R. Hatamleh (Jadara Univ., Irbid-Jordan),
V. A. Zolotarev (Inst. Low Temperature Phys. and Eng. Nat. Acad. Sci. Ukraine and V. N. Karazin Kharkov Nat. Univ.)

JACOBI OPERATORS AND ORTHONORMAL MATRIX-VALUED POLYNOMIALS. I

ОПЕРАТОРИ ЯКОБІ ТА ОРТОГОНАЛЬНІ ОПЕРАТОРНОЗНАЧНІ ПОЛІНОМИ. I

It is shown that every self-adjoint operator in a separable Hilbert space is unitarily equivalent to a block Jacobi operator. A system of orthogonal operator-valued polynomials is constructed.

Показано, що будь-який самоспряжений оператор, заданий у сепарабельному гільбертовому просторі, унітарно еквівалентний блочному оператору Якобі. Побудовано систему ортогональних операторнозначних поліномів.

Introduction. Jacobi matrix is the canonical form of a self-adjoint operator with simple spectrum [1], spectral analysis of this matrix is tightly bound with the study of orthogonal polynomials [2, 3]. This realm of analysis has deep connections with moment problem; interpolation problems; issues of the extension of symmetrical operators, etc. [2, 3].

This work develops studies in this direction. At the beginning (Section 1), it is shown that every self-adjoint operator acting in a separable Hilbert space is realized by the block Jacobi operator (is unitarily equivalent to it), besides, sizes of the blocks correspond to the multiplicity of the spectrum of the initial operator. Section 2 is devoted to the construction of the system of orthogonal matrix-valued polynomials. These problems (in the matrix case) are studied in the works [4-8]. Important results in spectral analysis obtained in $[4,5]$ found their fruitful application in the problem of moments. Generalization of the scalar case [2] on the matrix-valued case is studied in [7, 8] and is represented in the overall survey [6]. Establishment of links between block Jacobi matrices and theory of nonselfadjoint operators with analytical analogues of the L. de Branges spaces of entire functions is the aim of the present paper. The polynomials of the first and the second kind are constructed in Section 2 using an introduced notion of the measure nondegenerateness (see an analogue in [6]), and then the operator-valued function with J-properties is constructed and its multiplicative expansion is obtained using the methods of J-theory of V. P. Potapov [9, 10].

Constructions stated in this paper refer to the so called "truncated" problem ($n \in \mathbb{N}$), i.e., the finite block Jacobi matrix.

1. Block Jacobi operators. I. Consider the spectral resolution [1]

$$
\begin{equation*}
A=\int_{\mathbb{R}} \lambda d E_{\lambda} \tag{1}
\end{equation*}
$$

of a linear self-adjoint operator A given in a separable Hilbert space H. Let us select some vector f_{1} from a dense in H set (in view of the separation property) and construct the subspace

$$
\begin{equation*}
L\left(f_{1}\right) \stackrel{\text { df }}{=} \operatorname{span}\left\{E_{\Delta} f_{1}: \Delta \in \mathbb{R}\right\} \tag{2}
\end{equation*}
$$

where Δ runs over the totality of all the intervals of the axis \mathbb{R}. Obviously, $L_{1}(f)$ and its orthogonal complement $H_{1}=H \ominus L\left(f_{1}\right)$ are E_{t}-invariant $(t \in \mathbb{R})$. Since H_{1} is also separable, then, selecting f_{2} from a countable dense set in H_{1}, we define the subspace $L\left(f_{2}\right)(2)$ in H_{1}. Repeating this procedure of removal $L\left(f_{k}\right)$ countable number of times, we obtain

$$
\begin{equation*}
H=\sum_{k=1}^{\infty} \oplus L\left(f_{k}\right) \tag{3}
\end{equation*}
$$

Note that this procedure can terminate after finite number of steps and even on the first step. The latter leads to the representation by the classical Jacobi matrix with scalar entries. Define the generating subspace [1] G for the operator A,

$$
\begin{equation*}
G \xlongequal{\mathrm{df}} \operatorname{span}\left\{f_{k}: k \in \mathbb{N}\right\} \tag{4}
\end{equation*}
$$

then (3) implies

$$
\begin{equation*}
H=\operatorname{span}\left\{E_{\Delta} g: g \in G ; \Delta \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

where, as usual, Δ belongs to the set of all intervals from \mathbb{R}. Consider some Hilbert space E ($\operatorname{dim} E \geq \operatorname{dim} G$), and let ψ be a linear bounded operator from E onto G. Define a nondecreasing operator-function in E

$$
\begin{equation*}
F(x) \stackrel{\mathrm{df}}{=} \psi^{*} E_{x} \psi, \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

As a ψ we can take, for example, the orthoprojector P_{G} on G and suppose that $E=G$.
Denote by $L_{\mathbb{R}}^{2}(E, d F(x))$ the Hilbert space of E-valued vector-functions on \mathbb{R},

$$
\begin{equation*}
L_{\mathbb{R}}^{2}(E, d F(x)) \stackrel{\text { df }}{=}\left\{f(x): \int_{\mathbb{R}}\langle d F(x) f(x), f(x)\rangle_{E}<\infty\right\} \tag{7}
\end{equation*}
$$

which is generated as a result of the closure of linear span of finite continuous functions $f(x)$ and subsequent factorization by the kernel of metrics (7). This definition is correct (see [3, 11]). Specify the linear operator U,

$$
\begin{equation*}
U: L_{\mathbb{R}}^{2}(E, d F(x)) \rightarrow H, \quad f=U f(x), \quad f \stackrel{\mathrm{df}}{=} \int_{\mathbb{R}} d E_{x} \psi f(x) \tag{8}
\end{equation*}
$$

