UDC 512.5

Sh. Asgari* (Univ. Isfahan, and School Math., Inst. Res. Fundam. Sci. (IPM), Tehran, Iran), **A. Haghany** (Isfahan Univ. Technology, Iran)

RINGS WHOSE NONSINGULAR MODULES HAVE PROJECTIVE COVERS КІЛЬЦЯ, ДЛЯ ЯКИХ НЕСИНГУЛЯРНІ МОДУЛІ МАЮТЬ ПРОЕКТИВНІ ПОКРИТТЯ

We determine rings R with the property that all (finitely generated) nonsingular right R-modules have projective covers. These are just the rings with t-supplemented (finitely generated) free right modules. Hence, they are called right (finitely) Σ -t-supplemented. It is also shown that a ring R for which every cyclic nonsingular right R-module has a projective cover is exactly a right t-supplemented ring. It is proved that, for a continuous ring R, the property of right Σ -t-supplemented as equivalent to the semisimplicity of $R/Z_2(R_R)$, while the property of being right finitely Σ -t-supplemented is equivalent to the right self-injectivity of $R/Z_2(R_R)$. Moreover, for a von Neumann regular ring R, the properties of being right Σ -t-supplemented, right finitely Σ -t-supplemented, and right t-supplemented are equivalent to the semisimplicity, right self-injectivity, and right continuity of R, respectively.

Визначено кільця R з тією властивістю, що всі (скінченнопороджені) несингулярні праві R-модулі мають проективні покриття. Це ϵ саме кільця з t-доповненими (скінченнопородженими) вільними правими модулями. Таким чином, вони називаються *правими* (*скінченно*) Σ -t-доповненими. Також показано, що кільце R, для якого кожний циклічний несингулярний правий R-модуль має проективне покриття, ϵ в точності правим t-доповненим кільцем. Доведено, що для скінченного кільця R властивість правої Σ -t-доповненості еквівалентна напівпростоті $R/Z_2(R_R)$, а властивість правої скінченної Σ -t-доповненості — правій самоін'єктивності $R/Z_2(R_R)$. Крім того, для регулярного кільця фон Ноймана R властивості правої Σ -t-доповненості, правої скінченної Σ -t-доповненості та правої t-доповненості еквівалентні відповідно напівпростоті, правій самоін'єктивності та правій неперервності R.

1. Introduction. Let R be a ring and C be a class of right R-modules. For some special classes C, the property of having a projective cover for each element of $\mathcal C$ characterizes R. In [5], Bass studied the rings R for which every element of C has a projective cover, when C is the class of all right R-modules (resp., cyclic right R-modules). He called such rings right perfect rings (resp., semiperfect rings). An excellent reference for a thorough study of these rings and their applications is [14]. When \mathcal{C} is the class of semisimple right R-modules, each element of \mathcal{C} has a projective cover, if and only if, R is right perfect; see [21] (43.9) and [17] (Theorem B.38). If C is either the class of finitely generated R-modules or the class of simple R-modules, then each element of \mathcal{C} has a projective cover, if and only if, R is semiperfect [21] (42.6); and by [7] (Proposition 2.6), these are equivalent to Rbeing lifting. In [4], Azumaya called a ring R F-semiperfect if $R/\operatorname{Rad}(R)$ is von Neumann regular and idempotents can be lifted modulo Rad(R). F-semiperfect rings are also known as semiregular rings. If \mathcal{C} is the class of all factor modules R/I where I is a principal (finitely generated) right ideal of R, then each element of C has a projective cover, if and only if, R is semiregular; see [4] (Proposition 1.7) and [17] (Theorem B.44). Moreover, when \mathcal{C} is the class of all singular right R-modules, Guo in [12] showed that every element of C has a projective cover, if and only if, Ris right perfect. So a natural question is: When \mathcal{C} is the class of all nonsingular right R-modules,

^{*} The research of the first author was in part supported by a grant from IPM (№ 93160068).

which rings are determined by having the property that each element of C has a projective cover? We are more interested in characterizing such rings in a way similar to the characterization in [2] of rings whose nonsingular modules are projective. We approach this by restricting the \oplus -supplemented property to the t-closed submodules of projective modules, which we define in the following.

Throughout the paper, rings will have a nonzero identity element and modules will be unitary right modules. Recall that a submodule K of a module M is called a supplement or 'addition complement' of a submodule A if K is minimal with respect to the property that A+K=M. Indeed, K is a supplement of A, if and only if, A+K=M and $A\cap K\ll K$ (the notation \ll denotes a small submodule). A module M is called supplemented if any submodule A of M has a supplement in M, and is called \oplus -supplemented if any submodule A of M has a supplement in M which is a direct summand. For a projective module, the properties of supplemented and \oplus -supplemented are equivalent. A t-closed submodule C of a module M (denoted by $C \leq_{tc} M$) is introduced in [2] as a closed submodule of M which contains $Z_2(M)$. A module M is called t-extending if every t-closed submodule of M is a direct summand, and a ring R is called right Σ -t-extending if all free right R-modules are t-extending.

We say that a projective module P is t-supplemented if every t-closed submodule C of P has a supplement in P which is a direct summand. In Section 2 we deal with t-supplemented projective modules. Projective modules which are either t-extending or supplemented are t-supplemented. So right extending rings and right lifting rings are right t-supplemented. It will be shown that projective modules admit many characterizations for being t-supplemented (Theorem 2.1). The properties of t-supplemented and t-extending coincide for projective modules with zero radical (Proposition 2.2), and for projective modules over right continuous rings (Corollary 2.5).

