T-RADICAL AND STRONGLY T-RADICAL SUPPLEMENTED MODULES Т-РАДИКАЛЬНІ ТА СИЛЬНО Т-РАДИКАЛЬНІ ДОПОВНЕНІ МОДУЛІ

Abstract

We define (strongly) t-radical supplemented modules and investigate some properties of these modules. These modules lie between strongly radical supplemented and strongly \oplus-radical supplemented modules. We also study the relationship between these modules and present examples separating strongly t-radical supplemented modules, supplemented modules, and strongly \oplus-radical supplemented modules.

Визначено поняття (сильно) t-радикальних доповнених модулів та вивчено деякі властивості цих модулів. Такі модулі лежать між сильно радикальними доповненими та сильно \oplus-радикальними доповненими модулями. Також вивчено співвідношення між цими модулями та наведено приклади, що відділяють сильно t-радикальні доповнені модулі, доповнені модулі та сильно \oplus-радикальні доповнені модулі.

1. Introduction. Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If $L=M$ for every submodule L of M such that $M=N+L$, then N is called a small submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that $M=N+K$ and $N \cap K=0$, then N is called a direct summand of M and it is denoted by $M=N \oplus K$ [14]. Rad M indicates the radical of M. A submodule N of M is called radical if N has no maximal submodules, i.e., $N=\operatorname{Rad} N . M$ is called a hollow module if every proper submodule of M is small in $M . M$ is called a local module if M has a largest submodule, i.e., a proper submodule which contains all other proper submodules. Let U and V be submodules of M. If $M=U+V$ and V is minimal with respect to this property, or equivalently, $M=U+V$ and $U \cap V \ll V$, then V is called a supplement $[5,9,16]$ of U in $M . M$ is called a supplemented module if every submodule of M has a supplement in M. A module M is called amply supplemented if V contains a supplement of U in M whenever $M=U+V$ [14]. Clearly every amply supplemented module is supplemented. M is called $[7,10,11] \oplus$-supplemented module if every submodule of M has a supplement that is a direct summand of M. Let M be an R-module and U, V be submodules of $M . V$ is called a generalized supplement [2,13] of U in M if $M=U+V$ and $U \cap V \leq \operatorname{Rad} V . M$ is called generalized supplemented or briefly GS-module if every submodule of M has a generalized supplement and clearly that every supplement submodule is a generalized supplement. M is called a generalized \oplus supplemented $[6,10,11]$ module if every submodule of M has a generalized supplement that is a direct summand in M. A submodule N of an R-module M is called cofinite if M / N is finitely generated. Note that M is called π-projective if whenever $M=U+V$ then there exists a homomorphism $f: M \rightarrow M$ such that $f(M) \subseteq U$ and $(1-f)(M) \subseteq V$ [14].

Lemma 1.1. Let M be an R-module and N, K be submodules of M. If $N+K$ has a generalized supplement X in M and $N \cap(K+X)$ has a generalized supplement Y in N, then $X+Y$ is a generalized supplement of K in M.

Proof. See [6] (Lemma 3.2).

Lemma 1.2. If V is a supplement in a module M, then $\operatorname{Rad} V=V \cap \operatorname{Rad} M$.
Proof. See [3] (Corollary 4.2).
Lemma 1.3. Let M be a π-projective module and K, L be two submodules of M. If K and L are mutual supplements in M, then $K \cap L=0$ and $M=K \oplus L$.

Proof. See [14] (41.14(2)).

2. T-sum and T-summand.

Definition 2.1. Let M be an R-module, U and V be two submodules of $M . M$ is called t-sum of U and V if U and V are mutual supplements in M, i.e., $M=U+V, U \cap V \ll U$ and $U \cap V \ll V$. Having this property of M is called a t-decomposition of M, U and V are called t-summand of M (see also [8]).

Theorem 2.1. Let M be an R-module. M is an amply supplemented module if and only if for every $U \leq M$ there exists a t-decomposition $M=X+Y$ of M such that $X \leq U$ and $U \cap Y \ll Y$.

