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ALMOST MENGER PROPERTY IN BITOPOLOGICAL SPACES

МАЙЖЕ МЕНГЕРОВА ВЛАСТИВIСТЬ У БIТОПОЛОГIЧНИХ ПРОСТОРАХ

We introduce the notion of almost Menger property in bitopological spaces. We give some characterizations in terms of
(i, j)-regular open sets and almost continuous surjection. We also investigate the notion of almost \gamma -set in the bitopological
context.

Введено поняття майже менгерової властивостi в бiтопологiчних просторах, наведено деякi характеристики в
термiнах (i, j)-регулярних вiдкритих множин i майже неперервної сюр’єкцiї та вивчено поняття майже \gamma -множини
в бiтопологiчному контекстi.

1. Introduction. In this paper we will be mostly concerned with the notion of almost Mengerness
in bitopological context.

We first recall the classical definition of Menger property in topological spaces: A topological
space (X, \tau ) is Menger if for each sequence \langle \scrU n : n \in \BbbN \rangle of open covers of X, there exists a
sequence \langle \scrV n : n \in \BbbN \rangle such that for every n \in \BbbN , \scrV n is a finite subset of \scrU n and

\bigcup 
n\in \BbbN \scrV n is a

cover of X [20].

Hurewicz [8] introduced the Menger property in 1925 and showed that a conjecture of Menger
is equivalent to the statement that a metrizable space has the Menger property if and only if it is
\sigma -compact. In 1927 Hurewicz [9] introduced a stronger version of the Menger property called the
Hurewicz property defined as follows. A space X has the Hurewicz property if for each sequence \langle \scrU n :
n \in \BbbN \rangle of open covers of X there exists a sequence \langle \scrV n : n \in \BbbN \rangle such that for every n \in \BbbN , \scrV n

is a finite subset of \scrU n and each element of the space belongs to all but finitely many of the sets\bigcup 
n\in \BbbN \scrV n. It is known that \sigma -compactness implies the Hurewicz property in all finite powers and that

the Hurewicz property implies the Menger property.

Recently many papers related to the Menger property appeared in the literature. In [22] it is
proved that there exists a non-meager, non-CDH (countable dense homogeneous) filter. In [26]
Scheepers showed that if X is a separable metric space with the Hurewicz covering property, then
the Banach – Mazur game played on X is determined and the implication is not true when Hurewicz
covering property is replaced by Menger covering property. In [2] T. Banakh and D. Repovs defined
and studied universal nowhere dense and universal meager sets in Menger manifolds.

In 1996 M. Scheepers gave general definition of selection principles and began a systematic study
of selection principles in topology. For selected results see [16, 24, 25, 29].

Many topological properties are defined or characterized in terms of the following two classical
selection principles.

Let \scrA and \scrB be sets consisting of families of subsets of an infinite set X. Then:

\sansS 1(\scrA ,\scrB ) is the selection hypothesis: for each sequence \langle An : n \in \BbbN \rangle of elements of \scrA there is
a sequence \langle bn : n \in \BbbN \rangle such that for each n, bn \in An, and \{ bn : n \in \BbbN \} is an element of \scrB .

\sansS fin(\scrA ,\scrB ) denotes the selection hypothesis: for each sequence \langle An : n \in \BbbN \rangle of elements of \scrA 
there is a sequence \langle Bn : n \in \BbbN \rangle of finite sets such that for each n, Bn \subset An, and

\bigcup 
n\in \BbbN Bn \in \scrB .
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When both \scrA and \scrB are the collection \scrO of open covers of a space X then \sansS 1(\scrO ,\scrO ) denotes
the Rothberger property [23], while \sansS fin(\scrO ,\scrO ) is the Menger property [8, 10, 20].

Recently several papers on weaker forms of the Menger property have been published (see
[1, 12, 21]).

Kočinac in [14, 15] introduced the notion of almost Menger property and Kocev in [12] has
studied systematically this notion by giving characterizations in terms of regular open sets and almost
continuous mappings. On the other hand, weakly Menger property was introduced in [3] and studied
widely in [1, 21].

Both of these properties are weaker than the Menger property, and obviously every Menger space
is almost Menger and every almost Menger space is weakly Menger. In [13] Kocev found conditions
under which the properties Menger, almost Menger and weakly Menger are equivalent. On the other
hand, there are a very few papers dealing with these concepts in bitopological context.

