UDC 512.5

B. Koşar, C. Nebiyev (Ondokuz Mayıs Univ., Turkey)

T-RADICAL AND STRONGLY T-RADICAL SUPPLEMENTED MODULES Т-РАДИКАЛЬНІ ТА СИЛЬНО Т-РАДИКАЛЬНІ ДОПОВНЕНІ МОДУЛІ

We define (strongly) *t*-radical supplemented modules and investigate some properties of these modules. These modules lie between strongly radical supplemented and strongly \oplus -radical supplemented modules. We also study the relationship between these modules and present examples separating strongly *t*-radical supplemented modules, supplemented modules, and strongly \oplus -radical supplemented modules.

Визначено поняття (сильно) *t*-радикальних доповнених модулів та вивчено деякі властивості цих модулів. Такі модулі лежать між сильно радикальними доповненими та сильно \oplus -радикальними доповненими модулями. Також вивчено співвідношення між цими модулями та наведено приклади, що відділяють сильно *t*-радикальні доповнені модулі, доповнені модулі та сильно \oplus -радикальні доповнені модулі.

1. Introduction. Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and N < M. If L = M for every submodule L of M such that M = N + L, then N is called a *small submodule* of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that M = N + K and $N \cap K = 0$, then N is called a *direct summand* of M and it is denoted by $M = N \oplus K$ [14]. Rad M indicates the radical of M. A submodule N of M is called *radical* if N has no maximal submodules, i.e., N = Rad N. M is called a *hollow* module if every proper submodule of M is small in M. M is called a *local* module if M has a largest submodule, i.e., a proper submodule which contains all other proper submodules. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement [5, 9, 16] of U in M. M is called a supplemented module if every submodule of M has a supplement in M. A module M is called *amply supplemented* if V contains a supplement of U in M whenever M = U + V [14]. Clearly every amply supplemented module is supplemented. M is called [7, 10, 11] \oplus -supplemented module if every submodule of M has a supplement that is a direct summand of M. Let M be an R-module and U, V be submodules of M. V is called a generalized supplement [2, 13] of U in M if M = U + V and $U \cap V \leq \text{Rad } V$. M is called generalized supplemented or briefly GS-module if every submodule of M has a generalized supplement and clearly that every supplement submodule is a generalized supplement. M is called a generalized \oplus supplemented [6, 10, 11] module if every submodule of M has a generalized supplement that is a direct summand in M. A submodule N of an R-module M is called *cofinite* if M/N is finitely generated. Note that M is called π -projective if whenever M = U + V then there exists a homomorphism $f: M \to M$ such that $f(M) \subseteq U$ and $(1-f)(M) \subseteq V$ [14].

Lemma 1.1. Let M be an R-module and N, K be submodules of M. If N+K has a generalized supplement X in M and $N \cap (K+X)$ has a generalized supplement Y in N, then X + Y is a generalized supplement of K in M.

Proof. See [6] (Lemma 3.2).

Lemma 1.2. If V is a supplement in a module M, then $\operatorname{Rad} V = V \cap \operatorname{Rad} M$.

Proof. See [3] (Corollary 4.2).

Lemma 1.3. Let M be a π -projective module and K, L be two submodules of M. If K and L are mutual supplements in M, then $K \cap L = 0$ and $M = K \oplus L$.

Proof. See [14] (41.14(2)).

2. T-sum and T-summand.

Definition 2.1. Let M be an R-module, U and V be two submodules of M. M is called t-sum of U and V if U and V are mutual supplements in M, i.e., M = U + V, $U \cap V \ll U$ and $U \cap V \ll V$. Having this property of M is called a t-decomposition of M, U and V are called t-summand of M (see also [8]).

Theorem 2.1. Let M be an R-module. M is an amply supplemented module if and only if for every $U \leq M$ there exists a t-decomposition M = X + Y of M such that $X \leq U$ and $U \cap Y \ll Y$.