Image of the operator U is dense in H since vectors

$$
\int_{\mathbb{R}} d E_{x} \psi \chi_{\Delta}(x)=E_{\Delta} \psi f, \quad f \in E, \quad \Delta \in \mathbb{R}
$$

linear span of which is dense in H, belong to it, in view of (5) $(\psi f=g \in G)$.
If $g(x) \in L_{\mathbb{R}}^{2}(E, d F(x))$, and f is given by (8), then

$$
\begin{equation*}
\left\langle E_{t} f, \psi g(x)\right\rangle=\int_{-\infty}^{t}\langle d F(s) f(s), g(x)\rangle \tag{9}
\end{equation*}
$$

Let $f(x)$ from (8) be differentiable and $f^{\prime}(x) \in L_{\mathbb{R}}^{2}(E, d F(x))$, then

$$
\begin{gathered}
\|f\|^{2}=\int_{\mathbb{R}}\left\langle f, d E_{x} \psi f(x)\right\rangle=\int_{\mathbb{R}} d\left\langle f, E_{x} \psi f(x)\right\rangle-\int_{\mathbb{R}}\left\langle E_{x} f, \psi f^{\prime}(x)\right\rangle d x= \\
=\int_{\mathbb{R}} d \int_{-\infty}^{x}\langle d F(t) f(t), f(x)\rangle-\int_{\mathbb{R}} \int_{-\infty}^{x}\left\langle d F(t) f(t), f^{\prime}(x)\right\rangle d x=\int_{\mathbb{R}}\langle d F(x) f(x), f(x)\rangle,
\end{gathered}
$$

in view of (9). So, $U(8)$ is isometrical on the dense set in $L_{\mathbb{R}}^{2}(E, d F(x))$ and thus the operator U is unitary.

Let f be given by (8) where $f(x)$ belongs to the linear span of continuous functions in $L_{\mathbb{R}}^{2}(E, d F(x))$. Then for all $h \in H$

$$
\begin{gathered}
\langle A f, h\rangle=\int_{\mathbb{R}} x\left\langle f, d E_{x} h\right\rangle=\int_{\mathbb{R}} x \int_{\mathbb{R}}\left\langle d E_{s} \psi f(s), d E_{x} h\right\rangle= \\
=\int_{\mathbb{R}} x d_{x} \int_{\mathbb{R}}\left\langle d E_{s} \psi f(s), E_{x} h\right\rangle=\int_{\mathbb{R}} x d \int_{-\infty}^{x}\left\langle d E_{s} \psi f(s), h\right\rangle=\int_{E}\left\langle d E_{x} \psi x f(x), h\right\rangle,
\end{gathered}
$$

consequently,

$$
\begin{equation*}
A f=\int_{\mathbb{R}} d E_{x} \psi(x f(x)) \tag{10}
\end{equation*}
$$

and thus $A U=U Q$, where Q is the operator of multiplication by the independent variable in $L_{\mathbb{R}}^{2}(E, d F(x))$,

$$
\begin{equation*}
(Q f)(x) \stackrel{\mathrm{df}}{=} x f(x) \quad\left(f(x) \in L_{\mathbb{R}}^{2}(E, d F(x))\right. \tag{11}
\end{equation*}
$$

Isometricity of U (8) and (10) implies

$$
\|A f\|^{2}=\int_{\mathbb{R}} x^{2}\langle d F(x) f(x), f(x)\rangle=\|Q f(x)\|^{2}
$$

So $f(x)$ belongs to the domain \mathfrak{D}_{Q} of the operator Q (11) then and only then when $f(8)$ belongs to the domain \mathfrak{D}_{A} of the operator A.

Theorem 1. An arbitrary self-adjoint operator A acting in a Hilbert space H is unitarily equivalent to the operator Q (11) in $L_{\mathbb{R}}^{2}(E, d F(x))(7), A U=U Q$, where U is given by (8); E_{x} is the resolution of identity of the operator $A ; F(x)$ is given by formula (6); and ψ is a linear bounded operator from E on the generating subspace G (4).
II. Let A be bounded self-adjoint operator, then

$$
A^{n} \psi g=\int_{\mathbb{R}} x^{n} d E_{x} \psi g
$$

make sense for all $g \in G$ and all $n \in \mathbb{Z}_{+}$. Show that the linear span of these vectors is dense in H. If a vector $f \in H$ is such that $f \perp A^{n} \psi g$ (for all $g \in G$ and all $n \in \mathbb{Z}_{+}$), then, using representation
(8) for f, we obtain

$$
0=\left\langle A^{n} \psi g, f\right\rangle=\int_{\mathbb{R}}\left\langle d F(x) x^{n} g, f(x)\right\rangle
$$

Therefore $f(x) \perp P_{n}(x)$, where $P_{n}(x)$ is an arbitrary E-valued polynomial of the degree n. Since the set of such polynomials is dense in $L_{\mathbb{R}}^{2}(E, d F(x))(d F(x)$ has the dense support), then $f(x)=0$, and so $f=0$.

Theorem 2. For every bounded self-adjoint operator A acting in a separable Hilbert space H,

$$
\begin{equation*}
H=\operatorname{span}\left\{A^{n} \psi g: g \in E, n \in \mathbb{Z}_{+}\right\} \tag{12}
\end{equation*}
$$

In the case of unboundedness of A see [1, 2].
Define the subspaces

$$
\begin{equation*}
H_{n} \stackrel{\text { df }}{=} \operatorname{span}\left\{A^{k} \psi g: g \in E ; 0 \leq k \leq n\right\}, \quad n \in \mathbb{Z}_{+} \tag{13}
\end{equation*}
$$

which are ordered by inclusion, $H_{k} \subseteq H_{s}$ as $s>k$, and let

$$
\begin{equation*}
G_{n} \stackrel{\mathrm{df}}{=} H_{n} \ominus H_{n-1}, \quad n \in \mathbb{Z}_{+} \tag{14}
\end{equation*}
$$

where $H_{-1}=\{0\}$ and $G_{0}=G$ (4). Then

$$
\begin{equation*}
H=\sum_{k=0}^{\infty} \oplus G_{k} \tag{15}
\end{equation*}
$$