However, the systematic study began in [17] by studying selective versions of separability in
bitopological spaces and continued in [18] by investigating selection principles in bitopological
spaces and proposing possible lines of investigation in this direction.

In [18] the authors defined three versions of the Menger property in a bitopological space
(X, \tau 1, \tau 2), which are \delta 2-Menger, (1, 2)-almost Menger and (1, 2)-weakly Menger. In this pa-
per we will focus on the almost Menger property in bitopolological spaces and leave the weakly
Menger property for another work.

Recall that \scrO , \Omega , \Gamma denote the families of open covers, \omega -covers and \gamma -covers of a space,
respectively.

An open cover U of X is an \omega -cover, if for each finite subset F of X there exists U \in U such
that F \subseteq U and X is not a member of U.

A topological space (X, \tau ) is a \gamma -set if for each sequence \langle \scrU n : n \in \BbbN \rangle of \omega -covers of X there
exists a sequence \langle Vn : n \in \BbbN \rangle such that for every n \in \BbbN , Vn \in \scrU n and \scrU = \{ Vn : n \in \BbbN \} is a \gamma -
cover of X (i.e., \scrU is an open cover of X such that it is infinite and for every x \in X the set \{ U \in U :
x /\in U\} is finite).

2. Definitions and examples. For undefined topological notions we refer to [6], while for
undefined bitopological notions we refer to [5].

Throughout the paper (X, \tau 1, \tau 2) will be a bitopological space, i.e., the set X endowed with two
topologies \tau 1 and \tau 2. For a subset A of \mathrm{I}\mathrm{n}\mathrm{t}\tau i(A) and \mathrm{C}\mathrm{l}\tau i(A) will denote the interior and the closure
of A in (X, \tau i) (i = 1, 2) respectively. By \tau i-open covers of X we mean that the cover of X by
\tau i-open sets in X.

In [14], Kočinac introduced the following definition.
Definition 2.1 [14]. A topological space (X, \tau ) is almost Menger, if for each sequence \langle \scrU n :

n \in \BbbN \rangle of open covers of X, there exists a sequence \langle \scrV n : n \in \BbbN \rangle such that for every n \in \BbbN , \scrV n is
a finite subset of \scrU n and

\bigcup 
\{ \scrV \prime 

n : n \in \BbbN \} is a cover of X, where \scrV \prime 
n = \{ \mathrm{C}\mathrm{l} (V ) : V \in \scrV n\} .

The following definition was first introduced in [18].
Definition 2.2. A bitopological space (X, \tau 1, \tau 2) is said to be (i, j)-almost Menger (i, j = 1, 2,

i \not = j) if for each sequence \langle \scrU n : n \in \BbbN \rangle of \tau i-open covers of X, there exists a sequence \langle \scrV n :
n \in \BbbN \rangle of finite families such that for each n, \scrV n \subseteq \scrU n and X =

\bigcup 
n\in \BbbN (

\bigcup 
V \in \scrV n

\mathrm{C}\mathrm{l}\tau j (V )).

We note that if (X, \tau 1) is almost Menger and \tau 2 \leq \tau 1, then the bitopological space (X, \tau 1, \tau 2) is
(1, 2)-almost Menger.

Proposition 2.1. Let (X, \tau 1, \tau 2) be a bitopological space. If (X, \tau 1) is Menger, then (X, \tau 1, \tau 2)

is (1, 2)-almost Menger.
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Proof. Obvious.

Example 2.1. Let the real line \BbbR be endowed with the Euclidean topology \tau 1 and the Sorgenfrey
topology \tau 2. Since (\BbbR , \tau 1) is Menger, the bitopological space (\BbbR , \tau 1, \tau 2) is (1, 2)-almost Menger by
Proposition 2.1. On the other hand, (\BbbR , \tau 2) is not Menger.

In the following example we show that the converse of Proposition 2.1 is not true in general.

Example 2.2. Let X be the Euclidean plane, \tau 1 is the Sorgenfrey topology and \tau 2 is the usual
topology on X. It is easy to prove that the bitopological space (X, \tau 1, \tau 2) is (1, 2)-almost Menger,
but (X, \tau 1) does not have the Menger property because X is not Lindelöff.