Proof. (\Rightarrow) Let M be an amply supplemented module. Consider any submodule U of M. Since M is amply supplemented, then M is supplemented module. So U has a supplement Y in M. In this case M = U + Y and $U \cap Y \ll Y$. Since M = U + Y and M is amply supplemented, Y has a supplement X in M such that $X \leq U$. Therefore M is t-sum of X and Y.

(\Leftarrow) Consider any submodule U of M and let M = U + V. By hypothesis, there exists a t-decomposition M = X + Y of M such that $X \leq U \cap V$ and $U \cap V \cap Y \ll Y$. Since M = X + Y and $X \leq U \cap V \leq V$, then by modular law, $V = X + V \cap Y$. So we have $M = U + V = U + X + V \cap Y = U + V \cap Y$. Also by hypothesis, there exists a t-decomposition M = S + T of M such that $S \leq V \cap Y$ and $V \cap Y \cap T \ll T$. Since $S \leq V \cap Y$ and M = S + T, then by modular law, $V \cap Y = S + V \cap Y \cap T$. Moreover, since $V \cap Y \cap T \ll T$, we get $M = U + V \cap Y = U + S + V \cap Y \cap T = U + S$. In here, since $U \cap S \leq U \cap V \cap Y \ll Y$, then $U \cap S \ll M$. Since S is a supplement in M, then $U \cap S \ll S$. That is, U has a supplement S in M such that $S \leq V$. Therefore M is amply supplemented.

Definition 2.2. Let M be an R-module and $\{U_i\}_{i \in I}$ be a collection of submodules of M. If for every $i \in I$, U_i and $\sum_{k \in I - \{i\}} U_k$ are mutual supplements in M, then M is called t-sum of the collection $\{U_i\}_{i \in I}$ (see also [8]).

Lemma 2.1. Let M be a π -projective R-module and a t-sum of U and V. Then $U \cap V = 0$ and $M = U \oplus V$.

Proof. Clear from Lemma 1.3.

The following result generalizes Lemma 2.1 which is easily proved.

Corollary 2.1. Let M be an R-module and $\{U_i\}_{i \in I}$ be a collection of submodules of M. If M is π -projective and a t-sum of the collection $\{U_i\}_{i \in I}$, then $M = \bigoplus_{i \in I} U_i$.

Proof. We take any $k \in I$. Hence U_k and $\sum_{i \in I - \{k\}} U_i$ are mutual supplements in M. By the Lemma 2.1, we have $U_k \cap \left(\sum_{i \in I - k} U_i\right) = 0$. Therefore $M = \bigoplus_{i \in I} U_i$.

Lemma 2.2. Let M be an R-module and V be a supplement of U in M. T is a supplement of K in V with $K, T \leq V$ if and only if T is a supplement of U + K in M (see also [8]).

Proof. (\Rightarrow) Let T be a supplement of K in V. Consider any submodule T_1 of T with $U + K + T_1 = M$. Since $K, T \leq V, U + K + T_1 = M$ and V is a supplement of U in M, then we get $K + T_1 = V$. Since T is a supplement of K in V, then $T_1 = T$. So, T is a supplement of U + K in M.

(\Leftarrow) Let T be a supplement of U + K in M. Consider any submodule T_1 of T with $K + T_1 = V$. We get $M = U + V = U + K + T_1$. Since $T_1 \leq T$ and by the assumption, we can write $T_1 = T$. Therefore T is a supplement of K in V.

Lemma 2.3. Let M be a t-sum of U and V. If K is a supplement of S in U and L is a supplement of T in V, then K + L is a supplement of S + T in M (see also [8]).

Proof. Since U is a supplement of V in M and K is a supplement of S in U, by Lemma 2.2, K is a supplement of V+S in M. Hence $(V+S)\cap K \ll K$. Similarly, we can prove that $(U+T)\cap L \ll L$. Then $(S+T)\cap (K+L) \leq (S+T+K)\cap L+(S+T+L)\cap K = (U+T)\cap L+(V+S)\cap K \ll K+L$, and by M = U+V = S+K+T+L = S+T+K+L, K+L is a supplement of S+T in M.

Lemma 2.4. Let M be a t-sum of U and V, and $L, T \leq V$. Then V is a t-sum of L and T if and only if M is a t-sum of U + L and T, and M is a t-sum of U + T and L (see also [8]).