Proof. (\Rightarrow) Let M be an amply supplemented module. Consider any submodule U of M. Since M is amply supplemented, then M is supplemented module. So U has a supplement Y in M. In this case $M=U+Y$ and $U \cap Y \ll Y$. Since $M=U+Y$ and M is amply supplemented, Y has a supplement X in M such that $X \leq U$. Therefore M is t-sum of X and Y.
(\Leftarrow) Consider any submodule U of M and let $M=U+V$. By hypothesis, there exists a t-decomposition $M=X+Y$ of M such that $X \leq U \cap V$ and $U \cap V \cap Y \ll Y$. Since $M=X+Y$ and $X \leq U \cap V \leq V$, then by modular law, $V=X+V \cap Y$. So we have $M=U+V=U+X+V \cap Y=U+V \cap Y$. Also by hypothesis, there exists a t-decomposition $M=S+T$ of M such that $S \leq V \cap Y$ and $V \cap Y \cap T \ll T$. Since $S \leq V \cap Y$ and $M=S+T$, then by modular law, $V \cap Y=S+V \cap Y \cap T$. Moreover, since $V \cap Y \cap T \ll T$, we get $M=U+V \cap Y=U+S+V \cap Y \cap T=U+S$. In here, since $U \cap S \leq U \cap V \cap Y \ll Y$, then $U \cap S \ll M$. Since S is a supplement in M, then $U \cap S \ll S$. That is, U has a supplement S in M such that $S \leq V$. Therefore M is amply supplemented.

Definition 2.2. Let M be an R-module and $\left\{U_{i}\right\}_{i \in I}$ be a collection of submodules of M. If for every $i \in I, U_{i}$ and $\sum_{k \in I-\{i\}} U_{k}$ are mutual supplements in M, then M is called t-sum of the collection $\left\{U_{i}\right\}_{i \in I}$ (see also [8]).

Lemma 2.1. Let M be a π-projective R-module and a t-sum of U and V. Then $U \cap V=0$ and $M=U \oplus V$.

Proof. Clear from Lemma 1.3.
The following result generalizes Lemma 2.1 which is easily proved.
Corollary 2.1. Let M be an R-module and $\left\{U_{i}\right\}_{i \in I}$ be a collection of submodules of M. If M is π-projective and a t-sum of the collection $\left\{U_{i}\right\}_{i \in I}$, then $M=\oplus_{i \in I} U_{i}$.

Proof. We take any $k \in I$. Hence U_{k} and $\sum_{i \in I-\{k\}} U_{i}$ are mutual supplements in M. By the Lemma 2.1, we have $U_{k} \cap\left(\sum_{i \in I-k} U_{i}\right)=0$. Therefore $M=\oplus_{i \in I} U_{i}$.

Lemma 2.2. Let M be an R-module and V be a supplement of U in M. T is a supplement of K in V with $K, T \leq V$ if and only if T is a supplement of $U+K$ in M (see also [8]).

Proof. (\Rightarrow) Let T be a supplement of K in V. Consider any submodule T_{1} of T with $U+K+T_{1}=M$. Since $K, T \leq V, U+K+T_{1}=M$ and V is a supplement of U in M, then we get $K+T_{1}=V$. Since T is a supplement of K in V, then $T_{1}=T$. So, T is a supplement of $U+K$ in M.
(\Leftarrow) Let T be a supplement of $U+K$ in M. Consider any submodule T_{1} of T with $K+T_{1}=V$. We get $M=U+V=U+K+T_{1}$. Since $T_{1} \leq T$ and by the assumption, we can write $T_{1}=T$. Therefore T is a supplement of K in V.

Lemma 2.3. Let M be a t-sum of U and V. If K is a supplement of S in U and L is a supplement of T in V, then $K+L$ is a supplement of $S+T$ in M (see also [8]).

Proof. Since U is a supplement of V in M and K is a supplement of S in U, by Lemma 2.2, K is a supplement of $V+S$ in M. Hence $(V+S) \cap K \ll K$. Similarly, we can prove that $(U+T) \cap L \ll L$. Then $(S+T) \cap(K+L) \leq(S+T+K) \cap L+(S+T+L) \cap K=(U+T) \cap L+(V+S) \cap K \ll K+L$, and by $M=U+V=S+K+T+L=S+T+K+L, K+L$ is a supplement of $S+T$ in M.

Lemma 2.4. Let M be a t-sum of U and V, and $L, T \leq V$. Then V is a t-sum of L and T if and only if M is a t-sum of $U+L$ and T, and M is a t-sum of $U+T$ and L (see also [8]).

