UDC 512.5

P. Nosratpour (Ilam Branch, Islamic Azad Univ., Ilam, Iran),

M. R. Darafsheh (School Math., Statistics and Comput. Sci., College Sci., Univ. Tehran, Iran)

СНАRACTERIZATION OF THE GROUP $G_2(5)$ ВУ ТНЕ PRIME GRAPH ХАРАКТЕРИЗАЦІЯ ГРУПИ $G_2(5)$ ЗА ДОПОМОГОЮ ПРОСТОГО ГРАФА

Let G be a finite group. The prime graph of G is a graph $\Gamma(G)$ with vertex set $\pi(G)$ and the set of all prime divisors of |G|, where two distinct vertices p and q are adjacent by an edge if G has an element of order pq. We prove that if $\Gamma(G) = \Gamma(G_2(5))$, then G has a normal subgroup N such that $\pi(N) \subseteq \{2,3,5\}$ and $G/N \cong G_2(5)$.

Нехай G — скінченна група. Простим графом G називається граф $\Gamma(G)$ з множиною вершин $\pi(G)$ та множиною всіх простих дільників |G|, в якому дві різні вершини p і q сполучені ребром, якщо G містить елемент порядку pq. Доведено, що у випадку, коли $\Gamma(G) = \Gamma(G_2(5))$, група G містить нормальну підгрупу N таку, що $\pi(N) \subseteq \{2, 3, 5\}$ та $G/N \cong G_2(5)$.

1. Introduction. For $n \in N$, let $\pi(n)$ denote the set of all the prime divisors of n, and for a finite group G let us set $\pi(G) = \pi(|G|)$. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order pq. It is clear that a knowledge of w(G) determines $\Gamma(G)$ completely but not vise-versa in general. Given a finite group G, the number of nonisomorphic classes of finite groups H with $\Gamma(G) = \Gamma(H)$ is denoted by $h_{\Gamma}(G)$. If $h_{\Gamma}(G) = 1$, then G is said to be recognizable by prime graph. If $h_{\Gamma}(G) = k < \infty$, then G is called k-recognizable by prime graph, in case $h_{\Gamma}(G) = \infty$ the group G is called nonrecognizable by prime graph. Obviously a group recognizable by spectra need not to be recognizable by prime graph, for example A_5 is recognizable by spectra but $\Gamma(A_5) = \Gamma(A_6)$.

The number of connected components of $\Gamma(G)$ is denoted by s(G). As a consequence of the classification of the finite simple groups it is proved in [19] and [9], that for any finite simple group G we have $s(G) \leq 6$. Let $\pi_i = \pi_i(G)$, $1 \leq i \leq s$, be the connected components of G. For a group of even order we let $2 \in \pi_1$. Recognizability of groups by prime graph was first studied in [5] where some sporadic simple groups were characterized by prime graph. As another concept we say that a non-Abelian simple group G is quasirecognizable by graph if every finite group whose prime graph is $\Gamma(G)$ has a unique non-Abelian composition factor isomorphic to G.

It is proved in [20] that the simple groups $G_2(7)$ and ${}^2G_2(q)$, $q = 3^{2m+1} > 3$, are recognizable by prime graph, where both groups have disconnected prime graphs. A series of interesting results concerning recognition of finite simple groups were obtained by B. Khosravi et al. In particular they have stablished quasirecognizability of the group $L_{10}(2)$ by graph and the recognizability of $L_{16}(2)$ by graph in [7] and [8], where both groups have connected prime graphs.

Next we introduce useful notation. Let p be a prime number. The set of all non-Abelian finite simple groups G such that $p \in \pi(G) \subseteq \{2, 3, 5, \dots, p\}$ is denoted by \mathfrak{S}_p . It is clear that the set of all non-Abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_p for all primes p. The sets \mathfrak{S}_p , where p is a prime less than 1000 is given in [21].

2. Preliminary results. Let G be a finite group with disconnected prime graph. The structure of G is given in [19] which is stated as a lemma here.

[©] P. NOSRATPOUR, M. R. DARAFSHEH, 2016

Lemma 2.1. Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:

(a) s(G) = 2, G = KC is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.

(b) s(G) = 2 and G is a 2-Frobenius group, i.e., G = ABC, where $A, AB \leq G, B \leq BC$, and AB, BC are Frobenius groups.

(c) There exists a non-Abelian simple group P such that $P \leq \overline{G} = G/N \leq \operatorname{Aut}(P)$ for some nilpotent normal $\pi_1(G)$ -subgroup N of G and \overline{G}/P is a $\pi_1(G)$ -group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geq s(G)$.