We can introduce the (i, j)-almost Rothberger property in a similar way.

Definition 2.3. A bitopological space (X, \tau 1, \tau 2) is said to be (i, j)-almost Rothberger (i, j =

= 1, 2, i \not = j) if for each sequence \langle \scrU n : n \in \BbbN \rangle of \tau i-open covers of X, there is a sequence \langle Un :
n \in \BbbN \rangle such that for each n, Un \in \scrU n and X =

\bigcup 
n\in \BbbN \mathrm{C}\mathrm{l}\tau j (Un).

It is obvious that every (i, j)-almost Rothberger bitopological space is (i, j)-almost Menger.
In the following example we will see that the reverse implication is not true in general.

Example 2.3. There is a (i, j)-almost Menger bitopological space which is not (i, j)-almost
Rothberger.

Let the real line \BbbR be endowed with two topologies: one is the usual metric topology \tau 1, and the
other one is open-minus countable topology \tau 2 (U \in \tau 2 if and only if U = G \setminus C, where G is open
in the usual metric topology \tau 1 on \BbbR and C is a countable subset of \BbbR ) (see [28]).

The bitopological space (\BbbR , \tau 1, \tau 2) is (1, 2)-almost Menger. It follows from the fact that (\BbbR , \tau 1)
is Menger and by Proposition 2.1.

To show that (\BbbR , \tau 1, \tau 2) is not (1, 2)-almost Rothberger. Let \langle \scrU n : n \in \BbbN \rangle be a sequence of
\tau 1-open covers of \BbbR such that for each n \in \BbbN and U \in \scrU n \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}d(U) < 1/2n.

Recall that the usual metric d(x, y) = | x  - y| and \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}d(U) = \mathrm{s}\mathrm{u}\mathrm{p}\{ | x  - y| | x, y \in U\} . Now
we have \mathrm{C}\mathrm{l}\tau 1(U) = \mathrm{C}\mathrm{l}\tau 2(U) for each n \in \BbbN and U \in \scrU n. If for every n \in \BbbN we choose an element

Un of \scrU n, then \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}d (\cup n\in \BbbN \mathrm{C}\mathrm{l}\tau 2(Un)) \leq 
\sum \infty 

n=1
1/2n = 1. This establishes that (\BbbR , \tau 1, \tau 2) is not

(1, 2)-almost Rothberger.

3. Some properties. As we mentioned in the previous section, if (X, \tau 1) is Menger, then the
bitopological space (X, \tau 1, \tau 2) is (1, 2)-almost Menger. However the converse of this statement is
not true.

Now it is natural to ask in which class of spaces the reverse implication holds.

First let us recall the following definition of (i, j)-regular bitopological space and its characterizations.

Definition 3.1 [27]. A bitopological space (X, \tau 1, \tau 2) is said to be (i, j)-regular (i, j = 1, 2,

i \not = j) if for each point x \in X and each \tau i-closed set F with x /\in F, there exist \tau i-open set U and
\tau j -open set V such that x \in U, F \subseteq V and U \cap V = \varnothing .

We may state at once:

Proposition 3.1 [27]. A bitopological space (X, \tau 1, \tau 2) is (i, j)-regular if and only if for each
point x \in X and each \tau i-open set U with x \in U, there exists \tau i-open set V such that x \in V \subseteq 
\subseteq \mathrm{C}\mathrm{l}\tau j (V ) \subseteq U.

Now we have the following theorem.

Theorem 3.1. If (X, \tau 1, \tau 2) is (i, j)-almost Menger and (i, j)-regular bitopological space, then
(X, \tau i) is Menger.
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Proof. We consider only the case i = 1, j = 2. Let \langle \scrU n : n \in \BbbN \rangle be a sequence of \tau 1-open
covers of X. Since (X, \tau 1, \tau 2) is (1, 2)-regular bitopological space, for each n \in \BbbN there exists a
\tau 1-open cover \scrU \prime 

n such that \mathrm{C}\mathrm{l}\tau 2(\scrU \prime 
n) = \{ \mathrm{C}\mathrm{l}\tau 2(U \prime ) : U \prime \in \scrU \prime 

n\} is a refinement of \scrU n.