In Section 3 we will prove that rings for which nonsingular modules have projective covers are precisely rings whose all free modules are t-supplemented, called right Σ -t-supplemented rings (Theorem 3.1). Following [3], a ring R is called right t-semisimple if $R/Z_2(R_R)$ is semisimple. In fact, R is right t-semisimple, if and only if, every nonsingular R-module is injective, if and only if, every nonsingular R-module is semisimple. For rings we have

right t-semisimple
$$\Rightarrow$$
 right Σ -t-extending \Rightarrow right Σ -t-supplemented

but none of these implications is reversible. The above properties coincide for a ring R such that $\operatorname{Rad}(R) \leq Z_2(R_R)$ (Proposition 3.3). In particular, for right continuous rings and rings with zero radical, the properties of right Σ -t-supplemented, right Σ -t-supplemented ring R such that $Z_2(R_R)$ is either Noetherian or Artinian is exactly a quasi-Frobenius ring (Corollary 3.5). In the sequel, we will see that rings whose finitely generated nonsingular modules have projective covers are exactly right finitely Σ -t-supplemented rings (that is, all finitely generated free modules are t-supplemented). Moreover, every nonsingular cyclic R-module has a projective cover, if and only if, R is right t-supplemented. A right continuous ring R is right finitely Σ -t-supplemented if and only if $R/Z_2(R_R)$ is a right self-injective ring (Theorem 3.2). For a von Neumann regular ring R we obtain that: R is right Σ -t-supplemented if and only if R is right self-injective (Corollary 3.6); R is right finitely Σ -t-supplemented if and only if R is right self-injective (Corollary 3.7); R is right t-supplemented if and only if R is right self-injective (Corollary 3.7); R is right t-supplemented if and only if R is right self-injective (Corollary 3.7); R is right t-supplemented if and only if R is right self-injective (Corollary 3.7); R is right t-supplemented if

 Σ -t-supplemented rings, right finitely Σ -t-supplemented rings and right t-supplemented rings are different (Example 3.3).

2. Projective modules with t-supplemented property. By considering the \oplus -supplemented property to the t-closed submodules of a projective module we define the following notion.

Definition 2.1. We say that a projective module P is t-supplemented if any t-closed submodule C of P has a supplement in P which is a direct summand, i.e., there exists a direct summand K of P such that P = C + K and $C \cap K \ll K$. A ring R is called right t-supplemented if the module R_R is t-supplemented.

Projective modules which are either \oplus -supplemented or t-extending are t-supplemented. Hence semiperfect rings, right lifting rings, right extending rings, and right Z_2 -torsion rings (that is, $Z_2(R_R) = R$) are right t-supplemented.

The ring of integers \mathbb{Z} is extending, and so it is t-supplemented, yet it is not \oplus -supplemented. Hence the properties of \oplus -supplemented and t-supplemented are different for a projective module. Moreover, the property of t-supplemented dose not coincide with the property of t-extending, as the next result shows.

Proposition 2.1. Let R be a right perfect right nonsingular ring which is not right Artinian. Then there exists a projective t-supplemented R-module P which is not t-extending.

Proof. Since R is right perfect, every projective R-module is supplemented. Thus by [13] (Lemma 1.2), every projective R-module is \oplus -supplemented, and so it is t-supplemented. However, not every projective R-module can be extending, for otherwise, R would be right Σ -t-extending by [2] (Theorem 3.12(6)), hence right Artinian by [10] (12.21((a) \Leftrightarrow (b))).

In the following we give examples of rings which satisfy the conditions of Proposition 2.1.

Example 2.1. Let D be a division ring and Λ be an infinite set. Consider the upper triangular matrix ring $R = \begin{pmatrix} D & \bigoplus_{\Lambda} D \\ 0 & D \end{pmatrix}$. Clearly $\operatorname{Rad}(R) = \begin{pmatrix} 0 & \bigoplus_{\Lambda} D \\ 0 & 0 \end{pmatrix}$. So $R/\operatorname{Rad}(R)$ is semisimple and $\operatorname{Rad}(R)$ is nilpotent. Hence R is right perfect. Moreover, it is easy to see that R is right nonsingular but not right Artinian.

Similarly the ring $R = \begin{pmatrix} D & \prod_{\Lambda} D \\ 0 & D \end{pmatrix}$ satisfies the conditions of Proposition 2.1.

The next result gives several equivalent conditions for a t-supplemented projective module.

Theorem 2.1. Let P be a projective module. The following statements are equivalent:

- (1) P is t-supplemented.
- (2) P/C has a projective cover for every t-closed submodule C of P.
- (3) Every t-closed submodule C of P has a supplement which is projective.
- (4) Every t-closed submodule C of P has a supplement which has a projective cover.
- (5) Every t-closed submodule C of P has a supplement which has also a supplement.
- (6) For every t-closed submodule C of P, there is a decomposition $P=A\oplus K$ such that $A\leq C$ and $C\cap K\ll K$.