If a group G satisfies condition (c) of the above lemma we may write P = B/N, $B \le G$, and $\overline{G}/P = G/B = A$, hence in terms of group extensions $G = N \cdot P \cdot A$, where N is a nilpotent normal $\pi_1(G)$ -subgroup of G and A is a $\pi_1(G)$ -group.

The above structure lemma was extended to groups with connected prime graphs satisfying certain conditions [17]. Denote by t(G) the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$.

In the following we list some properties of the Frobenius group where some of its proof can be found in [15].

Lemma 2.2. Let G be a Frobenius group with kernel K and complement H. Then:

(a) K is nilpotent and $|H| \mid (|K| - 1)$.

(b) The connected components of G are $\Gamma(K)$ and $\Gamma(H)$.

(c) $|\mu(K)| = 1$ and $\Gamma(K)$ is a complete graph.

(d) If |H| is even, then K is Abelian.

(e) Every subgroup of H of order pq, p and q not necessary distinct primes, is cyclic. In particular if H is Abelian, then it would be cyclic.

(f) If H is nonsolvable, then there is a normal subgroup H_0 of H such that $[H:H_0] \le 2$ and $H_0 \cong SL_2(5) \times Z$, where every Sylow subgroup of Z is cyclic and |Z| is prime to 2,3 and 5.

A Frobenius group with cyclic kernel of order m and cyclic complement of order n is denoted by m: n.

The following result is also used in this paper whose proof is included in [3].

Lemma 2.3. Every 2-Frobenius group is solvable.

Lemma 2.4 [6]. Let G be a finite solvable group all of whose elements are of prime power order, then the order of G is divisible by at most two distinct primes.

Lemma 2.5 [12]. Let G be a finite group, $K \leq G$, and let G/K be a Frobenius group with kernel F and cyclic complement C. If (|F|, |K|) = 1 and F dose not lie in $(K \cdot C_G(K))/K$, then $r \cdot |C| \in w(G)$ for some prime divisor r of |K|.

Lemma 2.6 [18]. $L_n(q)$ contains a Frobenius subgroup with kernel of order q^{n-1} and cyclic complement of order $(q^{n-1}-1)/(n,q-1)$.

Using [1], we can find $\mu(G_2(5)) = \{20, 21, 24, 25, 30, 31\}$. Therefore, the prime graph of $G_2(5)$ is as a follows.

Our main results are the followin theorem.

Theorem 2.1. If G is a finite group such that $\Gamma(G) = \Gamma(G_2(5))$, then G has a normal subgroup N such that $\pi(N) \subseteq \{2,3,5\}$ and $G/N \cong G_2(5)$.

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

Fig. 1. The prime graph of $G_2(5)$.

3. Proof of the theorem. We assume G is a group with $\Gamma(G) = \Gamma(G_2(5))$. By Fig. 1, we have s(G) = 2, hence, G has disconnected prime graph and we can use Lemma 2.1 here:

(a) G is nonsolvable. If G is solvable, then consider a $\{5, 7, 31\}$ -Hall subgroup of G and call it H. By Fig. 1, H dose not contain elements of order $5 \cdot 7$, $7 \cdot 31$, $5 \cdot 31$, and since it is solvable, by Lemma 2.4 we deduce $|t(H)| \leq 2$, a contradiction.

(b) G is neither a Frobenius nor a 2-Frobenius group. By (a) and Lemma 2.3, G is not a 2-Frobenius group. If G is a Frobenius group, then by Lemma 2.1, G = KC with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Obviously $\Gamma(K)$ is a graph with vertex {31} and $\Gamma(C)$ with vertex set {2,3,5,7}. Since G is nonsolvable, by Lemma 2.2(a) C must be nonsolvable. Therefore, by Lemma 2.2(f) C has a subgroup isomorphic to H_0 and $[C : H_0] \leq 2$, where $H_0 \cong SL_2(5) \times Z$ with Z cyclic of order prime to 2,3,5. But $\mu(SL_2(5)) = \{4, 6, 10\}$ from which we can observe that H_0 has no element of order 15. This implies that C has no element of order 15, contradicting Fig. 1.