Since (X, \tau 1, \tau 2) is (1, 2)-almost Menger bitopological space, there exists a sequence \langle \scrV \prime 
n :

n \in \BbbN \rangle such that for each n, \scrV \prime 
n is a finite subset of \scrU \prime 

n and
\bigcup 

n\in \BbbN \mathrm{C}\mathrm{l}\tau 2(\scrV \prime 
n) is a cover of X,

where \mathrm{C}\mathrm{l}\tau 2(\scrV \prime 
n) = \{ \mathrm{C}\mathrm{l}\tau 2(V \prime ) : V \prime \in \scrV \prime 

n\} . For every n \in \BbbN and V \prime \in \scrV \prime 
n we can choose UV \prime \in \scrU n

such that \mathrm{C}\mathrm{l}\tau 2(V
\prime ) \subseteq UV \prime , since \mathrm{C}\mathrm{l}\tau 2(V

\prime ) \in \mathrm{C}\mathrm{l}\tau 2(\scrU \prime 
n) and \mathrm{C}\mathrm{l}\tau 2(\scrU \prime 

n) refines \scrU n. Let \scrV n = \{ UV \prime :
V \prime \in \scrV \prime 

n\} . Then \langle \scrV n : n \in \BbbN \rangle is a sequence with \scrV n a finite subset of \scrU n for each n \in \BbbN and\bigcup 
n\in \BbbN \scrV n is a \tau 1-open covers of X.

Now instead of using \tau i-open (\tau j -open) sets we will use (i, j)-regular open sets to characterize
the (i, j)-almost Menger property in bitopological spaces.

First, let us recall the definition of (i, j)-regular open ((i, j)-regular closed) sets.
Definition 3.2 [11, 27]. Let (X, \tau 1, \tau 2) be a bitopological space. A set A \subseteq X is called (i, j)-

regular open ((i, j)-regular closed) (i \not = j, i, j = 1, 2) if A = \mathrm{I}\mathrm{n}\mathrm{t}\tau i \mathrm{C}\mathrm{l}\tau j (A) (A = \mathrm{C}\mathrm{l}\tau i \mathrm{I}\mathrm{n}\mathrm{t}\tau j (A)).

A is said to be pairwise regular open (pairwise regular closed) if it is both (i, j)-regular open and
(j, i)-regular open ((i, j)-regular closed and (j, i)-regular closed).

Clearly every (i, j)-regular open set in (X, \tau 1, \tau 2) is \tau i-open.
Theorem 3.2. A bitopological space (X, \tau 1, \tau 2) is (i, j)-almost Menger if and only if for each

sequence \langle \scrU n : n \in \BbbN \rangle of covers of X by (i, j)-regular open sets, there exists a sequence \langle \scrV n :
n \in \BbbN \rangle of finite families such that for each n \in \BbbN , \scrV n \subseteq \scrU n and X =

\bigcup 
n\in \BbbN (

\bigcup 
V \in \scrV n

\mathrm{C}\mathrm{l}\tau j (V )).

Proof. We consider only the case i = 1, j = 2.

(\Rightarrow ) Since every (1, 2)-regular open set in (X, \tau 1, \tau 2) is \tau 1-open, it is obvious.
(\Leftarrow ) Let \langle \scrU n : n \in \BbbN \rangle be a sequence of \tau 1-open covers of X. For each n, let \scrU \prime 

n = \{ \mathrm{I}\mathrm{n}\mathrm{t}\tau 1 \mathrm{C}\mathrm{l}\tau 2(U) :
U \in \scrU n\} . Then \langle \scrU \prime 

n : n \in \BbbN \rangle is a sequence of covers of X by (1, 2)-regular open sets.
By the hypothesis there exists a sequence \langle \scrV \prime 

n : n \in \BbbN \rangle such that for every n \in \BbbN , \scrV \prime 
n is a finite

subset of \scrU \prime 
n and

\bigcup 
n\in \BbbN \mathrm{C}\mathrm{l}\tau 2(\scrV \prime 

n) is a cover of X, where \mathrm{C}\mathrm{l}\tau 2(\scrV \prime 
n) = \{ \mathrm{C}\mathrm{l}\tau 2(V \prime ) : V \prime \in \scrV \prime 