Proof. (\Rightarrow) Let V be a t-sum of L and T. Since T is a supplement of L in V and V is a supplement of U in M, then by Lemma 2.2, T is a supplement of $U+L$ in M. Then $(U+L) \cap T \ll T$. Similarly, we can prove that $(U+T) \cap L \ll L$. Then by $U \cap V \ll U$, $(U+L) \cap T \leq U \cap(L+T)+L \cap(U+T)=U \cap V+(U+T) \cap L \ll U+L . \quad$ Since $(U+L) \cap T \ll T,(U+L) \cap T \ll U+L$ and $M=U+V=U+L+T$, then by Definition 2.1 M is a t-sum of $U+L$ and T. Similarly, we can prove that M is a t-sum of $U+T$ and L.
(\Rightarrow) Clear from Lemma 2.2.
Corollary 2.2. Let M be a t-sum of $U_{1}, U_{2}, \ldots, U_{n}$. If K_{i} is a supplement of T_{i} in $U_{i}, i=$ $=1,2, \ldots, n$, then $K_{1}+K_{2}+\ldots+K_{n}$ is a supplement of $T_{1}+T_{2}+\ldots+T_{n}$ in M (see also [8]).

Proof. Clear from Lemma 2.3.
Corollary 2.3. Let M be a t-sum of $U_{1}, U_{2}, \ldots, U_{n}$. If U_{i} is a t-sum of K_{i} and $T_{i}, i=$ $=1,2, \ldots, n$, then M is a t-sum of $K_{1}+K_{2}+\ldots+K_{n}$ and $T_{1}+T_{2}+\ldots+T_{n}$ (see also [8]).

Proof. Clear from Corollary 2.2.
Corollary 2.4. Let M be a t-sum of $U_{1}, U_{2}, \ldots, U_{n}$. If K_{i} is a supplement in $U_{i}, i=1,2, \ldots, n$, then $K_{1}+K_{2}+\ldots+K_{n}$ is a supplement in M (see also [8]).

Proof. Clear from Corollary 2.2.
Corollary 2.5. Let M be a t-sum of $U_{1}, U_{2}, \ldots, U_{n}$. If K_{i} is a t-summand of $U_{i}, i=1,2, \ldots, n$, then $K_{1}+K_{2}+\ldots+K_{n}$ is a t-summand of M (see also [8]).

Proof. Clear from Corollary 2.3.
Let M be an R-module. We say that M is called cofinitely t-generalized supplemented module if every cofinite submodule of M has a generalized supplement such that it is a supplement in M.

Theorem 2.2. Let M be a t-sum of collection of $\left\{U_{i}\right\}_{i \in I}$. If for every $i \in I, U_{i}$ is cofinitely t-generalized supplemented, then M is also cofinitely t-generalized supplemented.

Proof. Let K be any cofinite submodule of M. Since $M=\sum_{i \in I} U_{i}$, then there exist $i_{1}, i_{2}, \ldots, i_{n} \in I$ such that $M=K+U_{i_{1}}+U_{i_{2}}+\ldots+U_{i_{n}}$. By Lemma 1.1, clearly, K has a generalized supplement $V_{i_{1}}+V_{i_{2}}+\ldots+V_{i_{n}}$ in M such that $V_{i_{t}}$ is a supplement in $U_{i_{t}}$ for $1 \leq t \leq n$. By Corollary 2.4, we get $V_{i_{1}}+V_{i_{2}}+\ldots+V_{i_{n}}$ is a supplement in M. Therefore M is a cofinitely t-generalized supplemented.

Lemma 2.5. Let M be a t-sum of collection of $\left\{U_{i}\right\}_{i \in I}$. Then $\operatorname{Rad} M=\sum_{i \in I} \operatorname{Rad} U_{i}$ (see also [8]).

Proof. Clearly $\sum_{i \in I} \operatorname{Rad} U_{i} \leq \operatorname{Rad} M$. Let $x \in \operatorname{Rad} M$. Since $x \in M=\sum_{i \in I} U_{i}$, there exist $i_{1}, i_{2}, \ldots, i_{n} \in I$ and $x_{i_{t}} \in U_{i_{t}}, t=1,2, \ldots, n$, such that $x=x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{n}}$. Suppose that some submodule S of $U_{i_{t}}$ for $1 \leq t \leq n$ with $R x_{i_{t}}+S=U_{i_{t}}$. In here, we can show that
$R x_{i_{t}}+S+\sum_{i \in I-\left\{i_{t}\right\}} U_{i}=M$. Since $R x \ll M$, we have $S+\sum_{i \in I-\left\{i_{t}\right\}} U_{i}=M$. Moreover, since $S \leq U_{i_{t}}$ and $U_{i_{t}}$ is a supplement of $\sum_{i \in I-\left\{i_{t}\right\}} U_{i}$ in M, then we can write $S=U_{i_{t}}$. Hence $R x_{i_{t}} \ll U_{i_{t}}$, then $x_{i_{t}} \in \operatorname{Rad} U_{i_{t}}$. Therefore, $\operatorname{Rad} M \leq \sum_{i \in I} \operatorname{Rad} U_{i}$.