If $g_{k} \in G_{k}, k \in \mathbb{Z}_{+}$, then $\left\langle A g_{k}, g_{s}\right\rangle=0$ as $s>k+1$ since $A g_{k} \in H_{k+1}$; and, similarly, $\left\langle A g_{k}, g_{s}\right\rangle=\left\langle g_{k}, A g_{s}\right\rangle$ as $k>s+1\left(A g_{s} \in H_{s+1}\right)$. So,

$$
\left\langle A g_{k}, g_{s}\right\rangle=0 \quad \text { as } \quad s>k+1 \quad \text { and } \quad s<k-1, \quad k, s \in \mathbb{Z}_{+}
$$

therefore the operator A has the three-diagonal block structure corresponding to expansion (15),

$$
A=\left[\begin{array}{ccccc}
\widetilde{A}_{0} & \widetilde{B}_{0} & 0 & 0 & \cdots \tag{16}\\
\widetilde{B}_{0}^{*} & \widetilde{A}_{1} & \widetilde{B}_{1} & 0 & \cdots \\
0 & \widetilde{B}_{1}^{*} & \widetilde{A}_{2} & \widetilde{B}_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

where $\widetilde{A}_{k}=P_{k} A P_{k}: G_{k} \rightarrow G_{k}, \widetilde{B}_{k}=P_{k} A P_{k+1}: G_{k+1} \rightarrow G_{k}$ (P_{k} is the orthoprojector on G_{k} (14), $k \in \mathbb{Z}_{+}$). The definition of G_{k} (14) yields $\operatorname{dim} G_{k} \leq \operatorname{dim} G, k \in \mathbb{Z}_{+}$. For $\operatorname{dim} G_{k}=\operatorname{dim} G$ we specify unitary operators $V_{k}: G_{k} \rightarrow G$. If $\operatorname{dim} G_{k}<\operatorname{dim} G$, we can define isometric operators $V_{k}: G_{k} \rightarrow G$. Consider the set of operators in $G: A_{k}=V_{k} \widetilde{A}_{k} V_{k}^{*}, B_{k}=V_{k} \widetilde{B}_{k} V_{k+1}^{*}, k \in \mathbb{Z}_{+}$, and define the block Jacobi operator

$$
J_{G} \stackrel{\mathrm{df}}{=}\left[\begin{array}{ccccc}
A_{0} & B_{0} & 0 & 0 & \cdots \tag{17}\\
B_{0}^{*} & A_{1} & B_{1} & 0 & \cdots \\
0 & B_{1}^{*} & A_{2} & B_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

in the Hilbert space $l_{\mathbb{Z}_{+}}^{2}(G)$. Let $V=\operatorname{diag}\left[I, V_{1}, \ldots\right]$ be an isometric (by construction) operator from H (15) into $l_{\mathbb{Z}_{+}}^{2}(G)$, then $V A=J_{G} V$.

Theorem 3. An arbitrary bounded self-adjoint operator acting in a separable Hilbert space H is isometrically equivalent to the Jacobi operator $J_{G}(17)$ in the space $l_{\mathbb{Z}_{+}}^{2}(G)$.
2. Matrix-valued orthogonal polynomials. III. Spectral analysis of Jacobi matrices ($\operatorname{dim} G=$ $=1$) is closely linked with properties of orthogonal polynomials $[1-6]$. We proceed to the construction of matrix-valued orthogonal polynomials.

Definition 1. A measure $d F(x)$ is said to satisfy the nd-condition (non degenerata) if for every E-valued polynomial of the finite degree $P_{n}(x)=\sum_{k=0}^{n} x^{k} g_{k}, g_{k} \in E, 1 \leq k \leq n, n \in \mathbb{Z}_{+}$, the estimation

$$
\begin{equation*}
\int_{\mathbb{R}}\left\langle d F(x) P_{n}(x), P_{n}(x)\right\rangle>\delta_{n} \sum_{k=0}^{n}\left\|g_{k}\right\|^{2}, \tag{18}
\end{equation*}
$$

is true, besides, the number δ_{n} does not depend on the vectors $\left\{g_{k}\right\}_{1}^{n}$, and $\delta_{n}>0$ for all $n \in \mathbb{Z}_{+}$.
Note that $n d$-condition is per se equivalent to the nondegenerateness of nontrivial measure in [6].
Theorem 4. If a self-adjoint bounded operator A acting in a separable Hilbert space H is such that the measure $d F(x)$ satisfies the nd-condition, where $F(x)$ is given by (6) and $\operatorname{dim} E=r<\infty$, then the vector $A^{n} \psi g$ does not belong to the space H_{n-1} (13) for any $g \in E$ and $n \in \mathbb{N}$.

Proof. Assuming the contrary, we suppose that there is such a vector $g \in E$ that $A^{n} \psi g \in H_{n-1}$ for some $n \in \mathbb{N}$, then

$$
A^{n} \psi g+\sum_{k=1}^{n-1} A^{k} \psi g_{k}=0, \quad g_{k} \in E, \quad 0 \leq k \leq n-1 .
$$

This implies

$$
\int_{\mathbb{R}} d E_{t} \psi P_{n}(t)=0,
$$

where $P_{n}(t)=t^{n} g+\sum_{k=0}^{n-1} t^{k} g_{k}$ is a E-valued polynomial. Applying E_{x} to this equality, we obtain

$$
\int_{-\infty}^{x} d E_{t} \psi P_{n}(t)=0 \quad \forall x \in \mathbb{R}
$$

and thus

$$
\int_{-\infty}^{x}\left\langle d E_{t} \psi P_{n}(t), \psi f\right\rangle=\int_{-\infty}^{x}\left\langle d F(t) P_{n}(t), f\right\rangle=0 \quad \forall f \in E
$$