Proof. (\Rightarrow) Let V be a t-sum of L and T. Since T is a supplement of L in V and V is a supplement of U in M, then by Lemma 2.2, T is a supplement of U + L in M. Then $(U + L) \cap T \ll T$. Similarly, we can prove that $(U + T) \cap L \ll L$. Then by $U \cap V \ll U$, $(U + L) \cap T \leq U \cap (L + T) + L \cap (U + T) = U \cap V + (U + T) \cap L \ll U + L$. Since $(U + L) \cap T \ll T, (U + L) \cap T \ll U + L$ and M = U + V = U + L + T, then by Definition 2.1 M is a t-sum of U + L and T. Similarly, we can prove that M is a t-sum of U + T and L.

 (\Rightarrow) Clear from Lemma 2.2.

Corollary 2.2. Let M be a t-sum of U_1, U_2, \ldots, U_n . If K_i is a supplement of T_i in U_i , $i = 1, 2, \ldots, n$, then $K_1 + K_2 + \ldots + K_n$ is a supplement of $T_1 + T_2 + \ldots + T_n$ in M (see also [8]). **Proof.** Clear from Lemma 2.3.

Corollary 2.3. Let M be a t-sum of U_1, U_2, \ldots, U_n . If U_i is a t-sum of K_i and T_i , $i = 1, 2, \ldots, n$, then M is a t-sum of $K_1 + K_2 + \ldots + K_n$ and $T_1 + T_2 + \ldots + T_n$ (see also [8]). **Proof.** Clear from Corollary 2.2.

Corollary 2.4. Let M be a t-sum of U_1, U_2, \ldots, U_n . If K_i is a supplement in U_i , $i = 1, 2, \ldots, n$, then $K_1 + K_2 + \ldots + K_n$ is a supplement in M (see also [8]).

Proof. Clear from Corollary 2.2.

Corollary 2.5. Let M be a t-sum of U_1, U_2, \ldots, U_n . If K_i is a t-summand of U_i , $i = 1, 2, \ldots, n$, then $K_1 + K_2 + \ldots + K_n$ is a t-summand of M (see also [8]).

Proof. Clear from Corollary 2.3.

Let M be an R-module. We say that M is called *cofinitely t-generalized supplemented module* if every cofinite submodule of M has a generalized supplement such that it is a supplement in M.

Theorem 2.2. Let M be a t-sum of collection of $\{U_i\}_{i \in I}$. If for every $i \in I$, U_i is cofinitely t-generalized supplemented, then M is also cofinitely t-generalized supplemented.

Proof. Let K be any cofinite submodule of M. Since $M = \sum_{i \in I} U_i$, then there exist $i_1, i_2, \ldots, i_n \in I$ such that $M = K + U_{i_1} + U_{i_2} + \ldots + U_{i_n}$. By Lemma 1.1, clearly, K has a generalized supplement $V_{i_1} + V_{i_2} + \ldots + V_{i_n}$ in M such that V_{i_t} is a supplement in U_{i_t} for $1 \leq t \leq n$. By Corollary 2.4, we get $V_{i_1} + V_{i_2} + \ldots + V_{i_n}$ is a supplement in M. Therefore M is a cofinitely t-generalized supplemented.

Lemma 2.5. Let M be a t-sum of collection of $\{U_i\}_{i \in I}$. Then $\operatorname{Rad} M = \sum_{i \in I} \operatorname{Rad} U_i$ (see also [8]).