n\} . For
each n \in \BbbN and V \prime \in \scrV \prime 

n there exists UV \prime \in \scrU n such that V \prime = \mathrm{I}\mathrm{n}\mathrm{t}\tau 1 \mathrm{C}\mathrm{l}\tau 2(UV \prime ). Since \mathrm{C}\mathrm{l}\tau 2(UV \prime )

is a (2, 1)-regular closed set we have \mathrm{C}\mathrm{l}\tau 2(V
\prime ) = \mathrm{C}\mathrm{l}\tau 2 \mathrm{I}\mathrm{n}\mathrm{t}\tau 1 \mathrm{C}\mathrm{l}\tau 2(UV \prime ) = \mathrm{C}\mathrm{l}\tau 2(UV \prime ). Thus for each

n \in \BbbN there is a finite subset \scrV n = \{ UV \prime : V \prime \in \scrV \prime 
n\} of \scrU n such that X =

\bigcup 
n\in \BbbN 

\bigcup 
V \in \scrV n

\mathrm{C}\mathrm{l}\tau 2(V ).

In [21] it was shown that almost Menger spaces are preserved by almost continuous mappings.
Let us now investigate the preservation of (i, j)-almost Mengerness under the almost continuous
surjective functions.

We therefore begin by recalling the concept of (i, j)-almost continuous functions.
Definition 3.3 [19]. A function f : (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2) is said to be (i, j)-almost continu-

ous if f - 1(B) is \tau i-open set in X for every (i, j)-regular open set B in Y. In addition, f is called
p-almost continuous, if it is (1, 2)- and (2, 1)-almost continuous.

However we give the following theorem.
Theorem 3.3. Let (X, \tau 1, \tau 2) be (i, j)-almost Menger bitopological space and (Y, \sigma 1, \sigma 2) be a

bitopological space. If f : X \rightarrow Y is p-almost continuous surjection, then (Y, \sigma 1, \sigma 2) is (i, j)-almost
Menger.

Proof. We consider only the case i = 1, j = 2. Let \langle \scrU n : n \in \BbbN \rangle be a sequence of covers
of Y by (1, 2)-regular open sets. Let \langle \scrU \prime 

n : n \in \BbbN \rangle be a sequence defined by \scrU \prime 
n = \{ f - 1(U) :

U \in \scrU n\} . Since f is (1, 2)-almost continuous each \scrU \prime 
n is a cover of X by \tau 1-open sets. Apply the

fact that X is (1, 2)-almost Menger; there is a sequence \langle \scrV \prime 
n : n \in \BbbN \rangle of finite families such that for

each n \in \BbbN , \scrV \prime 
n \subseteq \scrU \prime 

n and X =
\bigcup 

n\in \BbbN 
\bigcup 

V \prime \in \scrV \prime 
n
\mathrm{C}\mathrm{l}\tau 2(V

\prime ).
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For each V \prime \in \scrV \prime 
n we can choose UV \prime \in \scrU n such that V \prime = f - 1(UV \prime ). Let \scrV n = \{ UV \prime :

V \prime \in \scrV \prime 
n\} . Now we have a sequence \langle \scrV n : n \in \BbbN \rangle of finite families such that for each n \in \BbbN ,

\scrV n \subseteq \scrU n and Y =
\bigcup 

n\in \BbbN 
\bigcup 
\{ \mathrm{C}\mathrm{l}\sigma 2(UV \prime ) : V \prime \in \scrV \prime 

n\} .
Now let us prove that

\bigcup 
n\in \BbbN \mathrm{C}\mathrm{l}\sigma 2(\scrV n), where \mathrm{C}\mathrm{l}\sigma 2(\scrV n) = \{ \mathrm{C}\mathrm{l}\sigma 2(UV \prime ) : V \prime \in \scrV \prime 

n\} is a cover of Y.
Indeed, if y = f(x) \in Y, then there exists n \in \BbbN and UV \prime \in \scrV n such that x \in \mathrm{C}\mathrm{l}\tau 2(f