Consequently,

$$
0=\int_{\mathbb{R}} \bar{\varphi}(x) d \int_{0}^{x}\left\langle d F(t) P_{n}(t), f\right\rangle=\int_{\mathbb{R}}\left\langle d F(x) P_{n}(x), \varphi(x) f\right\rangle
$$

for an arbitrary scalar function $\varphi(x): \mathbb{R} \rightarrow \mathbb{C}$, therefore

$$
\int_{\mathbb{R}}\left\langle d F(x) P_{n}(x), f(x)\right\rangle=0
$$

where $f(x)$ is any function of the form $f(x)=\sum_{k=0}^{m} \varphi_{k}(x) f_{k}, m \in \mathbb{Z}_{+}$. Assuming that $f(x)=$ $=P_{n}(x)$, we obtain

$$
\int_{\mathbb{R}}\left\langle d F(x) P_{n}(x), P_{n}(x)\right\rangle=0
$$

which is contrary to the $n d$-condition.
Theorem 4 is proved.
This theorem yields that the vector

$$
f=A^{n} \psi g-P_{H_{n-1}} A^{n} \psi g
$$

is nonzero for all $g \in E$ and all $n \in \mathbb{N}\left(P_{H_{n-1}}\right.$ is the orthoprojector on H_{n-1} (13)). It is obvious that $P_{H_{n-1}} f=0$, consequently, $f \perp H_{s}(\forall s, 0 \leq s \leq n-1)$. Since

$$
\begin{equation*}
f=A^{n} \psi g+\sum_{k=0}^{n-1} A^{k} \psi g_{k} \tag{19}
\end{equation*}
$$

then to each $g \in E(\operatorname{dim} E=r<\infty)$ there corresponds the set of vectors $\left\{g_{k}\right\}_{0}^{n-1}$ from E. Formula (19) follows from (13) when $\operatorname{dim} E<\infty$. This correspondence defines the linear operators $N_{k} g \stackrel{\text { df }}{=} g_{k}, 0 \leq k \leq n-1$. Since $\operatorname{dim} E<\infty, N_{k}$ are bounded for all k.

Write the vector $f(19)$ in the form

$$
f=\int_{\mathbb{R}} d E_{t} \psi \widetilde{P}_{n}(t) g
$$

where $\widetilde{P}_{n}(t)=t^{n}+t^{n-1} N_{n-1}+\ldots+N_{0}$. Orthogonality $f \perp H_{s}, 0 \leq s \leq n-1$ signifies that

$$
\int_{\mathbb{R}} \widetilde{P}_{s}^{*}(t) d F(t) \widetilde{P}_{n}(t)=0, \quad 0 \leq s \leq n-1
$$

The operator

$$
D_{n}=\int_{\mathbb{R}} \widetilde{P}_{n}(t) d F(t) \widetilde{P}_{n}(t)
$$

is nonnegative and invertible since the $n d$-condition (18) implies $\left\|D_{n}^{\frac{1}{2}} g\right\|^{2}>\delta_{n}\|g\|^{2}$. Therefore the polynomial $P_{n}(t)=\widetilde{P}_{n}(t) D_{n}^{-\frac{1}{2}}$ is normalized to unity,

$$
\int_{\mathbb{R}} P_{n}^{*}(t) d F(t) P_{n}(t)=I_{E}
$$

Theorem 5. If a bounded self-adjoint operator A is such that the measure $d F(x)$ has the ndproperty (18) $\left(F(x)\right.$ is given by (6) and E_{x} is the resolution of identity of the operator A and $\operatorname{dim} E=r<\infty)$, then there exists the family of matrix-valued in E polynomials $\left\{P_{n}(x)\right\}_{0}^{\infty}$, such that

$$
\begin{equation*}
\int_{\mathbb{R}} P_{k}^{*}(x) d F(x) P_{n}(x)=\delta_{k, n} I_{E}, \quad k, n \in \mathbb{Z}_{+} \tag{20}
\end{equation*}
$$

besides, $\operatorname{deg} P_{n}(x)=n$ and the leading coefficient of $P_{n}(x)$ is invertible $\left(\forall n \in \mathbb{Z}_{+}\right)$.
The expansion [2-6]

$$
x P_{n}(x)=P_{n+1}(x) B_{n}^{(n+1)}+P_{n}(x) B_{n}^{(n)}+\ldots+P_{0}(x) B_{n}^{(0)}
$$

$\left(B_{n}^{(s)}\right.$ are linear bounded operators in $\left.E, 0 \leq s \leq n+1\right)$ and (20) imply that $B_{n}^{(s)}=0$ for $0 \leq s \leq n-2$, besides,

$$
\begin{gathered}
B_{n}^{(n+1)}=\int_{\mathbb{R}} x P_{n+1}^{*}(x) d F(x) P_{n}(x), \quad B_{n}^{(n)}=\int_{\mathbb{R}} x P_{n}^{*}(x) d F(x) P_{n}(x) \\
B_{n}^{(n-1)}=\int_{\mathbb{R}} x P_{n-1}^{*}(x) d F(x) P_{n}(x)
\end{gathered}
$$

and thus $B_{n}^{(n)}=\left(B_{n}^{(n)}\right)^{*}, B_{n}^{(n-1)}=\left(B_{n-1}^{(n)}\right)^{*}$. So the totality $\left\{P_{n}(x)\right\}_{1}^{\infty}$ is the solution of the finite-difference equation

$$
\begin{equation*}
x P_{n}(x)=P_{n+1}(x) B_{n}+P_{n}(x) C_{n}+P_{n-1}(x) B_{n-1}^{*}, \quad n \in \mathbb{Z}_{+} \tag{21}
\end{equation*}
$$