Proof. Clearly $\sum_{i \in I} \operatorname{Rad} U_i \leq \operatorname{Rad} M$. Let $x \in \operatorname{Rad} M$. Since $x \in M = \sum_{i \in I} U_i$, there exist $i_1, i_2, \ldots, i_n \in I$ and $x_{i_t} \in U_{i_t}, t = 1, 2, \ldots, n$, such that $x = x_{i_1} + x_{i_2} + \ldots + x_{i_n}$. Suppose that some submodule S of U_{i_t} for $1 \leq t \leq n$ with $Rx_{i_t} + S = U_{i_t}$. In here, we can show that

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 9

 $Rx_{i_t} + S + \sum_{i \in I - \{i_t\}} U_i = M$. Since $Rx \ll M$, we have $S + \sum_{i \in I - \{i_t\}} U_i = M$. Moreover, since $S \leq U_{i_t}$ and U_{i_t} is a supplement of $\sum_{i \in I - \{i_t\}} U_i$ in M, then we can write $S = U_{i_t}$. Hence $Rx_{i_t} \ll U_{i_t}$, then $x_{i_t} \in \operatorname{Rad} U_{i_t}$. Therefore, $\operatorname{Rad} M \leq \sum_{i \in I} \operatorname{Rad} U_i$.

3. (Strongly) T-radical supplemented modules.

Definition 3.1. Let M be an R-module. If the radical of M has a supplement such that is a t-summand in M, then M is called a t-radical supplemented module, that is, there exist $K, L \leq M$ such that M = Rad M + K, $\text{Rad } M \cap K \ll K$ and M = K + L, $K \cap L \ll K$, $K \cap L \ll L$.

Definition 3.2. Let M be an R-module. If every submodule of M containing the radical of M has a supplement that is a t-summand in M, then M is called a strongly t-radical supplemented module. That is, for every submodule K of M with $\operatorname{Rad} M \subseteq K$, there exists a t-summand L of M such that M = K + L, $K \cap L \ll L$.

Lemma 3.1. Every supplemented module is strongly t-radical supplemented.

Proof. Let M be a supplemented module and let $\operatorname{Rad} M \leq U \leq M$. So U has a supplement V in M. Since M is supplemented, V has a supplement V in M. Hence V and V are mutual supplements in M. Therefore V is a t-summand of M. This means that M is strongly t-radical supplemented.

In the last of this section, we will give an example of a strongly t-radical supplemented module that is not supplemented.

Lemma 3.2. Every radical module is (strongly) t-radical supplemented.

Proof. Let M be a radical module. Clearly M has the trivial supplement 0 in M. Hence M is t-radical supplemented. Since M is the unique submodule containing the radical, M is a strongly t-radical supplemented.

By P(M) we denote the sum of all radical submodules of a module M. It is clear that, for any module M, P(M) is the largest radical submodule.

Corollary 3.1. For every R-module M, P(M) is strongly t-radical supplemented.

Proof. Since $\operatorname{Rad} P(M) = P(M)$, the proof is complete.

Lemma 3.3. Let M be a (strongly) t-radical supplemented module. Then M has a t-summand which is radical.

Proof. By hypothesis, there exists $V, V \leq M$ such that $M = \operatorname{Rad} M + V$, $\operatorname{Rad} M \cap V \ll V$, M = V + V, $V \cap V \ll V$ and $V \cap V \ll V$. Now we prove that $\operatorname{Rad} V = V$. Since $\operatorname{Rad} M \cap V =$ = $\operatorname{Rad} V$, $\operatorname{Rad} V \ll V$. Note that $\operatorname{Rad} M = \operatorname{Rad} V + \operatorname{Rad} V$. So, $M = V + \operatorname{Rad} V$. Applying the modular law, $V = \operatorname{Rad} V + (V \cap V)$. Since $V \cap V \ll V$, then $\operatorname{Rad} V = V$. Therefore, V is a radical *t*-summand.

Recall that a module M is called reduced if P(M) = 0.

Lemma 3.4. Let M be a reduced module. If M is (strongly) t-radical supplemented, then Rad $M \ll M$.

Proof. Since M is (strongly) t-radical supplemented, there exists $V, V \leq M$, such that M == Rad M + V, Rad $M \cap V \ll V$ and M = V + V, $V \cap V \ll V$, $V \cap V \ll V$. Since Rad $M \cap V =$ = Rad V, Rad $V \ll V$. By Lemma 3.3, we have Rad V = V. Since M is reduced, P(M) = 0. Hence we get M = V.

Lemma 3.5. Every module M with $\operatorname{Rad} M \ll M$ is t-radical supplemented.