3. (Strongly) \boldsymbol{T}-radical supplemented modules.

Definition 3.1. Let M be an R-module. If the radical of M has a supplement such that is a t-summand in M, then M is called a t-radical supplemented module, that is, there exist $K, L \leq M$ such that $M=\operatorname{Rad} M+K, \operatorname{Rad} M \cap K \ll K$ and $M=K+L, K \cap L \ll K, K \cap L \ll L$.

Definition 3.2. Let M be an R-module. If every submodule of M containing the radical of M has a supplement that is a t-summand in M, then M is called a strongly t-radical supplemented module. That is, for every submodule K of M with $\operatorname{Rad} M \subseteq K$, there exists a t-summand L of M such that $M=K+L, K \cap L \ll L$.

Lemma 3.1. Every supplemented module is strongly t-radical supplemented.
Proof. Let M be a supplemented module and let $\operatorname{Rad} M \leq U \leq M$. So U has a supplement V in M. Since M is supplemented, V has a supplement V in M. Hence V and V are mutual supplements in M. Therefore V is a t-summand of M. This means that M is strongly t-radical supplemented.

In the last of this section, we will give an example of a strongly t-radical supplemented module that is not supplemented.

Lemma 3.2. Every radical module is (strongly) t-radical supplemented.
Proof. Let M be a radical module. Clearly M has the trivial supplement 0 in M. Hence M is t-radical supplemented. Since M is the unique submodule containing the radical, M is a strongly t-radical supplemented.

By $P(M)$ we denote the sum of all radical submodules of a module M. It is clear that, for any module $M, P(M)$ is the largest radical submodule.

Corollary 3.1. For every R-module $M, P(M)$ is strongly t-radical supplemented.
Proof. Since $\operatorname{Rad} P(M)=P(M)$, the proof is complete.
Lemma 3.3. Let M be a (strongly) t-radical supplemented module. Then M has at-summand which is radical.

Proof. By hypothesis, there exists $V, V^{\prime} \leq M$ such that $M=\operatorname{Rad} M+V, \operatorname{Rad} M \cap V \ll V$, $M=V+V^{\prime}, V \cap V^{\prime} \ll V$ and $V \cap V^{\prime} \ll V^{\prime}$. Now we prove that $\operatorname{Rad} V^{\prime}=V^{\prime}$. Since $\operatorname{Rad} M \cap V=$ $=\operatorname{Rad} V, \operatorname{Rad} V \ll V$. Note that $\operatorname{Rad} M=\operatorname{Rad} V+\operatorname{Rad} V^{\prime} . \operatorname{So}, M=V+\operatorname{Rad} V^{\prime}$. Applying the modular law, $V^{\prime}=\operatorname{Rad} V^{\prime}+(V \cap V)$. Since $V \cap V^{\prime} \ll V^{\prime}$, then $\operatorname{Rad} V^{\prime}=V^{\prime}$. Therefore, V^{\prime} is a radical t-summand.

Recall that a module M is called reduced if $P(M)=0$.
Lemma 3.4. Let M be a reduced module. If M is (strongly) t-radical supplemented, then $\operatorname{Rad} M \ll M$.

Proof. Since M is (strongly) t-radical supplemented, there exists $V, V \leq M$, such that $M=$ $=\operatorname{Rad} M+V, \operatorname{Rad} M \cap V \ll V$ and $M=V+V^{\prime}, V \cap V^{\prime} \ll V, V \cap V^{\prime} \ll V^{\prime}$. Since $\operatorname{Rad} M \cap V=$ $=\operatorname{Rad} V, \operatorname{Rad} V \ll V$. By Lemma 3.3, we have $\operatorname{Rad} V^{\prime}=V^{\prime}$. Since M is reduced, $P(M)=0$. Hence we get $M=V$.