where $P_{-1}(x) \stackrel{\text { df }}{=} 0, B_{n}=B_{n}^{(n+1)}, C_{n}=B_{n}^{(n)}, n \in \mathbb{Z}_{+}$. Invertibility of the leading coefficients of the polynomials $P_{n}(x)$ implies invertibility of all operators B_{n}. Therefore polynomials of the first kind $P_{n}(x)$ are found as the solutions of (21) unambiguously if we take into account the initial conditions

$$
\begin{equation*}
P_{0}(x)=D_{0}, \quad P_{1}(x)=D_{0}\left(x I-C_{0}\right) B_{0}^{-1} \tag{22}
\end{equation*}
$$

where $D_{0}=(F(\infty)-F(-\infty))^{-1 / 2}$ is an invertible positive operator. Expression

$$
\begin{equation*}
Q_{n}(x) \stackrel{\mathrm{df}}{=} \int_{\mathbb{R}} d F(\xi) \frac{P_{n}(\xi)-P_{n}(x)}{\xi-x}, \quad n \in \mathbb{Z}_{+} \tag{23}
\end{equation*}
$$

defines [2] operator-valued polynomials of the second kind $\operatorname{deg} Q_{n}(x)=n-1$, besides, $Q_{n}(x)$ also satisfy the finite-difference equation (21) and the initial data

$$
\begin{equation*}
Q_{0}(x)=0, \quad Q_{1}(x)=D_{0}^{-1} B_{0}^{-1} \tag{24}
\end{equation*}
$$

Construct the Jacobi operator

$$
J_{E} \stackrel{\mathrm{df}}{=}\left[\begin{array}{ccccc}
C_{0} & B_{0}^{*} & 0 & 0 & \cdots \tag{25}\\
B_{0} & C_{1} & B_{1}^{*} & 0 & \cdots \\
0 & B_{1} & C_{2} & B_{2}^{*} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

by the coefficients $\left\{B_{n}, C_{n}\right\}_{0}^{\infty}$ from (21), then the recurrence relations (21) formally imply

$$
\begin{equation*}
\mathbb{P}(x) J_{E}=x \mathbb{P}(x), \quad \mathbb{Q}(x) J_{E}=x \mathbb{Q}(x), \tag{26}
\end{equation*}
$$

where $\mathbb{P}(x)=\left[P_{0}(x), P_{1}(x), \ldots\right], \mathbb{Q}(x)=\left[Q_{0}(x), Q_{1}(x), \ldots\right]$.
Let $Y_{n}=Y_{n}(\lambda)$ and $Z_{n}=Z_{n}(w)$ be the solutions of (21) corresponding to λ and w accordingly $(\lambda, w \in \mathbb{C})$. The Green formula $[2-4,6]$

$$
\begin{equation*}
(\lambda-\bar{w}) \sum_{k=m}^{n} Y_{k} Z_{k}^{*}=Y_{n+1} B_{n} Z_{n}^{*}-Y_{n} B_{n}^{*} Z_{n+1}^{*}-Y_{m} B_{m-1} Z_{m-1}^{*}+Y_{m-1} B_{m-1}^{*} Z_{m}^{*} \tag{27}
\end{equation*}
$$

is true for all $n, m \in \mathbb{N}$. In particular, for $m=1$, if $Y_{k}=P_{k}(\lambda), Z_{k}=P_{k}(w)$, then taking into account (22) we obtain the Christoffel-Darboux formula [2-4, 6]

$$
\begin{equation*}
(\lambda-\bar{w}) \sum_{k=0}^{n} P_{k}(\lambda) P_{k}^{*}(w)=P_{n+1}(\lambda) B_{n} P_{n}^{*}(w)-P_{n}(\lambda) B_{n}^{*} P_{n+1}^{*}(w) \tag{28}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+}$. Assuming in (27) $m=1, Y_{k}=P_{k}(\lambda), Z_{k}=Q_{k}(w)$ and using (22), (24), we obtain the equality

$$
\begin{equation*}
(\lambda-\bar{w}) \sum_{k=0}^{n} P_{k}(\lambda) Q_{k}^{*}(w)=P_{n+1}(\lambda) B_{n} Q_{n}^{*}(w)-P_{n}(\lambda) B_{n}^{*} Q_{n+1}^{*}(w)+I_{E} \quad \forall n \in \mathbb{Z}_{+} . \tag{29}
\end{equation*}
$$

Finally, relation

$$
\begin{equation*}
(\lambda-\bar{w}) \sum_{k=0}^{n} Q_{k}(\lambda) Q_{k}^{*}(w)=Q_{n+1}(\lambda) B_{n} Q_{n}^{*}(w)-Q_{n}(\lambda) B_{n}^{*} Q_{n+1}^{*}(w) \tag{30}
\end{equation*}
$$

follows from (27) as $m=1$ and $Y_{k}=Q_{k}(\lambda), Z_{k}=Q_{k}(w)$.
Lemma 1. If $P_{n}(\lambda)$ and $Q_{n}(\lambda)$ are the solutions of the finite-difference equation (21) which satisfy the conditions (22), (24), then the Liouville-Ostrogradsky formula [2-4, 6]

$$
\begin{equation*}
\left\{P_{n}^{*}(\bar{\lambda}) Q_{n+1}(\lambda)-Q_{n}^{*}(\bar{\lambda}) P_{n+1}(\lambda)\right\} B_{n}=I_{E} \quad \forall n \in \mathbb{Z}_{+} \tag{31}
\end{equation*}
$$

is true, besides,

$$
\begin{equation*}
P_{n}^{*}(\bar{\lambda}) Q_{n}(\lambda)-Q_{n}^{*}(\bar{\lambda}) P_{n}(\lambda)=0 \quad \forall n \in \mathbb{Z}_{+} . \tag{32}
\end{equation*}
$$