Proof. (1) \Rightarrow (6). Let C be a t-closed submodule of P. By hypothesis there exists a direct summand K of P such that P = C + K and $C \cap K \ll K$. Assume that $\pi: P \to P/C$ is the natural epimorphism and $f: K \to P/C$ is the small epimorphism with $\ker(f) = C \cap K$. Since P is projective we conclude that there exists a homomorphism $g: P \to K$ such that $fg = \pi$. Hence fg(P) = f(K), and so $g(P) + (C \cap K) = K$. Thus g(P) = K, and g is an epimorphism. Since K is projective we conclude that there exists a homomorphism $h: K \to P$ such that $gh = 1_K$. Thus $P = \ker(g) \oplus h(K)$ and clearly $\ker(g) \leq C$. If we show that $C \cap h(K) \ll h(K)$, then $P = \ker(g) \oplus h(K)$ is the desired

decomposition of P. Let $C \cap h(K) + X = h(K)$. So $g(C \cap h(K)) + g(X) = K$. However, $g(C) \leq C$ hence $(C \cap K) + g(X) = K$, and so g(X) = K since $C \cap K \ll K$. Thus for each $k \in K$ there exists $x \in X$ such that g(x) = k = gh(k). This implies that $x - h(k) \in \ker(g) \cap h(K) = 0$ and so X = h(K).

The implication $(6) \Rightarrow (1)$ is clear, and the equivalences of $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$ follow from [4] (Proposition 1.4) and [22] (Proposition 2.1).

Corollary 2.1. The following statements are equivalent for a projective module P:

- (1) P is t-supplemented.
- (2) Every t-closed submodule C of P has a supplement K such that $C \cap K$ is a direct summand of C.
- (3) For every t-closed submodule C of P, there exist a direct summand A of P and a small submodule B of P such that $C = A \oplus B$.
- (4) For every t-closed submodule C of P, there exists a direct summand A of P such that $A \leq C$ and $C/A \ll P/A$.
- (5) For every t-closed submodule C of P, there exists an idempotent $e \in \operatorname{End}(P)$ such that $eP \leq C$ and $(1-e)C \ll (1-e)P$.

Proof. This follows from Theorem 2.1(6) and [9] (22.1).

Corollary 2.2. If P is a projective t-supplemented module, then so is every direct summand of P. **Proof.** Let $P = P_1 \oplus P_2$ and $C_1 \leq_{tc} P_1$. Clearly $P/(C_1 \oplus P_2) \cong P_1/C_1$. Thus by [2] (Proposition 2.6(6)), $C_1 \oplus P_2 \leq_{tc} P$ and so by Theorem 2.1(2), $P/(C_1 \oplus P_2)$ hence P_1/C_1 has a projective cover. Therefore P_1 is t-supplemented by Theorem 2.1(2).

Let U and N be submodules of a module M. It is said that U respects N if there exists a decomposition $M=A\oplus K$ such that $A\leq N$ and $N\cap K\leq U$. In [19] it is shown that R is a semiperfect ring, if and only if, $\operatorname{Rad}(R)$ respects every right ideal of R. Moreover, by [19] (Theorem 28) and [17] (Lemma B.40), R is a semiregular ring, if and only if, $\operatorname{Rad}(R)$ respects every finitely generated (principal) right ideal of R. The next result shows that a ring R is right t-supplemented, if and only if, $\operatorname{Rad}(R)$ respects every t-closed right ideal of R.

Corollary 2.3. Let P be a projective module such that $Rad(P) \ll P$. The following statements are equivalent:

- (1) P is t-supplemented.
- (2) Rad(P) respects every t-closed submodule of P.

Proof. The implication $(1) \Rightarrow (2)$ is clear by Theorem 2.1(6), and the implication $(2) \Rightarrow (1)$ follows from Corollary 2.1(3) and [20] (Lemma 3.1).

The next result shows that the properties of t-extending and t-supplemented coincide for a projective module with zero radical.

Proposition 2.2. If P is a t-supplemented projective module, then $P/\operatorname{Rad}(P)$ is t-extending. **Proof.** Let $C/\operatorname{Rad}(P) \leq_{tc} P/\operatorname{Rad}(P)$. Then $C \leq_{tc} P$ and so there exists a direct summand K of P such that P = C + K and $C \cap K \ll K$. Therefore $C \cap K \leq \operatorname{Rad}(P)$ and

$$P/\operatorname{Rad}(P) = C/\operatorname{Rad}(P) \oplus (K + \operatorname{Rad}(P))/\operatorname{Rad}(P).$$

Hence $P/\operatorname{Rad}(P)$ is t-extending.

Proposition 2.3. Let R be either a right Noetherian ring or an exchange ring for which Rad(R) is Z_2 -torsion. A finitely generated projective R-module P is t-supplemented if and only if P/Rad(P) is t-extending.

Proof. (\Rightarrow) . This follows from Proposition 2.2.

 (\Leftarrow) . Let C be a t-closed submodule of P and \overline{P} denote the factor module $P/\operatorname{Rad}(P)$. Since $\operatorname{Rad}(R)$ is Z_2 -torsion we conclude that $\operatorname{Rad}(P)$ is Z_2 -torsion. Thus by [2] (Lemma 2.5(1)), $\operatorname{Rad}(P) \leq C$, and so \overline{C} is a t-closed R-submodule of \overline{P} by [2] (Proposition 2.6(6)). The t-extending property of \overline{P} implies that there exists a decomposition $\overline{P} = \overline{C} \oplus \overline{L}$. Hence P = C + L, and $C \cap L = \operatorname{Rad}(P) \ll P$. Let R be right Noetherian. Then P is Noetherian, and so C is finitely generated. Therefore $C \cap L = \operatorname{Rad}(C) \ll C$. Similarly, $C \cap L \ll L$. Thus by [21] (41.14(2)), $P = C \oplus L$, and so P is t-supplemented. Now assume that R is an exchange ring. By [9] (11.9), P has the exchange property. Thus by [6] (Theorem 3), there exist submodules P = C + C and P =

The following results give more relations between the properties of t-supplemented and t-extending for a projective module.

