P. Nosratpour (Ilam Branch, Islamic Azad Univ., Ilam, Iran),
M. R. Darafsheh (School Math., Statistics and Comput. Sci., College Sci., Univ. Tehran, Iran)

CHARACTERIZATION OF THE GROUP $G_{2}(5)$ BY THE PRIME GRAPH ХАРАКТЕРИЗАЦІЯ ГРУПИ $G_{2}(5)$ ЗА ДОПОМОГОЮ ПРОСТОГО ГРАФА

Let G be a finite group. The prime graph of G is a graph $\Gamma(G)$ with vertex set $\pi(G)$ and the set of all prime divisors of $|G|$, where two distinct vertices p and q are adjacent by an edge if G has an element of order $p q$. We prove that if $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$, then G has a normal subgroup N such that $\pi(N) \subseteq\{2,3,5\}$ and $G / N \cong G_{2}(5)$.

Нехай G - скінченна група. Простим графом G називається граф $\Gamma(G)$ з множиною вершин $\pi(G)$ та множиною всіх простих дільників $|G|$, в якому дві різні вершини p і q сполучені ребром, якщо G містить елемент порядку $p q$. Доведено, що у випадку, коли $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$, група G містить нормальну підгрупу N таку, що $\pi(N) \subseteq\{2,3,5\}$ та $G / N \cong G_{2}(5)$.

1. Introduction. For $n \in N$, let $\pi(n)$ denote the set of all the prime divisors of n, and for a finite group G let us set $\pi(G)=\pi(|G|)$. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order $p q$. It is clear that a knowledge of $w(G)$ determines $\Gamma(G)$ completely but not vise-versa in general. Given a finite group G, the number of nonisomorphic classes of finite groups H with $\Gamma(G)=\Gamma(H)$ is denoted by $h_{\Gamma}(G)$. If $h_{\Gamma}(G)=1$, then G is said to be recognizable by prime graph. If $h_{\Gamma}(G)=k<\infty$, then G is called k-recognizable by prime graph, in case $h_{\Gamma}(G)=\infty$ the group G is called nonrecognizable by prime graph. Obviously a group recognizable by spectra need not to be recognizable by prime graph, for example A_{5} is recognizable by spectra but $\Gamma\left(A_{5}\right)=\Gamma\left(A_{6}\right)$.

The number of connected components of $\Gamma(G)$ is denoted by $s(G)$. As a consequence of the classification of the finite simple groups it is proved in [19] and [9], that for any finite simple group G we have $s(G) \leq 6$. Let $\pi_{i}=\pi_{i}(G), 1 \leq i \leq s$, be the connected components of G. For a group of even order we let $2 \in \pi_{1}$. Recognizability of groups by prime graph was first studied in [5] where some sporadic simple groups were characterized by prime graph. As another concept we say that a non-Abelian simple group G is quasirecognizable by graph if every finite group whose prime graph is $\Gamma(G)$ has a unique non-Abelian composition factor isomorphic to G.

It is proved in [20] that the simple groups $G_{2}(7)$ and ${ }^{2} G_{2}(q), q=3^{2 m+1}>3$, are recognizable by prime graph, where both groups have disconnected prime graphs. A series of interesting results concerning recognition of finite simple groups were obtained by B. Khosravi et al. In particular they have stablished quasirecognizability of the group $L_{10}(2)$ by graph and the recognizability of $L_{16}(2)$ by graph in [7] and [8], where both groups have connected prime graphs.

Next we introduce useful notation. Let p be a prime number. The set of all non-Abelian finite simple groups G such that $p \in \pi(G) \subseteq\{2,3,5, \ldots, p\}$ is denoted by \mathfrak{S}_{p}. It is clear that the set of all non-Abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_{p} for all primes p. The sets \mathfrak{S}_{p}, where p is a prime less than 1000 is given in [21].
2. Preliminary results. Let G be a finite group with disconnected prime graph. The structure of G is given in [19] which is stated as a lemma here.

Lemma 2.1. Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:
(a) $s(G)=2, G=K C$ is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.
(b) $s(G)=2$ and G is a 2-Frobeuius group, i.e., $G=A B C$, where $A, A B \unlhd G, B \unlhd B C$, and $A B, B C$ are Frobenius groups.
(c) There exists a non-Abelian simple group P such that $P \leq \bar{G}=G / N \leq \operatorname{Aut}(P)$ for some nilpotent normal $\pi_{1}(G)$-subgroup N of G and \bar{G} / P is a $\pi_{1}(G)$-group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geq s(G)$.