Proof. We prove both equalities (31), (32) simultaneously, using induction by n. For $n=0$, the truth of (31), (32) follows from the initial data (22), (24). Let the statement be proved for all k ($0 \leq k \leq n$). Show that this implies (31), (32) for $k=n+1$. Using (21) and invertibility of B_{n}, we obtain

$$
\begin{gathered}
B_{n}^{*}\left[P_{n+1}^{*}(\bar{\lambda}) Q_{n+1}(\lambda)-Q_{n+1}^{*}(\bar{\lambda}) P_{n+1}(\lambda)\right] B_{n}= \\
=\left[\left(\lambda-C_{n}\right) P_{n}^{*}(\bar{\lambda})-B_{n-1} P_{n-1}^{*}(\bar{\lambda})\right]\left[Q_{n}(\lambda)\left(\lambda-C_{n}\right)-Q_{n-1}(\lambda) B_{n-1}^{*}\right]- \\
-\left[\left(\lambda-C_{n}\right) Q_{n}^{*}(\bar{\lambda})-B_{n-1} Q_{n-1}^{*}(\bar{\lambda})\right]\left[P_{n}(\lambda)\left(\lambda-C_{n}\right)-P_{n-1}(\lambda) B_{n-1}^{*}\right]= \\
=\left(\lambda-C_{n}\right)\left[P_{n}^{*}(\bar{\lambda}) Q_{n-1}(\lambda)-Q_{n}^{*}(\bar{\lambda}) P_{n-1}(\lambda)\right] B_{n-1}^{*}- \\
-B_{n-1}\left[P_{n-1}^{*}(\bar{\lambda}) Q_{n}(\lambda)-Q_{n-1}^{*}(\bar{\lambda}) P_{n}(\lambda)\right]\left(\lambda-C_{n}\right)=0
\end{gathered}
$$

in view of the supposition of induction. Similarly,

$$
\begin{gathered}
{\left[P_{n+1}^{*}(\bar{\lambda}) Q_{n+2}(\lambda)-Q_{n+1}^{*}(\bar{\lambda}) P_{n+2}(\lambda)\right] B_{n+1}=} \\
=P_{n+1}^{*}(\bar{\lambda})\left[Q_{n+1}(\lambda)\left(\lambda-C_{n+1}\right)-Q_{n}(\lambda) B_{n}\right]-Q_{n+1}^{*}(\bar{\lambda})\left[P_{n+1}(\lambda)\left(\lambda-C_{n+1}\right)-P_{n}(\lambda) B_{n}\right]= \\
=\left\{Q_{n+1}^{*}(\bar{\lambda}) P_{n}(\lambda)-P_{n+1}^{*}(\bar{\lambda}) Q_{n}(\lambda)\right\} B_{n}^{*}=I,
\end{gathered}
$$

which was to be proved.
IV. Using the polynomials $P_{n}(\lambda)$ and $Q_{n}(\lambda)$, we construct the operator-function

$$
W_{n}(\lambda) \stackrel{\mathrm{df}}{=}\left[\begin{array}{ll}
P_{n}(\lambda) & P_{n+1}(\lambda) B_{n} \tag{33}\\
Q_{n}(\lambda) & Q_{n+1}(\lambda) B_{n}
\end{array}\right]
$$

besides, $\operatorname{deg} W_{n}(\lambda)=n$, and define the involution J in $E \oplus E$,

$$
J \stackrel{\mathrm{df}}{=}\left[\begin{array}{cc}
0 & i I_{E} \tag{34}\\
-i I_{E} & 0
\end{array}\right]
$$

From formulas (28) - (30) follows that

$$
W_{n}(\lambda) J W_{n}^{*}(w)-J=\frac{\lambda-\bar{w}}{i} \sum_{n=0}^{n}\left[\begin{array}{cc}
P_{k}(\lambda) & 0 \tag{35}\\
Q_{k}(\lambda) & 0
\end{array}\right]\left[\begin{array}{cc}
P_{k}^{*}(w) & Q_{k}^{*}(w) \\
0 & 0
\end{array}\right]
$$

and so $W_{n}(\lambda)(33)$ has J-properties [6, 7],

$$
W_{n}(\lambda) J W_{n}^{*}(\lambda)-J= \begin{cases}\geq 0, & \lambda \in \mathbb{C}_{+} \tag{36}\\ =0, & \lambda \in \mathbb{R} \\ \leq 0, & \lambda \in \mathbb{C}_{-}\end{cases}
$$

Equation (21) yields

$$
\begin{equation*}
W_{n}(\lambda)=W_{n-1}(\lambda) b_{n}(\lambda) \tag{37}
\end{equation*}
$$

where

$$
b_{n}(\lambda)=\left[\begin{array}{cc}
0 & B_{n-1}^{*-1} \tag{38}\\
B_{n-1}^{-1} & B_{n}^{-1}\left(\lambda I-C_{n}\right)
\end{array}\right], \quad n \in \mathbb{Z}_{+}
$$

reckoning that $B_{-1} \stackrel{\text { df }}{=} I$. Therefore

$$
\begin{equation*}
W_{n}(\lambda)=U_{0} \prod_{k=1}^{\stackrel{\imath}{n}} b_{k}(\lambda) \tag{39}
\end{equation*}
$$

where U_{0} is J-unitary,

$$
U_{0} \stackrel{\mathrm{df}}{=}\left[\begin{array}{cc}
0 & P_{0}(\lambda) \\
-P_{0}^{-1}(\lambda) & 0
\end{array}\right]
$$

and so we can regard that $W_{-1}(\lambda)=U_{0}$. "Primary" factors $b_{k}(\lambda)$ (38) also have J-properties (36), since

$$
\begin{gathered}
b_{k}(\lambda) J b_{k}^{*}(w)-J=\frac{\lambda-\bar{w}}{i}\left[\begin{array}{cc}
0 & 0 \\
0 & B_{k-1}^{-1}\left(B_{k-1}^{-1}\right)^{*}
\end{array}\right] \\
b_{k}^{*}(w) J b_{k}(\lambda)-J=\frac{\lambda-\bar{w}}{i}\left[\begin{array}{cc}
0 & 0 \\
0 & I_{E}
\end{array}\right]
\end{gathered}
$$