Proposition 2.4. The following statements are equivalent for a projective module P:

- (1) P is t-extending.
- (2) P is t-supplemented and every t-closed submodule of P is a supplement.

If $Rad(P) \ll P$, then the above statements are equivalent to

- (3) P is t-supplemented and $C \cap \text{Rad}(P) = \text{Rad}(C) \ll C$ for every t-closed submodule C.
- **Proof.** (1) \Rightarrow (2). This is clear by the property of t-extending.
- $(2) \Rightarrow (1)$. Let C be a t-closed submodule of P. There exists a direct summand K of P such that P = C + K and $C \cap K \ll K$. By [9] (20.4(9)), C is a supplement of K. Therefore by [9] (20.9), $P = C \oplus K$.
- (1) \Rightarrow (3). Since each t-closed submodule C is a direct summand, $C \cap \text{Rad}(P) = \text{Rad}(C)$ by [9] (20.4(7)). On the other hand, $\text{Rad}(P) \ll P$ implies that $\text{Rad}(C) \ll P$, hence $\text{Rad}(C) \ll C$.
- $(3)\Rightarrow (1)$. Let C be a t-closed submodule of P. There exists a direct summand K of P such that P=C+K and $C\cap K\ll K$. Thus $C\cap K\leq \operatorname{Rad}(K)$ and by hypothesis $C\cap K\leq \operatorname{Rad}(C)$. Now consider the epimorphism $f:C\oplus K\to P$ which is defined by f(c,k)=c+k. Since P is projective we conclude that f splits and so $\ker(f)$ is a direct summand of $C\oplus K$. Clearly, $\ker(f)=\{(x,-x):x\in C\cap K\}\leq \operatorname{Rad}(C)\oplus \operatorname{Rad}(K)=\operatorname{Rad}(C\oplus K)$. But K is a direct summand of P and $\operatorname{Rad}(P)\ll P$, hence $\operatorname{Rad}(K)\ll K$. So $\operatorname{Rad}(C\oplus K)\ll C\oplus K$. Thus $\ker(f)\ll C\oplus K$, and so $\ker(f)=0$. Hence $P\cong C\oplus K$ which implies that C is a direct summand of P.

Corollary 2.4. Let P be a projective module such that Rad(P) is Z_2 -torsion. The following statements are equivalent:

- (1) P is t-extending.
- (2) P is t-supplemented and $Z_2(P)$ is a supplement.
- (3) P is t-supplemented and $Z_2(P)$ is a direct summand of P.

Proof. $(1) \Rightarrow (3) \Rightarrow (2)$. These are obvious.

 $(2) \Rightarrow (1)$. Since $\operatorname{Rad}(P)$ is Z_2 -torsion we conclude that $P/Z_2(P)$ is a homomorphic image of $P/\operatorname{Rad}(P)$. Hence $P/Z_2(P)$ is t-extending by Proposition 2.2. Let C be a t-closed submodule of P. Clearly, $C/Z_2(P)$ is t-closed in $P/Z_2(P)$, and so it is a direct summand of $P/Z_2(P)$. Hence by [9] (20.5(2)), C is a supplement in M. Thus P is t-extending by Proposition 2.4.

Corollary 2.5. Let R be a right continuous ring. Then the properties of t-supplemented and t-extending coincide for a projective R-module P.

Proof. Since $Z_2(R_R)$ is a direct summand of R we conclude that $Z_2(F)$ is a direct summand of F, for every free R-module F. Thus $Z_2(P)$ is a direct summand of P. On the other hand, $\operatorname{Rad}(R) = Z(R_R)$ is Z_2 -torsion. Hence $\operatorname{Rad}(F)$ is Z_2 -torsion for every free R-module F, and this implies that $\operatorname{Rad}(P)$ is Z_2 -torsion. So by Corollary 2.4, the properties of t-supplemented and t-extending are equivalent for P.

3. Right (finitely) Σ -t-supplemented rings. In this section, we show that a ring R whose all (resp., all finitely generated) nonsingular R-modules have projective covers is precisely a ring R for which all (resp., all finitely generated) free R-modules are t-supplemented. Note that a direct sum of t-supplemented free modules need not be t-supplemented. For example, if $R = \mathbb{Z}[x]$ then by [8] (Example 2.4), R is an extending R-module but $R \oplus R$ is not so. For, R being right nonsingular, the properties of extending and t-extending are the same and since $\operatorname{Rad}(R) = 0$, the notions of t-extending and t-supplemented are equivalent by Proposition 2.2. Hence for this ring, a direct sum of t-supplemented free modules need not be t-supplemented.

Definition 3.1. We say that a ring R is right Σ -t-supplemented if every free R-module is t-supplemented.

Recall from [2] that a ring R is right Σ -t-extending if every free R-module is t-extending. Clearly right Σ -t-extending rings are right Σ -t-supplemented. The next example show that the class of right Σ -t-supplemented rings properly contains the class of right Σ -t-extending rings.

Example 3.1. Let $R = \begin{pmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} \end{pmatrix}$. Since $\operatorname{Rad}(R) = \begin{pmatrix} 0 & \mathbb{R} \\ 0 & 0 \end{pmatrix}$ is nilpotent and $R/\operatorname{Rad}(R)$ is semisimple, we conclude that R is right perfect and so it is right Σ -t-supplemented. However it is easy to see that R is right nonsingular, hence if it were right Σ -t-extending then R would be right Artinian by [10] (12.21(b)), which is not. Hence R is not right Σ -t-extending.