Lemma 3.5. Every module M with $\operatorname{Rad} M \ll M$ is t-radical supplemented.

Proof. Let M be a module with $\operatorname{Rad} M \ll M$. We assume that $M=\operatorname{Rad} M+N$ for some submodule N of M. Since $\operatorname{Rad} M \ll M$, then $M=N$.

An R-module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M. Note that $\operatorname{Rad} M$ is small in M for every coatomic R-module M.

Corollary 3.2. Every coatomic module is t-radical supplemented.
The module ${ }_{R} R$ is a maximal module if every nonzero ideal contains a maximal submodule. ${ }_{R} R$ is a left Bass module if every nonzero R-module has a maximal submodule; such rings are called left Bass rings. R is left Bass ring if and only if for every nonzero R-module $M, \operatorname{Rad} M \ll M$. Now, we obtain the following result.

Corollary 3.3. Every nonzero module over the left Bass ring is t-radical supplemented.
By combining the Lemma 3.1 and definitions we have the following lemma.
Lemma 3.6. Let M be an R-module with $\operatorname{Rad} M \ll M$. Then the following conditions are equivalent.
(i) M is strongly t-radical supplemented,
(ii) M is strongly radical supplemented,
(iii) M is supplemented.

The factor modules of a strongly t-radical supplemented module need not be strongly t-radical supplemented in general. A module M is called distributive if for every submodules K, L, N of M, $N+(K \cap L)=(N+K) \cap(N+L)$ or equivalently $N \cap(K+L)=(N \cap K)+(N \cap L)$. For distributive modules we have the following fact.

Lemma 3.7. Let M be a distributive strongly t-radical supplemented module and U be a submodule of M. Then M / U is strongly t-radical supplemented.

Proof. Let V / U be any submodule of M / U with $\operatorname{Rad}(M / U) \subseteq V / U$. From canonical epimorphism $\pi: M \rightarrow M / U$, we have $(\operatorname{Rad} M+U) / U \subseteq \operatorname{Rad}(M / U)$. So $\operatorname{Rad} M \subseteq V$. Since M is a strongly t-radical supplemented module, then V has a supplement which is a t-summand in M. Hence there exists $T, T^{\prime} \leq M$ such that $M=V+T, V \cap T \ll T$ and $M=T+T^{\prime}, T \cap T^{\prime} \ll T, T \cap T \ll T^{\prime}$. Since T is a supplement of V in M, then $(T+U) / U$ is a supplement of V / U in M / U. Now we show that $(T+U) / U$ is a t-summand in M / U. From $M=T+T$, we get $M / U=(T+U) / U+$ $+\left(T^{\prime}+U\right) / U$. Since M is distributive, we have $\left[(T+U) \cap\left(T^{\prime}+U\right)\right] / U=\left(U+\left(T \cap T^{\prime}\right)\right) / U$. On the other hand, $\left(U+\left(T \cap T^{\prime}\right)\right) / U \ll(T+U) / U$ and $(U+(T \cap T)) / U \ll(T+U) / U$. Therefore M / U is strongly t-radical supplemented.

Theorem 3.1. Let M be t-sum of M_{1} and M_{2}. If M_{1} and M_{2} are t-radical supplemented, then M is t-radical supplemented.

Proof. Since M_{1} is t-radical supplemented module, then $\operatorname{Rad} M_{1}$ has a supplement V_{1} which is a t-summand in M_{1}. Since M_{2} is t-radical supplemented module, then $\operatorname{Rad} M_{2}$ has a supplement V_{2} which is a t-summand in M_{2}. From M, is a t-sum of M_{1} and M_{2}, by Lemma 2.5, we have $\operatorname{Rad} M=$ $=\operatorname{Rad} M_{1}+\operatorname{Rad} M_{2}$. By Lemma 2.3, $V_{1}+V_{2}$ is a supplement of $\operatorname{Rad} M=\operatorname{Rad} M_{1}+\operatorname{Rad} M_{2}$ in M. On the other hand, by Corollary $2.5 V_{1}+V_{2}$ is a t-summand in M.

Corollary 3.4. The finite t-sum of t-radical supplemented modules is t-radical supplemented.
Lemma 3.8. Let R be a nonlocal commutative domain and M be an injective R-module. Then M is (strongly) t-radical supplemented module.