for all $k \in \mathbb{Z}_{+}$. Thus factorization (39) is realized in the context of the class of operator-functions satisfying the relations (36), besides, the factors $b_{k}(\lambda)(38)$ are constructed by the elements of the Jacobi matrix J_{E} (25). Factorization, similar to (38), is obtained in [9] in somewhat different form.
(35) implies $W_{n}(\lambda) J W_{n}^{*}(\bar{\lambda}) J=I_{E \oplus E}$, therefore the operator

$$
W_{n}^{-1}(\lambda) \stackrel{\text { df }}{=} J W_{n}^{*}(\bar{\lambda}) J=\left[\begin{array}{cc}
B_{n}^{*} Q_{n+1}^{*}(\bar{\lambda}) & -B_{n}^{*} P_{n+1}^{*}(\bar{\lambda}) \tag{40}\\
-Q_{n}^{*}(\bar{\lambda}) & P_{n}(\bar{\lambda})
\end{array}\right], \quad n \in \mathbb{Z}_{+}
$$

is the right inverse for $W_{n}(\lambda)$ (33). The fact that $W_{n}^{-1}(\lambda)(40)$ is also the left inverse for $W_{n}(\lambda)$ follows from (31), (32).

Observation 1. The relations (28) - (30) provide $W_{n}(\lambda)(33)$ with the J-properties (36) and also secure the existence of the right inverse $W_{n}^{-1}(\lambda)(40)$, and the equalities (31), (32) are equivalent to $W_{n}^{-1}(\lambda) W_{n}(\lambda)=I$. So the relations (28)-(30) and (31), (32) for the polynomials $P_{n}(\lambda)$ and $Q_{n}(\lambda)$ have a natural interpretation in terms of the J-properties of the function $W_{n}(\lambda)$.

The operator-function

$$
\begin{equation*}
S_{n}(\lambda) \stackrel{\text { df }}{=} W_{n}(\lambda) W_{n}^{-1}(0) \tag{41}
\end{equation*}
$$

also has the J-properties (36) and

$$
S_{n}(\lambda) J S_{n}^{*}(w)-J=\frac{\lambda-\bar{w}}{i} \sum_{k=0}^{n}\left[\begin{array}{cc}
P_{k}(\lambda) & 0 \tag{42}\\
Q_{k}(\lambda) & 0
\end{array}\right]\left[\begin{array}{cc}
P_{k}^{*}(w) & Q_{k}^{*}(w) \\
0 & 0
\end{array}\right]
$$

in virtue of the J-unitarity of $W_{n}^{-1}(0)$. The function $S_{n}(\lambda)$ is such that $S_{n}(0)=I$. It is easy to show that $S_{n}(\lambda)$ is equal

$$
S_{n}(\lambda)=\left[\begin{array}{ll}
A_{n}(\lambda) & B_{n}(\lambda) \tag{43}\\
C_{n}(\lambda) & D_{n}(\lambda)
\end{array}\right],
$$

where

$$
\begin{align*}
& A_{n}(\lambda) \stackrel{\text { df }}{=} P_{n}(\lambda) B_{n}^{*} Q_{n+1}^{*}(0)-P_{n+1}(\lambda) B_{n} Q_{n}^{*}(0)=I-\lambda \sum_{k=0}^{n} P_{k}(\lambda) Q_{k}^{*}(0), \\
& B_{n}(\lambda) \stackrel{\mathrm{df}}{=} P_{n+1}(\lambda) B_{n} P_{n}^{*}(0)-P_{n}(\lambda) B_{n}^{*} P_{n+1}^{*}(0)=\lambda \sum_{k=0}^{n} P_{k}(\lambda) P_{k}^{*}(0), \\
& C_{n}(\lambda) \stackrel{\text { df }}{=} Q_{n}(\lambda) B_{n}^{*} Q_{n+1}^{*}(0)-Q_{n+1}(\lambda) B_{n} Q_{n}^{*}(0)=-\lambda \sum_{k=0}^{n} Q_{k}(\lambda) Q_{k}^{*}(0), \tag{44}\\
& D_{n}(\lambda) \stackrel{\mathrm{df}}{=} Q_{n+1} B_{n} P_{n}^{*}(0)-Q_{n}(\lambda) B_{n}^{*} P_{n+1}^{*}(0)=1+\lambda \sum_{k=0}^{n} Q_{k}(\lambda) P_{k}^{*}(0),
\end{align*}
$$

in virtue of the form of $W_{n}(\lambda)$ (33) and $W_{n}^{-1}(0)(40)$, and also of (28) - (32). The functions (44) are similar to the well-known scalar [2,3] and matrix [7] functions, besides, $\operatorname{deg} A_{n}(\lambda)=\operatorname{deg} B_{n}(\lambda)=$ $=n+1, \operatorname{deg} C_{n}(\lambda)=\operatorname{deg} D_{n}(\lambda)=n$.

Observation 2. The functions (44), in spite of the properties following from (42), satisfy the equalities

$$
\begin{gather*}
A_{n}^{*}(\bar{\lambda}) D_{n}(\lambda)-C_{n}^{*}(\bar{\lambda}) B_{n}(\lambda)=I_{E}, \quad D_{n}^{*}(\bar{\lambda}) B_{n}(\lambda)=B_{n}^{*}(\bar{\lambda}) D_{n}(\lambda), \\
A_{n}^{*}(\bar{\lambda}) C_{n}(\lambda)=C_{n}^{*}(\bar{\lambda}) A_{n}(\lambda), \quad n \in \mathbb{Z}_{+}, \tag{45}
\end{gather*}
$$

which are a corollary of the fact that $J S_{n}^{*}(\bar{\lambda}) J$ is the left inverse for $S_{n}(\lambda)$. The relations (45) can be proved directly using (31), (32).