The following result gives some equivalent conditions for a ring R with the property that all nonsingular R-modules have projective covers. The equivalence $(1) \Leftrightarrow (4)$ is in contrast with [2] (Theorem 3.12((1) \Leftrightarrow (2))). For brevity let us say that a module M satisfies the property \mathcal{P} if every t-closed submodule of M has a supplement in M which has a projective cover.

Theorem 3.1. The following statements are equivalent for a ring R:

- (1) R is right Σ -t-supplemented.
- (2) Every projective R-module is t-supplemented.
- (3) Every R-module M satisfies the property \mathcal{P} .
- (4) Every nonsingular R-module has a projective cover.

Proof. (1) \Rightarrow (3). Let M be an R-module. There exists a free R-module F such that $M \cong F/L$ for some submodule L of F. Then it suffices to show that every t-closed submodule of F/L has a supplement in F/L which has a projective cover. Assume that C/L is a t-closed submodule of F/L. Then C is t-closed in F by [2] (Proposition 2.6(6)). By Theorem 2.1(4), there exists a submodule K of F such that K has a projective cover, F = C + K and $C \cap K \ll K$. Thus F/L = C/L + (K+L)/L and $C/L \cap (K+L)/L \ll (K+L)/L$. Moreover, $C \cap K \ll K$ implies that $L \cap K \ll K$ and so if $f: P \to K$ is a projective cover, then $\pi f: P \to (K+L)/L$ is a projective cover where $\pi: K \to (K+L)/L$ is the canonical projection. Hence (K+L)/L is a supplement of C/L which has a projective cover.

- $(3) \Rightarrow (4)$. Let M be a nonsingular R-module. By [2] (Proposition 2.6(6)), the zero submodule is t-closed in M. Thus by hypothesis, M has a projective cover.
- $(4) \Rightarrow (2)$. Let P be a projective R-module and C be a t-closed submodule of P. Then P/C is nonsingular and so it has a projective cover. Hence P is t-supplemented by Theorem 2.1(2).

 $(2) \Rightarrow (1)$. This is clear.

Corollary 3.1. If R is a right Σ -t-supplemented ring, then so is $R/Z_2(R_R)$.

Proof. Let $\overline{R}=R/Z_2(R_R)$ and M be a nonsingular \overline{R} -module. If $m\in Z(M_R)$, then there exists a essential right ideal I of R such that mI=0. By [2] (Proposition 2.2(2)), \overline{I} is an essential right ideal of \overline{R} . So $m\overline{I}=0$ and the nonsingular property of $M_{\overline{R}}$ imply that m=0. Hence M_R is nonsingular. Thus by Theorem 3.1(4), M_R has a projective cover. So by [16] (Lemma 24.15), $M_{\overline{R}}$ has a projective cover. Hence \overline{R} is a right Σ -t-supplemented ring by Theorem 3.1(4).

Corollary 3.2. Every right perfect ring is right Σ -t-supplemented.

Proof. This is clear by Theorem 3.1(4).

The next example show that the class of right Σ -t-supplemented rings properly contains the class of right perfect rings. The following lemma is helpful.

Lemma 3.1. If $R = \prod_{\Lambda} R_{\lambda}$ where each R_{λ} is a ring, then $Z(R_R) = \prod_{\Lambda} Z((R_{\lambda})_{R_{\lambda}})$ and $Z_2(R_R) = \prod_{\Lambda} Z_2((R_{\lambda})_{R_{\lambda}})$.

Proof. It is easy to see that a right ideal I of R is essential if and only if I contains $\bigoplus_{\Lambda} I_{\lambda}$ where I_{λ} is an essential right ideal in $(R_{\lambda})_{R_{\lambda}}$. This implies that $Z(R_R) = \prod_{\Lambda} Z((R_{\lambda})_{R_{\lambda}})$ and so $Z_2(R_R) = \prod_{\Lambda} Z_2((R_{\lambda})_{R_{\lambda}})$.

Example 3.2. Let $R=\prod_{\Lambda}\mathbb{Z}/4\mathbb{Z}$, where Λ is an infinite set. Since $Z_2(\mathbb{Z}/4\mathbb{Z})=\mathbb{Z}/4\mathbb{Z}$, Lemma 3.1 implies that $Z_2(R_R)=R$. However $MZ_2(R_R)\leq Z_2(M)$, for every R-module M. Therefore $Z_2(M)=M$ and so M is t-extending. Thus R is right Σ -t-extending hence it is right Σ -t-supplemented. However $\mathrm{Rad}(R)=\prod_{\Lambda}\mathrm{Rad}(\mathbb{Z}/4\mathbb{Z})=\prod_{\Lambda}2\mathbb{Z}/4\mathbb{Z}$ and so $R/\mathrm{Rad}(R)\cong\prod_{\Lambda}\mathbb{Z}/2\mathbb{Z}$ is not semisimple. Thus R is not a right perfect ring.

Proposition 3.1. Let R be a right Σ -t-supplemented ring. If $Z_2(R_R)$ is semiprime, then $R/Z_2(R_R)$ is a right hereditary ring.