Conditions (a) and (b) imply that case (c) of Lemma 2.1 holds for G. Hence, there is a non-Abelian simple group P such that $P \leq \overline{G} = G/N \leq \operatorname{Aut}(P)$ where N is a nilpotent normal $\pi_1(G)$ -subgroup of G and \overline{G}/P is a $\pi_1(G)$ -group and $s(P) \geq 2$. We have $\pi_1(G) = \{2, 3, 5, 7\}$ and $\pi(G) = \{2, 3, 5, 7, 31\}$. Therefore, P is a simple group with $\pi(P) \subseteq \{2, 3, 5, 7, 31\}$, i.e., $P \in \mathfrak{S}_p$ where p is a prime number satisfying $p \leq 31, p \neq 11, 13, 17, 19, 23, 29$. Using [21] we list the possibilities for P in Table 1.

(c) $\{31\} \subseteq \pi(P)$. By Table 1, $|\operatorname{Out}(P)|$ is a number of the form $2^{\alpha} \cdot 3^{\beta}$, therefore, if $G/N = P \cdot S$, where $S \leq \operatorname{Out}(P)$, then $|P|_p = |G/N|_p/|S|_p$ for all $p \in \pi(G)$, where n_p denotes the *p*-part of the integer $n \in N$. Hence, $|N|_p = \frac{|G|_p}{|P|_p|S|_p}$, from which the claim follows because $\pi(N) \subseteq \{2, 3, 5, 7\}$. Therefore only the following possibilities arise for $P \colon L_2(31), L_5(2), L_6(2), L_3(5), L_2(5^3)$ and

30, 31, 63. Therefore, if $P \cong L_5(2)$ or $L_6(2)$, then we have $2 \sim 7$ in $\Gamma(G)$, is a contradiction.

By [10], we have $\mu(L_2(5^3)) = \{5, 62, 63\}$. Therefore, if $P \cong L_2(5^3)$, then we have $2 \sim 31$ in $\Gamma(G)$, a contradiction.

By [1], we have $\mu(L_2(31)) = \{15, 16, 31\}$. Therefore, if $P \cong L_2(31)$, then $7 \in \pi(N)$. By Lemma 2.6, P has a Frobenius subgroup 31 : 15, then, by Lemma 2.5, G has an element of order $5 \cdot 7$, a contradiction.

By [1], we have $\mu(L_3(5)) = \{20, 24, 31\}$. Therefore, if $P \cong L_3(5)$, then $7 \in \pi(N)$. By Lemma 2.6, P has a Frobenius subgroup 25 : 24, then, by Lemma 2.5, G has an element of order $2 \cdot 7$, a contradiction. Therefore $P \cong G_2(5)$.

(e) $G/N \cong G_2(5)$. So far we proved that $P \leq G/N \leq \operatorname{Aut}(P)$ where $P \cong G_2(5)$. But $\operatorname{Aut}(G_2(5)) = G_2(5)$, therefore, $G/N \cong G_2(5)$.

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

Р	P	$ \operatorname{Out}(P) $	Р	P	$ \operatorname{Out}(P) $
A_5	$2^2 \cdot 3 \cdot 5$	2	J_2	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$	2
A_6	$2^3 \cdot 3^2 \cdot 5$	4	A_{10}	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7$	2
$S_{4}(3)$	$2^6 \cdot 3^4 \cdot 5$	2	$U_4(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7$	8
$L_2(7)$	$2^3 \cdot 3 \cdot 7$	2	$S_4(7)$	$2^8 \cdot 3^2 \cdot 5^2 \cdot 7^4$	2
$L_2(8)$	$2^3 \cdot 3^2 \cdot 7$	3	$S_{6}(2)$	$2^9 \cdot 3^4 \cdot 5 \cdot 7$	1
$U_3(3)$	$2^5 \cdot 3^3 \cdot 7$	2	$O_8^+(2)$	$2^{12}\cdot 3^5\cdot 5^2\cdot 7$	6
A_7	$2^3\cdot 3^2\cdot 5\cdot 7$	2	$L_2(31)$	$2^5\cdot 3\cdot 5\cdot 31$	2
$L_2(49)$	$2^4\cdot 3\cdot 5^2\cdot 7^2$	4	$L_3(5)$	$2^5\cdot 3\cdot 5^3\cdot 31$	2
$U_{3}(5)$	$2^4\cdot 3^2\cdot 5^3\cdot 7$	6	$L_2(5^3)$	$2^2\cdot 3^2\cdot 5^3\cdot 7\cdot 31$	6
$L_{3}(4)$	$2^6\cdot 3^2\cdot 5\cdot 7$	12	$G_2(5)$	$2^6\cdot 3^3\cdot 5^6\cdot 7\cdot 31$	1
A_8	$2^6\cdot 3^2\cdot 5\cdot 7$	2	$L_5(2)$	$2^{10}\cdot 3^2\cdot 5\cdot 7\cdot 31$	2
A_9	$2^6 \cdot 3^4 \cdot 5 \cdot 7$	2	$L_6(2)$	$2^{15}\cdot 3^4\cdot 5\cdot 7^2\cdot 31$	2