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 9

Proof. Let M be a module with $\operatorname{Rad} M \ll M$. We assume that $M = \operatorname{Rad} M + N$ for some submodule N of M. Since $\operatorname{Rad} M \ll M$, then M = N.

An *R*-module M is called *coatomic* if every proper submodule of M is contained in a maximal submodule of M. Note that Rad M is small in M for every coatomic *R*-module M.

Corollary 3.2. Every coatomic module is t-radical supplemented.

The module $_RR$ is a maximal module if every nonzero ideal contains a maximal submodule. $_RR$ is a left Bass module if every nonzero R-module has a maximal submodule; such rings are called *left Bass rings*. R is left Bass ring if and only if for every nonzero R-module M, $\operatorname{Rad} M \ll M$. Now, we obtain the following result.

Corollary 3.3. Every nonzero module over the left Bass ring is t-radical supplemented.

By combining the Lemma 3.1 and definitions we have the following lemma.

Lemma 3.6. Let M be an R-module with $\operatorname{Rad} M \ll M$. Then the following conditions are equivalent.

(i) *M* is strongly *t*-radical supplemented,

(ii) *M* is strongly radical supplemented,

(iii) *M* is supplemented.

The factor modules of a strongly *t*-radical supplemented module need not be strongly *t*-radical supplemented in general. A module M is called *distributive* if for every submodules K, L, N of M, $N + (K \cap L) = (N + K) \cap (N + L)$ or equivalently $N \cap (K + L) = (N \cap K) + (N \cap L)$. For distributive modules we have the following fact.

Lemma 3.7. Let M be a distributive strongly t-radical supplemented module and U be a submodule of M. Then M/U is strongly t-radical supplemented.

Proof. Let V/U be any submodule of M/U with $\operatorname{Rad}(M/U) \subseteq V/U$. From canonical epimorphism $\pi: M \to M/U$, we have $(\operatorname{Rad} M + U)/U \subseteq \operatorname{Rad}(M/U)$. So $\operatorname{Rad} M \subseteq V$. Since M is a strongly t-radical supplemented module, then V has a supplement which is a t-summand in M. Hence there exists $T, T \leq M$ such that M = V + T, $V \cap T \ll T$ and M = T + T, $T \cap T \ll T$, $T \cap T \ll T$. Since T is a supplement of V in M, then (T + U)/U is a supplement of V/U in M/U. Now we show that (T + U)/U is a t-summand in M/U. From M = T + T, we get M/U = (T + U)/U + (T + U)/U. Since M is distributive, we have $[(T + U) \cap (T + U)]/U = (U + (T \cap T))/U$. On the other hand, $(U + (T \cap T))/U \ll (T + U)/U$ and $(U + (T \cap T))/U \ll (T + U)/U$. Therefore M/U is strongly t-radical supplemented.

Theorem 3.1. Let M be t-sum of M_1 and M_2 . If M_1 and M_2 are t-radical supplemented, then M is t-radical supplemented.

Proof. Since M_1 is t-radical supplemented module, then $\operatorname{Rad} M_1$ has a supplement V_1 which is a t-summand in M_1 . Since M_2 is t-radical supplemented module, then $\operatorname{Rad} M_2$ has a supplement V_2 which is a t-summand in M_2 . From M, is a t-sum of M_1 and M_2 , by Lemma 2.5, we have $\operatorname{Rad} M =$ = $\operatorname{Rad} M_1 + \operatorname{Rad} M_2$. By Lemma 2.3, $V_1 + V_2$ is a supplement of $\operatorname{Rad} M =$ $\operatorname{Rad} M_1 + \operatorname{Rad} M_2$ in M. On the other hand, by Corollary 2.5 $V_1 + V_2$ is a t-summand in M.

Corollary 3.4. *The finite t-sum of t-radical supplemented modules is t-radical supplemented.*

Lemma 3.8. Let R be a nonlocal commutative domain and M be an injective R-module. Then M is (strongly) t-radical supplemented module.

Proof. By our assumption, we can write $\operatorname{Rad} M = M$. So the proof is complete.