If a group G satisfies condition (c) of the above lemma we may write $P=B / N, B \leq G$, and $\bar{G} / P=G / B=A$, hence in terms of group extensions $G=N \cdot P \cdot A$, where N is a nilpotent normal $\pi_{1}(G)$-subgroup of G and A is a $\pi_{1}(G)$-group.

The above structure lemma was extended to groups with connected prime graphs satisfying certain conditions [17]. Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$.

In the following we list some properties of the Frobenius group where some of its proof can be found in [15].

Lemma 2.2. Let G be a Frobenius group with kernel K and complement H. Then:
(a) K is nilpotent and $|H| \mid(|K|-1)$.
(b) The connected components of G are $\Gamma(K)$ and $\Gamma(H)$.
(c) $|\mu(K)|=1$ and $\Gamma(K)$ is a complete graph.
(d) If $|H|$ is even, then K is Abelian.
(e) Every subgroup of H of order $p q, p$ and q not necessary distinct primes, is cyclic. In particular if H is Abelian, then it would be cyclic.
(f) If H is nonsolvable, then there is a normal subgroup H_{0} of H such that $\left[H: H_{0}\right] \leq 2$ and $H_{0} \cong S L_{2}(5) \times Z$, where every Sylow subgroup of Z is cyclic and $|Z|$ is prime to 2,3 and 5 .

A Frobenius group with cyclic kernel of order m and cyclic complement of order n is denoted by $m: n$.

The following result is also used in this paper whose proof is included in [3].
Lemma 2.3. Every 2-Frobenius group is solvable.
Lemma 2.4 [6]. Let G be a finite solvable group all of whose elements are of prime power order, then the order of G is divisible by at most two distinct primes.

Lemma 2.5 [12]. Let G be a finite group, $K \unlhd G$, and let G / K be a Frobenius group with kernel F and cyclic complement C. If $(|F|,|K|)=1$ and F dose not lie in $\left(K \cdot C_{G}(K)\right) / K$, then $r \cdot|C| \in w(G)$ for some prime divisor r of $|K|$.

Lemma 2.6 [18]. $L_{n}(q)$ contains a Frobenius subgroup with kernel of order q^{n-1} and cyclic complement of order $\left(q^{n-1}-1\right) /(n, q-1)$.

Using [1], we can find $\mu\left(G_{2}(5)\right)=\{20,21,24,25,30,31\}$. Therefore, the prime graph of $G_{2}(5)$ is as a follows.

Our main results are the followin theorem.
Theorem 2.1. If G is a finite group such that $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$, then G has a normal subgroup N such that $\pi(N) \subseteq\{2,3,5\}$ and $G / N \cong G_{2}(5)$.

Fig. 1. The prime graph of $G_{2}(5)$.
3. Proof of the theorem. We assume G is a group with $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$. By Fig. 1, we have $s(G)=2$, hence, G has disconnected prime graph and we can use Lemma 2.1 here:
(a) G is nonsolvable. If G is solvable, then consider a $\{5,7,31\}$-Hall subgroup of G and call it H. By Fig. 1, H dose not contain elements of order $5 \cdot 7,7 \cdot 31,5 \cdot 31$, and since it is solvable, by Lemma 2.4 we deduce $|t(H)| \leq 2$, a contradiction.
(b) G is neither a Frobenius nor a 2 -Frobenius group. By (a) and Lemma 2.3, G is not a 2-Frobenius group. If G is a Frobenius group, then by Lemma 2.1, $G=K C$ with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Obviously $\Gamma(K)$ is a graph with vertex $\{31\}$ and $\Gamma(C)$ with vertex set $\{2,3,5,7\}$. Since G is nonsolvable, by Lemma 2.2(a) C must be nonsolvable. Therefore, by Lemma 2.2(f) C has a subgroup isomorphic to H_{0} and $\left[C: H_{0}\right] \leq 2$, where $H_{0} \cong S L_{2}(5) \times Z$ with Z cyclic of order prime to $2,3,5$. But $\mu\left(S L_{2}(5)\right)=\{4,6,10\}$ from which we can observe that H_{0} has no element of order 15 . This implies that C has no element of order 15, contradicting Fig. 1.