Proof. Since $R/Z_2(R_R)$ is a nonsingular R-module we conclude that $R/Z_2(R_R)$ is a right nonsingular ring. Hence every free $R/Z_2(R_R)$ -module is nonsingular and so is every submodule of a projective $R/Z_2(R_R)$ -module. But $R/Z_2(R_R)$ is a right Σ -t-supplemented ring by Corollary 3.1. Therefore by Theorem 3.1(4), submodules of projective $R/Z_2(R_R)$ -modules have projective covers. Thus by [11] (Corollary 1.6), $R/Z_2(R_R)$ is a right hereditary ring.

Corollary 3.3. Let R be a right Σ -t-supplemented right t-extending ring. If $Z_2(R_R)$ is semiprime, then $R/Z_2(R_R)$ is a right Noetherian ring.

Proof. By Proposition 3.1, $R/Z_2(R_R)$ is right hereditary. Moreover, $R/Z_2(R_R)$ is an extending R-module by [2] (Theorem 2.11(3)). Hence $R/Z_2(R_R)$ is a right extending ring, and so it is a right Noetherian ring by [10] (Corollary 10.6(1)).

Proposition 3.2. Let R be a right Σ -t-supplemented ring. Then R is a right max ring with the zero radical if and only if R is a right V-ring.

Proof. Let R be a max ring with the zero radical and M be an R-module. By Theorem 3.1(3), $Z_2(M/\operatorname{Rad}(M))$ has a supplement $K/\operatorname{Rad}(M)$ which has a projective cover. Since $\operatorname{Rad}(R) = 0$ we conclude that $K/\operatorname{Rad}(M)$ is projective, and so $\operatorname{Rad}(K) = \operatorname{Rad}(M)$ is a direct summand of K. But R is a max ring, and so $\operatorname{Rad}(K) \ll K$. Hence $\operatorname{Rad}(M) = 0$. This implies that R is a right V-ring; see [21] (23.1). The converse is clear.

Recall from [3] that R is a right t-semisimple ring if $R/Z_2(R_R)$ is semisimple. There, it was shown that R is right t-semisimple, if and only if, every nonsingular R-module is injective, if and only if, every nonsingular R-module is semisimple, if and only if, every nonsingular right ideal of R

is a direct summand. The following result shows that for a ring R such that $Rad(R) \le Z_2(R_R)$, the properties of right Σ -t-supplemented, right Σ -t-extending, and right t-semisimple are equivalent.

Proposition 3.3. The following statements are equivalent for a ring R:

- (1) R is right Σ -t-supplemented and Rad(R) is Z_2 -torsion.
- (2) R is right Σ -t-extending and Rad(R) is Z_2 -torsion.
- (3) R is right t-semisimple.

Proof. (1) \Rightarrow (3). Let $R^{(\Lambda)}$ be a free R-module. By hypothesis, $R^{(\Lambda)}$ is t-supplemented and so $R^{(\Lambda)}/\operatorname{Rad}(R^{(\Lambda)})$ is t-extending by Proposition 2.2. Since $\operatorname{Rad}(R_R)$ is Z_2 -torsion we conclude that $\operatorname{Rad}(R^{(\Lambda)})$ is Z_2 -torsion. Thus by [2] (Proposition 2.14(1)), $[R/Z_2(R_R)]^{(\Lambda)} \cong R^{(\Lambda)}/Z_2(R^{(\Lambda)})$ is t-extending. But $[R/Z_2(R_R)]^{(\Lambda)}$ is nonsingular, and so $[R/Z_2(R_R)]^{(\Lambda)}$ is extending. This implies that $R/Z_2(R_R)$ is a right Σ -extending ring. On the other hand, $R/Z_2(R_R)$ is a right nonsingular ring since it is a nonsingular R-module. Hence $R/Z_2(R_R)$ is right Artinian by [10] (12.21(b)). Therefore R is right t-semisimple by [3] (Corollary 4.4(1)).

- $(3) \Rightarrow (2)$. This follows by [3] (Corollary 3.6 and Theorem 2.3(3)).
- $(2) \Rightarrow (1)$. This implication is obvious.

Corollary 3.4. For right continuous rings and rings with zero radical, the properties of right Σ -t-supplemented, right Σ -t-extending, and right t-semisimple are equivalent.

Recall that a ring R is called quasi-Frobenius if R is right or left Artinian and right or left self-injective ring (all cases are equivalent). It is well known that R is quasi-Frobenius if and only if R is left and right self-injective and left or right perfect; see [17] (Theorem 6.39). The Faith conjecture states that every left or right perfect, right self-injective ring R is quasi-Frobenius. This conjecture remains open, but imposing extra condition(s) on R ensures that R is quasi-Frobenius; see [17]. The next result, in particular, shows that a right self-injective right perfect ring with Noetherian or Artinian second singular ideal is exactly a quasi-Frobenius ring.

Corollary 3.5. The following statements are equivalent:

- (1) R is a right self-injective right Σ -t-supplemented ring such that $Z_2(R_R)$ is Noetherian.
- (2) R is a right self-injective right Σ -t-supplemented ring such that $Z_2(R_R)$ is Artinian.
- (3) R is a quasi-Frobenius ring.

Proof. (1) \Rightarrow (3). By Corollary 3.4, $R/Z_2(R_R)$ is semisimple. Therefore $R/Z_2(R_R)$ is a Noetherian R-module, and so by hypothesis, R is right Noetherian. Thus R is quasi-Frobenius.

Similarly, the implication (2) \Rightarrow (3) can be proved, and clearly, (3) \Rightarrow (1), (2).

