. From the classical result of Cartan [3] (see
also [4, p. 238]), we know that M™ is isometric to the Riemannian product " !(a) x S'(v/1 — a?),

2
where a? = 1/(1 + Kn-2).

_n_
Case (ii). If t < |K/|, we consider two subcases |K| < to and |K| > tg, where tg = (—K)n—2.
If |K| < to, since t < |K|, we have t < t;. From K < 0 and Lemma 3.2, it follows that

d? d
Py (t) < Pg(tp) = 0. From (3.23), we have d—? > 0. Thus Z(S) is a strictly monotone
s s
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increasing function of s. By the same arguments as in case (i), we conclude that |K| < ¢y does not
occur, then |K| > ty.

If | K| > to, since t < | K|, from Lemma 3.2 and (3.16), we have that |A|?> < (n— 1)t§/n—|—ta2/n
2

holds if and only if ¢ > ¢ if and only if Px(¢) > 0 and if and only if Cfi—f < 0. Also |A? >
s

> (n — 1)75(2)/” + t62/n holds if and only if ¢t < ¢ if and only if Px(¢) < 0 and if and only if

d? . .
—? > 0. By the same arguments as in the proof of case (i), we conclude.
(2) When ¢ = —1, we also consider two cases ¢t > | K| and ¢ < |K]|.

_n_
Case (i). If t > | K|, we consider two subcases |K| > tg and |K| < to, where tg = Kn—2.
If |K| > to, since ¢ > |K|, we have ¢ > ty. Since we assume that X > 1, by Lemma 3.2,

d? d
we infer that P (t) < Pg(ty) = 0. From (3.16), we have T? > 0, this implies that Z(S) is a
s s

strictly monotone increasing function of s and thus it has at most one zero point for s € (—o0, +00).
By use of the same method as in the proof of case (i) in (1), we know that the case |K| > ¢y does
not occur. It follows that | K| < tg.

If |K| < tp, since t > |K|, from Lemma 3.2 and (3.16), we see that

AR < (o VK2 a3 — (112 1 =2m
A2 < (n— DK + K (n = 1)t + 152",

2
holds if and only if ¢ < ¢¢ if and only if Px(t) > 0 and if and only if Cil—? < 0. Also
s

AR > (n— )Km? 4 K3 = (n— 1)/ 4 42
A" =2 (n-1)K»-2 + K ==t +1,7,

d? d
holds if and only if ¢ > to if and only if Px(t) < 0 and if and only if d—f > 0. Thus d—w is a
s s
monotonic function of s € (—o0, +00). By use of the same method as in the proof of case (i) in
(1), we conclude that A\ and p are constant, that is, M™ is isoparametric. From the classical result
of Cartan [2] (see also [8] or [4, p. 238]), we know that M™ is isometric to the Riemannian product
2

S (a) x HY(—V1+a?), a> =1/(Kn2 —1).
n_
Case (ii). If t < |K|, we consider two subcases |K| < to and |K| > o, where tg = Kn-2.
If |K| < to, since t < |K|, we have t < tp. From K > 1 and Lemma 3.2, it follows that

d? d

Pr(t) > Pg(typ) = 0. From (3.16), we have d—? < 0. Thus Z(S)
s s

decreasing function of s. By the same arguments as in case (i) of (1), we conclude that |K| < ¢

does not occur, then | K| > tp.

is a strictly monotone

If | K| > to, since t < | K|, from Lemma 3.2 and (3.16), we have that |A|?> < (n— 1)t§/n—|—ta2/n
2

holds if and only if ¢ > ¢ if and only if Px(¢) < 0 and if and only if Cfi—f > 0. Also |A* >
s

> (n — 1)75(2)/” + t62/n holds if and only if ¢t < ¢y if and only if Px(¢) > 0 and if and only if

d2
—? < 0. By the same arguments as in the proof of case (i) of (2), we conclude.

Theorem 1.1 is proved.
Proof of Theorem 1.2. (1) When ¢ = 1, since we assume that K < 0 and t = \"(> 0), we see

n
that t > K. From tg > K, where ty = (—K)n—2, Lemma 3.2 and (3.16), we see that
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1 1 o1 1 n —1/n
H < —{(n—1)|K[7=2 = |K[ 772} = —{(n— 11" 5"},

d2
holds if and only if ¢ < ¢, if and only if Px(¢) < 0 and if and only if d—f > 0. Also
S

1 1 o1 1 n —1/n
H > —{(n—1)|K["=2 — K772} = —{(n— Dty 5"},

2

d d
holds if and only if ¢ > ¢ if and only if Pk () > 0 and if and only if d—f < 0. Thus d—w is
S

S
a monotonic function of s € (—oo,+00). By use of the same method as in the proof of (1) in
Theorem 1.1, we know that M™ is isometric to the Riemannian product S"~!(a) x S'(v/1 — a?),

where a? = 1/(1 + K%)

(2) When ¢ = —1, since we assume that K > 1, we consider two cases ¢ > K and t < K. By
Lemma 3.2, we see that the function w is bounded. It suffices to use the same method as in the proof
of (2) in Theorem 1.1.

Theorem 1.2 is proved.
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