Conditions (a) and (b) imply that case (c) of Lemma 2.1 holds for G. Hence, there is a nonAbelian simple group P such that $P \leq \bar{G}=G / N \leq \operatorname{Aut}(P)$ where N is a nilpotent normal $\pi_{1}(G)$-subgroup of G and \bar{G} / P is a $\pi_{1}(G)$-group and $s(P) \geq 2$. We have $\pi_{1}(G)=\{2,3,5,7\}$ and $\pi(G)=\{2,3,5,7,31\}$. Therefore, P is a simple group with $\pi(P) \subseteq\{2,3,5,7,31\}$, i.e., $P \in \mathfrak{S}_{p}$ where p is a prime number satisfying $p \leq 31, p \neq 11,13,17,19,23,29$. Using [21] we list the possibilities for P in Table 1.
(c) $\{31\} \subseteq \pi(P)$. By Table $1,|\operatorname{Out}(P)|$ is a number of the form $2^{\alpha} \cdot 3^{\beta}$, therefore, if $G / N=P \cdot S$, where $S \leq \operatorname{Out}(P)$, then $|P|_{p}=|G / N|_{p} /|S|_{p}$ for all $p \in \pi(G)$, where n_{p} denotes the p-part of the integer $n \in N$. Hence, $|N|_{p}=\frac{|G|_{p}}{|P|_{p}|S|_{p}}$, from which the claim follows because $\pi(N) \subseteq\{2,3,5,7\}$.

Therefore only the following possibilities arise for $P: L_{2}(31), L_{5}(2), L_{6}(2), L_{3}(5), L_{2}\left(5^{3}\right)$ and $G_{2}(5)$.
(d) $P \cong G_{2}(5)$. By [4], we have $\mu\left(L_{5}(2)\right)=\{8,12,14,15,21,31\}$ and $\mu\left(L_{6}(2)\right)=\{8,12,28$, 30, 31, 63\}. Therefore, if $P \cong L_{5}(2)$ or $L_{6}(2)$, then we have $2 \sim 7$ in $\Gamma(G)$, is a contradiction.

By [10], we have $\mu\left(L_{2}\left(5^{3}\right)\right)=\{5,62,63\}$. Therefore, if $P \cong L_{2}\left(5^{3}\right)$, then we have $2 \sim 31$ in $\Gamma(G)$, a contradiction.

By [1], we have $\mu\left(L_{2}(31)\right)=\{15,16,31\}$. Therefore, if $P \cong L_{2}(31)$, then $7 \in \pi(N)$. By Lemma 2.6, P has a Frobenius subgroup $31: 15$, then, by Lemma 2.5, G has an element of order $5 \cdot 7$, a contradiction.

By [1], we have $\mu\left(L_{3}(5)\right)=\{20,24,31\}$. Therefore, if $P \cong L_{3}(5)$, then $7 \in \pi(N)$. By Lemma 2.6, P has a Frobenius subgroup $25: 24$, then, by Lemma 2.5, G has an element of order $2 \cdot 7$, a contradiction. Therefore $P \cong G_{2}(5)$.
(e) $G / N \cong G_{2}(5)$. So far we proved that $P \leq G / N \leq \operatorname{Aut}(P)$ where $P \cong G_{2}(5)$. But $\operatorname{Aut}\left(G_{2}(5)\right)=G_{2}(5)$, therefore, $G / N \cong G_{2}(5)$.

Table 1. Simple groups in $\mathfrak{S}_{p}, p \leq 31, p \neq 11,13,17,19,23,29$

P	$\|P\|$	\mid Out $(P) \mid$	P	$\|P\|$	\mid Out $(P) \mid$
A_{5}	$2^{2} \cdot 3 \cdot 5$	2	J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	4	A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2
$S_{4}(3)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2	$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2	$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	6
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2	$L_{2}(31)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$	2
$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	4	$L_{3}(5)$	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$	2
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6	$L_{2}\left(5^{3}\right)$	$2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$	6
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12	$G_{2}(5)$	$2^{6} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 31$	1
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	$L_{5}(2)$	$2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$	2
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2	$L_{6}(2)$	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31$	2