 - 1(UV \prime )). Since
UV \prime \subseteq Y is (1, 2)-regular open we have \mathrm{C}\mathrm{l}\sigma 2(UV \prime ) = \mathrm{C}\mathrm{l}\sigma 2 \mathrm{I}\mathrm{n}\mathrm{t}\sigma 1 \mathrm{C}\mathrm{l}\sigma 2(UV \prime ). Since Y \setminus \mathrm{C}\mathrm{l}\sigma 2(UV \prime )

is (2, 1)-regular open, f is (2, 1)-almost continuous f - 1(Y \setminus \mathrm{C}\mathrm{l}\sigma 2(UV \prime )) = X \setminus f - 1(\mathrm{C}\mathrm{l}\sigma 2(UV \prime )) is
\tau 2-open and f - 1(\mathrm{C}\mathrm{l}\sigma 2(UV \prime )) is \tau 2-closed. Then \mathrm{C}\mathrm{l}\tau 2(f

 - 1(UV \prime )) \subseteq f - 1(\mathrm{C}\mathrm{l}\sigma 2(UV \prime )). This means
y \in \mathrm{C}\mathrm{l}\sigma 2(UV \prime ). Hence (Y, \sigma 1, \sigma 2) is (1, 2)-almost Menger.

For k \in \BbbN , the power bitopological space Xk of a bitopological space (X, \tau 1, \tau 2) is defined as
(Xk, \tau 1

k, \tau 2
k) in [4].

Theorem 3.4. Let (X, \tau 1, \tau 2) be a bitopological space. For each n \in \BbbN , (Xn, \tau 1
n, \tau 2

n) is
(1, 2)-almost Menger if and only if for each sequence \langle \scrU n : n \in \BbbN \rangle of \tau 1-\omega -covers of X there exists
a sequence \langle \scrV n : n \in \BbbN \rangle such that for every n \in \BbbN , \scrV n is a finite subset of \scrU n and for every finite
set F \subseteq X, there exists n \in \BbbN and V \in \scrV n such that F \subseteq \mathrm{C}\mathrm{l}\tau 2(V ).

Proof. (=\Rightarrow ) Let \langle \scrU n : n \in \BbbN \rangle be a sequence of \tau 1-\omega -covers of X. Let \{ Nm : m \in \BbbN \} 
be a partition of \BbbN such that for each m \in \BbbN , Nm is infinite. For each m \in \BbbN and each
i \in Nm, let \scrU i

m = \{ Um : U \in \scrU i\} . Then \langle \scrU i
m : i \in Nm\rangle is a sequence of \tau 1

m-open covers of
Xm. Since (Xm, \tau 1

m, \tau 2
m) is (1, 2)-almost Menger there exists a sequence \langle \scrV i

m : i \in Nm\rangle such
that for every i \in Nm, \scrV i

m is a finite subset of \scrU i
m and

\bigcup 
i\in Nm

\bigcup 
\mathrm{C}\mathrm{l}\tau m2 (\scrV i

m) = Xm where
\mathrm{C}\mathrm{l}\tau m2 (\scrV i

m) = \{ \mathrm{C}\mathrm{l}\tau m2 (V ) : V \in \scrV i
m\} .

On the other hand, for every V \in \scrV i
m, m \in \BbbN , i \in Nm, pick an element UV \in \scrU i such that

V = UV
m. Then \langle \scrV n : n \in \BbbN \rangle is the desired sequence, where \scrV i = \{ UV : V \in \scrV i

m\} is a finite
subfamily of \scrU i.

Indeed, let F = \{ x1, . . . , xk\} be a finite subset of X. Since
\bigcup 

i\in Nk
\mathrm{C}\mathrm{l}\tau k2

(\scrV i
k) is a cover of Xk

there exists an i \in Nk and V \in \scrV i
k such that (x1, . . . , xk) \in \mathrm{C}\mathrm{l}\tau k2

(V ). On the other side, we have

\mathrm{C}\mathrm{l}\tau k2
(V ) = \mathrm{C}\mathrm{l}\tau k2

(UV
k) = (\mathrm{C}\mathrm{l}\tau 2(UV ))

k for some UV \in \scrV i. Thus F \subseteq \mathrm{C}\mathrm{l}\tau 2(UV ) for UV \in \scrV i.

(\Leftarrow =) Let k \in \BbbN be fixed and \langle \scrU n : n \in \BbbN \rangle be a sequence of \tau k1 -open covers of Xk, where each
\scrU n = \{ Unm : m \in In\} .