Over Dedekind domains, divisible modules coincide with injective modules as in Abelian groups. Note that for a module M over a Dedekind domain R, M is divisible if and only if Rad M = M, and this holds if and only if M is injective; see for example [1] (Lemma 4.4).

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 9

Corollary 3.5. Every module over nonlocal Dedekind domain is a submodule of (strongly) t-radical supplemented module.

Now we give examples for to separate the structure of strongly *t*-radical supplemented, supplemented and strongly \oplus -radical supplemented module.

Example 3.1. Consider the \mathbb{Z} -module \mathbb{Q} . Since $\operatorname{Rad} \mathbb{Q} = \mathbb{Q}$, it follows that $_{\mathbb{Z}}\mathbb{Q}$ is strongly *t*-radical supplemented. But it is well known that $_{\mathbb{Z}}\mathbb{Q}$ is not supplemented (see [7], Example 20.12).

Example 3.2. Let R be a commutative local ring which is not a valuation ring. Let a and b be elements of R, where neither of them divides the other. By taking a suitable quotient ring, we may assume that $(a) \cap (b) = 0$ and am = bm = 0, where m is the maximal ideal of R. Let F be a free R-module with generators x_1, x_2 and x_3 , K be the submodule generated by $ax_1 - bx_2$ and M = F/K. Thus, $M = \frac{Rx_1 \oplus Rx_2 \oplus Rx_3}{R(ax_1 - bx_2)} = (R\overline{x_1} + R\overline{x_2}) \oplus R\overline{x_3}$. Here M is not \oplus -supplemented.

But $F = Rx_1 \oplus Rx_2 \oplus Rx_3$ is completely \oplus -supplemented [7].

Since F is completely \oplus -supplemented, F is supplemented. Since a factor module of a supplemented module is supplemented, we have M is supplemented. By Lemma 3.1 M is strongly t-radical supplemented module. But M is not strongly \oplus -radical supplemented.

References

- 1. Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. 2001. 29, № 6. P. 2389–2405.
- Büyükaşık E., Lomp C. On a recent generalization of semiperfect rings // Bull. Austral. Math. Soc. 2008. 78, № 2. - P. 317-325.
- Büyükaşık E., Mermut E., Özdemir S. Rad supplemented modules // Rend. Semin. mat. Univ. Padova. 2010. 124. – P. 157 – 177.
- 4. Büyükaşık E., Türkmen E. Strongly radical supplemented modules // Ukr. Math. J. 2012. 63, № 8. P. 1306 1313.
- Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules, supplements and projectivity in module theory // Front. Math. – Basel: Birkhäuser, 2006.
- *Çalışıcı H., Türkmen E.* Generalized ⊕-supplemented modules // Algebra and Discrete Math. 2010. 10. P. 10–18.
- Idelhadj A., Tribak R. On some properties of ⊕-supplemented modules // Int. J. Math. Sci. 2003. 69. P. 4373 4387.
- 8. Kosar B., Nebiyev C. tg-Supplemented modules // Miskolc Math. Notes. 2015. 16, № 2. P. 979–986.
- 9. Mohamed S. H., Müller B. J. Continuous and discrete modules. Cambridge Univ. Press, 1990. 147.
- 10. Talebi Y., Hamzekolaei A. R. M., Tütüncü D. K. On Rad ⊕-supplemented modules // Hadronic J. 2009. 32. P. 505–512.
- 11. Talebi Y., Mahmoudi A. On Rad ⊕-supplemented modules // Thai J. Math. 2011. 9, № 2. P. 373-381.
- Türkmen B. N., Pancar A. Generalizations of ⊕-supplemented modules // Ukr. Math. J. 2013. 65, № 4. P. 555–564.
- 13. Wang Y., Ding N. Generalized supplemented modules // Taiwan. J. Math. 2006. 10, № 6. P. 1589–1601.
- 14. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- 15. Xue W. Characterization of semiperfect and perfect rings // Publ. Mat. 1996. 40, № 1. P. 115–125.
- 16. Zöschinger H. Komplementierte Moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42 56.

Received 17.12.13,

after revision -21.06.16