(f) $\pi(N) \subseteq\{2,3,5\}$. We know that N is a nilpotent normal $\{2,3,5,7\}$-subgroup of G. Regarding Fig. 1 we obtain:
if $2,5| | N \mid$, then $\pi(N) \subseteq\{2,3,5\}$;
if $3||N|$, then $\pi(N) \subseteq\{2,3,5,7\}$;
if $7||N|$, then $\pi(N) \subseteq\{3,7\}$.
Now we observe that the group $G_{2}(5)$ contains Frobenius subgroup $31: 5$. We may assume N is elementary Abelian p-group for $p \in\{2,3,5,7\}$. Now if $7||N|$, then by Lemma 2.5, G has an element of order $5 \cdot 7$, a contradiction. Therefore, $\pi(N) \subseteq\{2,3,5\}$.

References

1. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. - Oxford: Clarendon Press, 1985.
2. Darafsheh M. R. Order of elements in the groups related to the general linear groups // Finite Fields and Appl. 2005. - 11. - P. 738-747.
3. Darafsheh M. R. Pure characterization of the projective special linear groups // Ital. J. Pure and Appl. Math. - 2008. № 23. - P. 229-244.
4. Darafsheh M. R., Farjami Y. Calculating the set of elements in the finite linear groups // J. Discrete Math. Sci. 2007. - 10, № 5. - P. 637-653.
5. Hagie M. The prime graph of a sporadic simple group // Communs Algebra. - 2003. - 31, № 9. - P. $4405-4424$.
6. Higman G. Finite groups in which every element has prime power order // J. London Math. Soc. - 1957. - 32. P. 335-342.
7. Khosravi B. Quasirecognition by prime graph of $L_{10}(2) / / ~ S i b . ~ M a t h . ~ J . ~-~ 2009 . ~-~ 50, ~ № ~ 2 . ~-~ P . ~ 355-359 . ~$
8. Behrooz Khosravi, Bahman Khosravi, Behnam Khosravi. A characterization of the finite simple group $L_{16}(2)$ by its prime graph // Manuscr. Math. - 2008. - 126. - P. 49 - 58.
9. Kondratiev A. S. On prime graph components for finite simple groups // Math. Sb. - 1989. - 180, № 6. - P. $787-797$.
10. Lucido M. S., Moghaddamfar A. R. Groups with complete prime graph connected components // J. Group Theory. 2004. - 31. - P. 373-384.
11. Mazurov V. D., Xu M. C., Cao H. P. Recognition of finite simple groups $L_{3}\left(2^{m}\right)$ and $U_{3}\left(2^{m}\right)$ by their element orders // Algebra and Logika. - 2000. - 39, № 5. - P. 567-585.
12. Mazurov V. D. Recognition of finite simple groups $S_{4}(q)$ by their element orders // Algebra and Logic. - 2002. - 41, № 2. - P. 93-110.
13. Mazurov V. D., Chen G. Y. Recognisability of finite simple groups $L_{4}\left(2^{m}\right)$ and $U_{4}\left(2^{m}\right)$ by spectrum // Algebra and Logic. - 2008. - 47, № 1. - P. 49-55.
14. Mazurov V. D. Characterization of finite groups by sets of element orders // Algebra and Logic. - 1997. - 36, № 1. P. 23-32.
15. Passman D. S. Permutation groups. - New York: W. A. Benjamin Inc., 1968.
16. Shi W. J., Yang W. Z. A new characterization of A_{5} and the finite groups in which every non-identity element has prime order // J. Southwest China Teachers College. - 1984. - P. 9-36 (in Chinese).
17. Vasilev A. V. On connection between the structure of a finite group and the properties of its prime graph // Sib. Math. J. - 2005. - 46, № 3. - P. 396-404.
18. Vasilev A. V., Grechkoseeva M. A. On recognition by spectrum of finite simple linear groups over fields of characteristic 2 // Sib. Math. J. - 2005. - 46, № 4. - P. 593-600.
19. Williams J. S. Prime graph components of finite groups // J. Algebra. - 1981. - 69, № 2. - P. 487-513.
20. Zavarnitsine A. V. Recognition of finite groups by the prime graph // Algebra and Logic. - 2006. - 45, № 4.
21. Zavarnitsine A. V. Finite simple groups with narrow prime spectrum // Sib. Electron. Math. Rep. - 2009. - 6. P. 1-12.