Let F be a finite subset of X. Since F k is a finite subset of Xk, for each n \in \BbbN , there exists a
finite subset IFn \subseteq In such that F k \subseteq 

\bigcup 
m\in IFn Unm. In this case, there exists a \tau 1-open set VF such

that F \subseteq VF and V k
F \subseteq 

\bigcup 
m\in IFn Unm.

Thus \scrV n = \{ VF : F \subseteq X is finite\} is a \tau 1-\omega -open cover of X. By assumption there exists a
sequence \langle \scrW n : n \in \BbbN \rangle such that for each n \in \BbbN , \scrW n is a finite subset of \scrV n and each finite set
T \subseteq X there exists n \in \BbbN and W \in \scrW n such that T \subseteq \mathrm{C}\mathrm{l}\tau 2(W ).

Let for each n \in \BbbN , \scrW n = \{ VFj : j \in Jn\} , where Jn is a finite index set and let \scrK n = \{ Unm :

m \in Hn\} , where Hn = \{ m \in In : m \in I
Fj
n , j \in Jn\} . Then we have \scrK n is a finite subset of \scrU n and\bigcup 

n\in \BbbN \mathrm{C}\mathrm{l}\tau k2
(\scrK n) is a cover of Xk, where \mathrm{C}\mathrm{l}\tau k2

(\scrK n) = \{ \mathrm{C}\mathrm{l}\tau k2 (Unm) : m \in Hn\} .
To see,

\bigcup 
n\in \BbbN \mathrm{C}\mathrm{l}\tau k2

(\scrK n) is indeed a cover of Xk, now let x = (x1, . . . , xk) \in Xk. Then
T = \{ x1, . . . , xk\} is a finite subset of X. So there exists n \in \BbbN and W \in \scrW n such that T \subseteq \mathrm{C}\mathrm{l}\tau 2(W ).

Let W = VFj for some j \in Jn. Then we have

T k \subseteq (\mathrm{C}\mathrm{l}\tau 2(VFj ))
k \subseteq \mathrm{C}\mathrm{l}\tau k2

(V k
Fj
) \subseteq 

\bigcup 
m\in I

Fj
n

\mathrm{C}\mathrm{l}\tau k2
(Unm).
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So, there exists m \in I
Fj
n \subseteq Hn such that x \in \mathrm{C}\mathrm{l}\tau k2

(Unm). Thus (Xk, \tau 1
k, \tau 2

k) is (1, 2)-almost
Menger.

4. Almost \bfitgamma -set in bitopological spaces.
Definition 4.1. Let (X, \tau 1, \tau 2) be a bitopological space and \scrU be an infinite \tau i-open cover of

X. If for every x \in X the set \{ U \in \scrU : x /\in \mathrm{C}\mathrm{l}\tau j (U)\} is finite, then we call \scrU is (i, j)-almost
\gamma -cover for X.

Gerlits and Nagy [7] defined the notion of \gamma -set and Kocev in [12] defined the notion of almost
\gamma -set and its characterizations. Now let us give the definition of almost \gamma -set for bitopological spaces.

Definition 4.2. A bitopological space (X, \tau 1, \tau 2) is said to be (i, j)-almost \gamma -set if for each
sequence \langle \scrU n : n \in \BbbN \rangle of \tau i-\omega -covers of X, there exists a sequence \langle Vn : n \in \BbbN \rangle such that for all
n \in \BbbN , Vn \in \scrU n and the set \{ Vn : n \in \BbbN \} is an (i, j)-almost \gamma -cover for X.

Theorem 4.1. (X, \tau 1, \tau 2) is (i, j)-almost \gamma -set if and only if for each sequence \langle \scrU n : n \in \BbbN \rangle of
\tau i-\omega -covers of X by (i, j)-regular open sets, there exists a sequence \langle Vn : n \in \BbbN \rangle such that for all
n \in \BbbN , Vn \in \scrU n and the set \{ Vn : n \in \BbbN \} is an (i, j)-almost \gamma -cover for X.

Proof. We consider only the case i = 1, j = 2.