Proof. By our assumption, we can write $\operatorname{Rad} M=M$. So the proof is complete.
Over Dedekind domains, divisible modules coincide with injective modules as in Abelian groups. Note that for a module M over a Dedekind domain R, M is divisible if and only if $\operatorname{Rad} M=M$, and this holds if and only if M is injective; see for example [1] (Lemma 4.4).

Corollary 3.5. Every module over nonlocal Dedekind domain is a submodule of (strongly) tradical supplemented module.

Now we give examples for to separate the structure of strongly t-radical supplemented, supplemented and strongly \oplus-radical supplemented module.

Example 3.1. Consider the \mathbb{Z}-module \mathbb{Q}. Since $\operatorname{Rad} \mathbb{Q}=\mathbb{Q}$, it follows that $\mathbb{Z} \mathbb{Q}$ is strongly t-radical supplemented. But it is well known that $\mathbb{Z} \mathbb{Q}$ is not supplemented (see [7], Example 20.12).

Example 3.2. Let R be a commutative local ring which is not a valuation ring. Let a and b be elements of R, where neither of them divides the other. By taking a suitable quotient ring, we may assume that $(a) \cap(b)=0$ and $a m=b m=0$, where m is the maximal ideal of R. Let F be a free R-module with generators x_{1}, x_{2} and x_{3}, K be the submodule generated by $a x_{1}-b x_{2}$ and $M=F / K$. Thus, $M=\frac{R x_{1} \oplus R x_{2} \oplus R x_{3}}{R\left(a x_{1}-b x_{2}\right)}=\left(R \overline{x_{1}}+R \overline{x_{2}}\right) \oplus R \overline{x_{3}}$. Here M is not \oplus-supplemented. But $F=R x_{1} \oplus R x_{2} \oplus R x_{3}$ is completely \oplus-supplemented [7].

Since F is completely \oplus-supplemented, F is supplemented. Since a factor module of a supplemented module is supplemented, we have M is supplemented. By Lemma $3.1 M$ is strongly t-radical supplemented module. But M is not strongly \oplus-radical supplemented.

References

1. Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. 2001. - 29, № 6. - P. 2389-2405.
2. Büyükaşık E., Lomp C. On a recent generalization of semiperfect rings // Bull. Austral. Math. Soc. - 2008. - 78, № 2. - P. 317 - 325.
3. Büyükaşık E., Mermut E., Özdemir S. Rad supplemented modules // Rend. Semin. mat. Univ. Padova. - 2010. 124. - P. 157-177.
4. Büyükaşık E., Türkmen E. Strongly radical supplemented modules // Ukr. Math. J. - 2012. - 63, № 8. - P. 1306-1313.
5. Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules, supplements and projectivity in module theory // Front. Math. - Basel: Birkhäuser, 2006.
6. Çallşıcı H., Türkmen E. Generalized \oplus-supplemented modules // Algebra and Discrete Math. - 2010. - 10. P. $10-18$.
7. Idelhadj A., Tribak R. On some properties of \oplus-supplemented modules // Int. J. Math. Sci. - 2003. - 69. - P. 4373 4387.
8. Kosar B., Nebiyev C. tg-Supplemented modules // Miskolc Math. Notes. - 2015. - 16, № 2. - P. 979 - 986.
9. Mohamed S. H., Müller B. J. Continuous and discrete modules. - Cambridge Univ. Press, 1990. - 147.
10. Talebi Y., Hamzekolaei A. R. M., Tütüncü D. K. On Rad \oplus-supplemented modules // Hadronic J. - 2009. - 32. P. 505-512.
11. Talebi Y., Mahmoudi A. On Rad \oplus-supplemented modules // Thai J. Math. - 2011. - 9, № 2. - P. 373-381.
12. Türkmen B. N., Pancar A. Generalizations of \oplus-supplemented modules // Ukr. Math. J. - 2013. - 65, № 4. P. 555-564.
13. Wang Y., Ding N. Generalized supplemented modules // Taiwan. J. Math. - 2006. - 10, № 6. - P. $1589-1601$.
14. Wisbauer R. Foundations of module and ring theory. - Philadelphia: Gordon and Breach, 1991.
15. Xue W. Characterization of semiperfect and perfect rings // Publ. Mat. - 1996. - 40, № 1. - P. 115-125.
16. Zöschinger H. Komplementierte Moduln über Dedekindringen // J. Algebra. - 1974. - 29. - P. 42 - 56.