Proposition 3.4. The following statements are equivalent for a ring R:

- (1) R is right Σ -t-supplemented and $Rad(R) = Z_2(R_R)$.
- (2) R is right Σ -t-extending and $Rad(R) = Z_2(R_R)$.
- (3) R is semisimple.

Proof. (1) \Rightarrow (3). By Proposition 3.3, R is right t-semisimple. So $Z_2(R_R)$ is a direct summand of R by [3] (Theorem 2.3(3)). However, $Z_2(R_R) = \operatorname{Rad}(R)$ implies that $Z_2(R_R) = 0$. Hence R is semisimple.

 $(3) \Rightarrow (2) \Rightarrow (1)$. These implications are clear.

Corollary 3.6. Let R be a von Neumann regular ring. Then R is right Σ -t-supplemented if and only if R is semisimple.

Proof. This follows from Proposition 3.4.

In the following we consider rings for which every finitely generated (resp., cyclic) nonsingular R-module has a projective cover. Let us call a ring R right finitely Σ -t-supplemented if every finitely generated free R-module is t-supplemented.

Remark 3.1. The proof of Theorem 3.1 shows that similar equivalent conditions hold for R if in the statements we replace 'right Σ -t-supplemented' by 'right finitely Σ -t-supplemented', 'right Σ -t-extending' by 'right finitely Σ -t-extending' (see [2], Remark 3.14), and assume that R-modules under consideration are finitely generated. So a ring R for which every finitely generated nonsingular R-module has a projective cover is precisely a right finitely Σ -t-supplemented ring. Thus every semiperfect ring is right finitely Σ -t-supplemented. However the properties of right finitely Σ -t-supplemented and semiperfect are not equivalent; for example, the ring $R = \prod_{\Lambda} \mathbb{Z}/4\mathbb{Z}$ (for an infinite set Λ) is right finitely Σ -t-supplemented as shown in Example 3.2, but $R/\operatorname{Rad}(R)$ is not semisimple and so R is not semiperfect.

In Corollary 3.4, the property of right Σ -t-supplemented for right continuous rings and rings with zero radicals is characterized. In the following, we determine when a right continuous ring is right finitely Σ -t-supplemented.

Theorem 3.2. The following statements are equivalent for a right continuous ring R:

- (1) R is right finitely Σ -t-supplemented.
- (2) R is right finitely Σ -t-extending.
- (3) $R/Z_2(R_R)$ is a right self-injective ring.
- (4) $M/\operatorname{Rad}(M)$ is t-extending for every finitely generated (free, projective) R-module M.

Proof. The equivalences of (1), (2) follows from Corollary 2.5.

- (2) \Rightarrow (3). Clearly, hypothesis implies that $R_{\lambda}/Z_2((R_{\lambda})_{R_{\lambda}})$ is a right continuous right finitely Σ -extending ring. So $R_{\lambda}/Z_2((R_{\lambda})_{R_{\lambda}})$ is a right self-injective ring by [17] (Corollary 7.41((1) \Leftrightarrow (3))). Hence $R/Z_2(R_R)$ is a right self-injective ring.
- (3) \Rightarrow (2). Since R is right continuous, $Z_2(R_R)$ is a direct summand of R. So $R/Z_2(R_R)$ is a projective R-module. Hence by [15] (Corollary 3.6A), $R/Z_2(R_R)$ is an injective R-module. Thus R is right finitely Σ -t-extending by [2] (Theorem 2.11(3)).
- (1) \Rightarrow (4). Let M be a finitely generated R-module. There exists an epimorphism $\underline{f}: F \to M$ for some finitely generated free R-module F. Clearly $f(\operatorname{Rad}(F)) \leq \operatorname{Rad}(M)$ and so $\overline{f}: F/\operatorname{Rad}(F) \to M/\operatorname{Rad}(M)$ defined by $\overline{f}(x+\operatorname{Rad}(F)) = f(x)+\operatorname{Rad}(M)$, is an epimorphism. However, $F/\operatorname{Rad}(F)$ is t-extending by Proposition 2.2, and so $M/\operatorname{Rad}(M)$ is t-extending by [2] (Proposition 2.14(1)).
- $(4) \Rightarrow (1)$. Let F be a finitely generated free R-module. Since R is right continuous, R is an exchange ring and Rad(R) is Z_2 -torsion. Thus by Proposition 2.3, F is t-supplemented.
- Corollary 3.7. A von Neumann regular ring R is right finitely Σ -t-supplemented if and only if it is right self-injective.
- **Proof.** (\Rightarrow) . By Proposition 2.2, every finitely generated free R-module is t-extending. So R is right finitely Σ -t-extending. Hence R is right extending as it is right nonsingular. Since R is von Neumann regular we conclude that R is right continuous. Thus by Theorem 3.2(3), R is right self-injective.
- (\Leftarrow) . Since every finitely generated free R-module is injective, we conclude that R is right finitely Σ -t-extending. So it is right finitely Σ -t-supplemented.
- By [10] (18.26), R is quasi-Frobenius, if and only if, R is left and right continuous and left and right Artinian. There are examples of one-sided continuous left and right Artinian rings which are not quasi-Frobenius; see [10] (Examples 18.27). In [1] and [18] one can find more conditions on a right continuous ring to be quasi-Frobenius. The next result, in particular, shows that a right continuous right Artinian ring with injective second singular ideal is exactly a quasi-Frobenius ring.