Observation 3. The normalization E_{t} at zero for $S_{n}(\lambda)(41)$ is not binding. If we consider $S_{n}\left(\lambda, \lambda_{0}\right) \stackrel{\text { df }}{=} W_{n}(\lambda) W_{n}^{-1}\left(\lambda_{0}\right), \lambda_{0} \in \mathbb{R}$, then: 1) $\left.S_{n}\left(\lambda_{0}, \lambda_{0}\right)=I_{E \oplus E} ; 2\right)$ (42) take place in virtue of the J-unitarity of $\left.W_{n}^{-1}\left(\lambda_{0}\right) ; 3\right)$ for $S_{n}\left(\lambda, \lambda_{0}\right)$ representation (43) is true with the appropriate version of the formulas (44).
(37), (41) imply

$$
\begin{equation*}
S_{n}(\lambda)=S_{n-1}(\lambda) a_{n}(\lambda), \quad n \in \mathbb{Z}_{+}, \tag{46}
\end{equation*}
$$

where the factor $a_{n}(\lambda)=W_{n-1}(0) b_{n}(\lambda) W_{n}^{-1}(0)$ is equal

$$
\begin{equation*}
a_{n}(\lambda) \stackrel{\text { df }}{=} I-i \lambda m_{n} J, \quad n \in \mathbb{Z}_{+}, \tag{47}
\end{equation*}
$$

besides,

$$
m_{n} \stackrel{\text { df }}{=}\left[\begin{array}{ll}
P_{n}(0) P_{n}^{*}(0) & P_{n}(0) Q_{n}^{*}(0) \tag{48}\\
Q_{n}(0) P_{n}^{*}(0) & Q_{n}(0) Q_{n}^{*}(0)
\end{array}\right] \geq 0, \quad n \in \mathbb{Z}_{+},
$$

and $m_{n} J m_{n}=0$, in virtue of (32). (46) implies

$$
\begin{equation*}
S_{n}(\lambda)=\prod_{k=0}^{\widetilde{n}} a_{k}(\lambda), \tag{49}
\end{equation*}
$$

besides, $S_{-1}(\lambda)=I\left(W_{-1}(\lambda)=U_{0}\right)$. The factors $a_{k}(\lambda)(47)$ have the J-properties because of

$$
a_{k}(\lambda) J a_{k}^{*}(w)-J=\frac{\lambda-\bar{w}}{i} m_{k}, \quad a_{k}^{*}(w) J a_{k}(\lambda)-J=\frac{\lambda-\bar{w}}{i} J m_{k} J .
$$

$m_{k} J m_{k}=0$ yields that $a_{k}(\lambda)(47)$ have the exponential representation

$$
\begin{equation*}
a_{k}(\lambda)=\exp \left\{-i \lambda m_{k} J\right\}, \quad k \in \mathbb{Z}_{+} . \tag{50}
\end{equation*}
$$

Theorem 6. The operator-function $W_{n}(\lambda)(33)$ has the J-properties (36) and the multiplicative expansion (39), where J and $b_{k}(\lambda)$ are given by (34), (38).

The function $S_{n}(\lambda)$ (41) is expressed in terms of the functions (44) by formula (43), besides, $S_{n}(\lambda)$ has the J-properties (36), and factorization (49) takes place, where the factors $a_{k}(\lambda)$ are given by (47), (50).

In the second part of this study the connection of these constructions with L. de Branges spaces and nonself-adjoint operators will be established.

References

1. Akhiezer N. I., Glazman I. M. Theory of linear operators in Hilbert space. - 3rd ed. - Boston etc.: Pitman, 1981. Vols 1, 2.
2. Akhiezer N. I. The classical moment problem and some related questions in analysis. - Oliver \& Boyd, 1965.
3. Berezansky Yu. M. Expansion by eigenfunctions of self-adjoint operators (in Russian). - Kyiv: Naukova Dumka, 1965.
4. Arlinski \breve{i} Yu., Klotz L. Weyl functions of bounded quasi-selfadjoint operators and block operator Jacobi matrices // Acta Sci. Math. (Szeged). - 2010. - 70, № 3, 4. - P. 585-626.
5. Arlinskĭi Yu. Truncated Hamburger moment problem for an operator measure with compact support // Math. Nachr. 2012. - 285, № 14, 15. - S. 1677-1695.
6. Damanik D., Pushnitskii A., Simon B. The analytical theory of matrix orthogonal polynomials // Sur. Approxim. Theory. - 2008. - 4. - P. 1-85.
7. Lopez-Rodriguez P. The Nevanlinna parametrization for a matrix moment problem // Math. Scand. - 2001. - 89. P. 245-267.
8. Lopez-Rodriguez P. Riesz's theorem for orthogonal matrix polynomials // Const. Approxim. - 1999. - 15, № 1. P. 135-151.
9. Potapov V. P. The multiplicative structure of J-contractive matrix functions (in Russian) // Tr. Mosk. Mat. Obshch. 1955. - 4. - P. 125-236.
10. Zolotarev V. A. Analytic methods of spectral representations of non-selfadjoint and nonunitary operators (in Russian). Kharkov: KhNU Publ. House, 2003.
11. Malamud M. M., Malamud S. M. Spectral theory of operator measures in Hilbert space // St. Petersburg. Math. J. 2004. - 15, № 3. - P. 323-373.
12. de Branges L. Hilbert spaces of entire functions. - London: Prentice-Hall, 1968.
13. Dyukarev Yu. M. Deficiency numbers of symmetric operators generated by block Jacobi matrices // Sb. Math. 2006. - 197, № 8. - P. 1177-1204.
14. Woracek H. De Branges spaces and growth aspects // Operator Theory. - Basel: Springer, 2015.
15. Romanov R. Jacobi matrices and de Branges spaces // Operator Theory. - Basel: Springer, 2014.

Received 02.10.15, after revision -10.03 .16