(=\Rightarrow ) Since every (1, 2)-regular open set in (X, \tau 1, \tau 2) is \tau 1-open, it is obvious.
(\Leftarrow =) Let \langle \scrU n : n \in \BbbN \rangle be a sequence of \tau 1-\omega -covers of X. So the set \scrU \prime 

n = \{ \mathrm{I}\mathrm{n}\mathrm{t}\tau 1 \mathrm{C}\mathrm{l}\tau 2(U) :
U \in \scrU n\} is a \tau 1-\omega -cover of X, by (1, 2)-regular open sets. By the hypothesis there exists a sequence
\langle V \prime 

n : n \in \BbbN \rangle such that for each n \in \BbbN , V \prime 
n \in \scrU \prime 

n and \scrV \prime = \{ V \prime 
n : n \in \BbbN \} is a (1, 2)-almost \gamma -cover

of X.

For each n \in \BbbN , there exists Vn \in \scrU n such that V \prime 
n = \mathrm{I}\mathrm{n}\mathrm{t}\tau 1 \mathrm{C}\mathrm{l}\tau 2(Vn). It is easy to check that the

sequence \scrV = \{ Vn : n \in \BbbN \} witnesses for (X, \tau 1, \tau 2) is (1, 2)-almost \gamma -set.
Theorem 4.2. Let (X, \tau 1, \tau 2) be an (i, j)-almost \gamma -set and (Y, \sigma 1, \sigma 2) be a bitopological space.

If f : X \rightarrow Y is an (i, j)-almost continuous surjection, then (Y, \sigma 1, \sigma 2) is an (i, j)-almost \gamma -set.

Proof. We consider only the case i = 1, j = 2. Let \langle \scrU n : n \in \BbbN \rangle be a sequence of \sigma 1-\omega -covers of
Y by (1, 2)-regular open set. Since f is (1, 2)-almost continuous surjection, the set \scrU \prime 

n = \{ f - 1(U) :
U \in \scrU n\} is a \tau 1-\omega -cover of X.

Since (X, \tau 1, \tau 2) is (1, 2)-almost \gamma -set there exists a sequence \langle U \prime 
n : n \in \BbbN \rangle such that for

each n \in \BbbN , U \prime 
n \in \scrU \prime 

n and \scrU \prime = \{ U \prime 
n : n \in \BbbN \} is an (1, 2)-almost \gamma -cover for X. On the other

hand, for all n \in \BbbN there exists Un \in \scrU n such that U \prime 
n = f - 1(Un). We claim that \scrU = \{ Un :

n \in \BbbN \} is an (1, 2)-almost \gamma -cover for Y.
Since \scrU \prime is infinite, so is \scrU . If y \in Y there exists x \in X such that f(x) = y and \{ U \prime 

n \in \scrU \prime :
x /\in \mathrm{C}\mathrm{l}\tau 2(U

\prime 
n)\} is finite since \scrU \prime is (1, 2)-almost \gamma -cover for X. That means there exists M \in \BbbN 

such that \forall n \in \BbbN n > M, we have x \in \mathrm{C}\mathrm{l}\tau 2(U
\prime 
n). For all n > M, y = f(x) \in f(\mathrm{C}\mathrm{l}\tau 2(U

\prime 
n)). Since

\mathrm{C}\mathrm{l}\tau 2(U
\prime 
n) \subseteq f - 1(\mathrm{C}\mathrm{l}\sigma 2(Un)) we have for each n > M, y \in \mathrm{C}\mathrm{l}\sigma 2(Un) so \{ Un \in \scrU : y /\in \mathrm{C}\mathrm{l}\sigma 2(Un)\} 

is finite, hence (Y, \sigma 1, \sigma 2) is (1, 2)-almost \gamma -set.

5. Concluding remarks. The following definition of (i, j)-weakly Menger bitopological space
was first introduced in [18].

Definition 5.1. A bitopological space (X, \tau 1, \tau 2) is said to be (i, j)-weakly Menger, i, j = 1, 2,

i \not = j, if for each sequence \langle \scrU n : n \in \BbbN \rangle of \tau i-open covers of X, there exists a sequence \langle \scrV n :
n \in \BbbN \rangle of finite families such that for each n, \scrV n \subseteq \scrU n and X = \mathrm{C}\mathrm{l}\tau j (

\bigcup 
n\in \BbbN \scrV n).

It would be interesting to investigate the properties of (i, j)-weakly Mengerness in bitopologi-
cal context and the relations between (i, j)-almost Menger and (i, j)-weakly Menger bitopological
spaces.
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