Corollary 3.8. The following statements are equivalent:

- (1) R is a right continuous right finitely Σ -t-supplemented ring such that $Z_2(R_R)$ is injective.
- (2) R is right self-injective ring.
- **Proof.** (1) \Rightarrow (2). As shown in the proof of Theorem 3.2 ((3) \Rightarrow (2)), $R/Z_2(R_R)$ is an injective R-module. Since $Z_2(R_R)$ is a direct summand of R we conclude that R is right self-injective.
 - $(2) \Rightarrow (1)$. This is obvious.
- **Remark 3.2.** Recall that every cyclic R-module has a projective cover, if and only if, R is a semiperfect ring, if and only if, R is right supplemented. By modifying the proof of Theorem 3.1, similar equivalent conditions hold for R if in the statements we replace 'right Σ -t-supplemented' by 'right t-supplemented', 'right Σ -t-extending' by 'right t-extending', and assume that R-modules under consideration are cyclic. Hence a ring R for which every nonsingular cyclic R-module has a projective cover is exactly a right t-supplemented ring (which is characterized in Theorem 2.1 and Corollary 2.3).

The next result is in contrast with Corollaries 3.6 and 3.7.

Proposition 3.5. A von Neumann regular ring R is right t-supplemented if and only if it is right continuous.

Proof. Let R be right t-supplemented. By Proposition 2.2, R is right t-extending. So R is right extending as it is right nonsingular. On the other hand, R has the C_2 condition. Thus R is right continuous. The converse implication is clear since every continuous module is t-extending by [2] (Theorem 2.11(3)).

Finally we give examples showing that the classes of right Σ -t-supplemented rings, right finitely Σ -t-supplemented rings and right t-supplemented rings are indeed different.

- Example 3.3. (i) Let F be a field and F' be a proper subfield of F. Set $S = \prod_{\mathbb{N}} F$ and assume that R is the subring of S consisting of all $(a_n)_{\mathbb{N}}$ with $a_n \in F'$ for all but a finite number of elements $n \geq 1$. As shown in [10] (Examples 12.20(i)), R is a commutative von Neumann regular ring which is extending but not finitely Σ -extending. Since every von Neumann regular ring is nonsingular with zero Jacobson radical, Proposition 2.2 shows that R is t-supplemented but not finitely Σ -t-supplemented.
- (ii) Let F be a field and V be an infinite dimensional vector space over F. Then consider the von Neumann regular ring $R = \operatorname{End}(V)$. As shown in [10] (Examples 12.20(ii)), R is right finitely Σ -extending but not right Σ -extending. Again, Proposition 2.2 implies that R is right finitely Σ -t-supplemented but not right Σ -t-supplemented.

References

- 1. Ara P., Park J. K. On continuous semiprimary rings // Communs Algebra. 1991. 19. P. 1945 1957.
- 2. Asgari Sh., Haghany A. t-Extending modules and t-Baer modules // Communs Algebra. 2011. 39. P. 1605 1623.
- 3. Asgari Sh., Haghany A., Tolooei Y. T-semisimple modules and t-semisimple rings // Communs Algebra. 2013. 41. P. 1882–1902.
- 4. Azumaya G. F-semiperfect modules // J. Algebra. 1991. 136. P. 73 85.
- 5. *Bass H.* Finitistic dimension and homological generalization of semiprimary rings // Trans. Amer. Math. Soc. 1960. 95. P. 466–488.
- 6. *Birkenmeier G. F.* Quasi-projective modules and the finite exchange property // Int. J. Math. and Math. Sci. 1989. 12. P. 821 822.
- 7. Chang Ch. X-lifting modules over right perfect rings // Bull. Korean Math. Soc. 2008. 45. P. 59 66.
- 8. Chatters A. W., Khuri S. M. Endomorphism rings of modules over nonsingular CS rings // J. London Math. Soc. 1980. 21. P. 434 444.
- 9. Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules // Front. Math. Basel: Birkhäuser-Verlag, 2006.

- 10. Dung N. V., Huynh D. V., Smith P. F., Wisbauer R. Extending modules // Pitman Res. Notes Math. 1994. 313.
- 11. Faticoni T. G. On quasi-projective covers // Trans. Amer. Math. Soc. 1983. 278. P. 101–113.
- 12. Guo Y. The class of modules with projective cover // J. Korean Math. Soc. 2009. 46. P. 51 58.
- 13. Harmanci A., Keskin D., Smith P. F. On ⊕-supplemented modules // Acta math. hung. 1999. 83. P. 161 169.
- 14. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebra, rings and modules-Volume I // Math. and its Appl. 2004. 575
- 15. Lam T. Y. Lectures on modules and rings // Grad. Texts Math. 1998. 189.
- 16. Lam T. Y. A first course in noncommutative rings // Grad. Texts Math. 1991. 131.
- 17. Nicholson W. K., Yousif M. F. Quasi-Frobenius rings // Cambridge Tracts Math. 2003. 158.
- 18. Nicholson W. K., Yousif M. F. Continuous rings with chain conditions // J. Pure and Appl. Algebra. 1994. 97. P. 325 332.
- 19. Nicholson W. K., Zhou Y. Strong lifting // J. Algebra. 2005. 285. P. 795 818.
- 20. Özcan A. C., Aydoğdu P. A generalization of semiregular and semiperfect modules // Algebra Colloq. 2008. 15. P. 667 680.
- 21. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- 22. Xue W. Characterizations of semiperfect and perfect rings // Publ. Mat. 1996. 40. P. 115 125.

Received 21.10.13, after revision -06.03.15