Table 1. Simple groups in \mathfrak{S}_p , $p \le 31$, $p \ne 11, 13, 17, 19, 23, 29$

(f) $\pi(N) \subseteq \{2, 3, 5\}$. We know that N is a nilpotent normal $\{2, 3, 5, 7\}$ -subgroup of G. Regarding Fig. 1 we obtain:

if 2, 5 | |N|, then $\pi(N) \subseteq \{2, 3, 5\}$;

if $3 \mid |N|$, then $\pi(N) \subseteq \{2, 3, 5, 7\}$;

if 7 | |N|, then $\pi(N) \subseteq \{3, 7\}$.

Now we observe that the group $G_2(5)$ contains Frobenius subgroup 31:5. We may assume N is elementary Abelian p-group for $p \in \{2, 3, 5, 7\}$. Now if $7 \mid |N|$, then by Lemma 2.5, G has an element of order $5 \cdot 7$, a contradiction. Therefore, $\pi(N) \subseteq \{2, 3, 5\}$.

References

- 1. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. Oxford: Clarendon Press, 1985.
- Darafsheh M. R. Order of elements in the groups related to the general linear groups // Finite Fields and Appl. 2005. – 11. – P. 738 – 747.
- 3. *Darafsheh M. R.* Pure characterization of the projective special linear groups // Ital. J. Pure and Appl. Math. 2008. № 23. P. 229–244.
- 4. Darafsheh M. R., Farjami Y. Calculating the set of elements in the finite linear groups // J. Discrete Math. Sci. 2007. 10, № 5. P. 637–653.
- 5. Hagie M. The prime graph of a sporadic simple group // Communs Algebra. 2003. 31, № 9. P. 4405 4424.
- Higman G. Finite groups in which every element has prime power order // J. London Math. Soc. 1957. 32. P. 335–342.
- 7. *Khosravi B.* Quasirecognition by prime graph of $L_{10}(2)$ // Sib. Math. J. 2009. **50**, No 2. P. 355–359.
- Behrooz Khosravi, Bahman Khosravi, Behnam Khosravi. A characterization of the finite simple group L₁₆(2) by its prime graph // Manuscr. Math. – 2008. – 126. – P. 49–58.
- 9. Kondratiev A. S. On prime graph components for finite simple groups // Math. Sb. 1989. 180, № 6. P. 787–797.
- Lucido M. S., Moghaddamfar A. R. Groups with complete prime graph connected components // J. Group Theory. 2004. – 31. – P. 373 – 384.

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

- 11. Mazurov V. D., Xu M. C., Cao H. P. Recognition of finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders // Algebra and Logika. 2000. **39**, No 5. P. 567–585.
- Mazurov V. D. Recognition of finite simple groups S₄(q) by their element orders // Algebra and Logic. 2002. 41, № 2. – P. 93–110.
- Mazurov V. D., Chen G. Y. Recognisability of finite simple groups L₄(2^m) and U₄(2^m) by spectrum // Algebra and Logic. - 2008. - 47, № 1. - P. 49-55.
- Mazurov V. D. Characterization of finite groups by sets of element orders // Algebra and Logic. 1997. 36, № 1. P. 23 – 32.
- 15. Passman D. S. Permutation groups. New York: W. A. Benjamin Inc., 1968.
- 16. Shi W. J., Yang W. Z. A new characterization of A₅ and the finite groups in which every non-identity element has prime order // J. Southwest China Teachers College. 1984. P. 9 36 (in Chinese).
- 17. Vasilev A. V. On connection between the structure of a finite group and the properties of its prime graph // Sib. Math. J. 2005. 46, № 3. P. 396-404.
- 18. *Vasilev A. V., Grechkoseeva M. A.* On recognition by spectrum of finite simple linear groups over fields of characteristic 2 // Sib. Math. J. 2005. **46**, № 4. P. 593–600.
- 19. Williams J. S. Prime graph components of finite groups // J. Algebra. 1981. 69, № 2. P. 487-513.
- 20. Zavarnitsine A. V. Recognition of finite groups by the prime graph // Algebra and Logic. 2006. 45, № 4.
- 21. Zavarnitsine A. V. Finite simple groups with narrow prime spectrum // Sib. Electron. Math. Rep. 2009. 6. P. 1–12.

Received 24.03.13, after revision -21.06.16