UDC 512.5
M. R. Mozumder (Aligarh Muslim Univ., India), M. R. Jamal (Integral Univ., Lucknow, India)

TRI-ADDITIVE MAPS AND LOCAL GENERALIZED (α, β)-DERIVATIONS ТРИАДИТИВНІ ВІДОБРАЖЕННЯ
 ТА ЛОКАЛЬНІ УЗАГАЛЬНЕНІ (α, β)-ПОХІДНІ

Let R be a prime ring with nontrivial idempotents. We characterize a tri-additive map $f: R^{3} \rightarrow R$ such that $f(x, y, z)=0$ for all $x, y, z \in R$ with $x y=y z=0$. As an application, we show that, in a prime ring with nontrivial idempotents, any local generalized (α, β)-derivation (or a generalized Jordan triple (α, β)-derivation) is a generalized (α, β)-derivation.

Нехай R - просте кільце з нетривіальними ідемпотентами. Охарактеризовано триадитивне відображення f : $R^{3} \rightarrow R$ таке, що $f(x, y, z)=0$ для всіх $x, y, z \in R$ таких, що $x y=y z=0$. Як застосування показано, що у простому кільці з нетривіальними ідемпотентами довільна локальна узагальнена (α, β)-похідна (або узагальнена жорданова потрійна (α, β)-похідна) є узагальненою (α, β)-похідною.

1. Introduction. Throughout this paper, R denotes a prime ring with center $Z(R)$, right (resp. left) Martindale quotient ring Q_{r} (resp. Q_{ℓ}), and symmetric Martindale quotient ring Q_{s}. Let $Q_{m r}$ (resp. $Q_{m l}$) denote the maximal right (resp. left) ring of quotients of R. We refer the reader to the book [1] for details.

In [5], Chebotar, Ke and Lee characterized some maps preserving zero products: assume that the ring R possesses nontrivial idempotents. If $\phi: R \rightarrow R$ is a bijective additive map such that $\phi(x) \phi(y)=0$ whenever $x y=0$, then $\phi(x y) \phi(z)=\phi(x) \phi(y z)$ for any $x, y, z \in R$. Moreover, if $1 \in R$, then $\phi(x y)=\lambda \phi(x) \phi(y)$ for any $x, y \in R$, where $\lambda=\phi(1)^{-1} \in C$ [5] (Theorem 3). In [2], Brešar also discussed additive maps preserving zero products. In [6], Chuang and Lee considered a general case, namely, a bi-additive map $\phi: R \times R \rightarrow R$ such that $\phi(x, y)=0$ whenever $x y=0$ (see Theorem 2.1). In this paper, we will generalize this result to a tri-additive map f : $R^{3} \rightarrow R$ such that $f(x, y, z)=0$ whenever $x y=y z=0$.

Let M be a R-bimodule. An additive mapping $g: R \rightarrow M$ is called a generalized derivation with associated derivation $d: R \rightarrow M$ if $g(x y)=g(x) y+x d(y)$ for all $x, y \in R$. In [11], Lee gave a characterization of generalized derivations: every generalized derivation g on a dense right ideal of R can be extended to $Q_{m r}$ and can be written in the form $g(x)=a x+d(x)$ for some $a \in Q_{m r}$ and some derivation d on $Q_{m r}$. Let $\alpha, \beta: R \rightarrow R$ be automorphisms of R. An additive map δ : $R \rightarrow M$ is called a skew derivation, or an (α, β)-derivation, if $\delta(x y)=\delta(x) \alpha(y)+\beta(x) \delta(y)$ for any $x, y \in R$. An additive map $g: R \rightarrow M$ is called a generalized (α, β)-derivation if there is an associated (α, β)-derivation $d: R \rightarrow M$ such that $g(x y)=g(x) \alpha(y)+\beta(x) d(y)$ for any $x, y \in R$. See [4] and [12] for a discussion of some of its properties.

An additive map $d: R \rightarrow R$ is called a local derivation if for every $x \in R$ there exists a derivation $d_{x}: R \rightarrow R$ such that $d(x)=d_{x}(x)$. Kadison [8] and Larson and Sourour [9] asked under what conditions a local derivation is a derivation. In [2], Brešar proved that a local derivation is a derivation if R has nontrivial idempotents.

Recently, Wang generalized Brešar's result to the case of generalized derivations. An additive map $g: R \rightarrow R$ is called a local generalized derivation if for every $x \in R$, there exists a generalized derivation $g_{x}: R \rightarrow R$ such that $g(x)=g_{x}(x)$. Wang proved that a local generalized derivation is actually a generalized derivation if R has nontrivial idempotents [14]. In Section 3, we will prove an analogous result for generalized (α, β)-derivations. Precisely, we will prove that a local generalized (α, β)-derivation on a prime ring with nontrivial idempotents is a generalized (α, β)-derivation. We will also prove that a generalized Jordan triple (α, β)-derivation on a prime ring with nontrivial idempotents is a generalized (α, β)-derivation, which is a special case of [13] (Theorem 3).
2. Tri-additive maps preserving zero products. Let E be the additive subgroup generated by all idempotents of R, and \bar{E} denote the subring generated by E. Recall that in [5] Chebotar, Ke and Lee proved that if $\phi: R \rightarrow R$ is a bijective additive map such that $\phi(x) \phi(y)=0$ whenever $x y=0$, then $\phi(x y) \phi(z)=\phi(x) \phi(y z)$ for any $x, y, z \in R$. In [6], Chuang and Lee considered bi-additive maps preserving zero products. We write their theorem in the following form.

Theorem 2.1 ([6], Theorem 2.3). Let R be a prime ring with nontrivial idempotents. Assume ϕ : $R \times R \rightarrow R$ is a bi-additive map preserving zero products. Then there exists a nonzero ideal I such that $\phi(x a, y)=\phi(x, a y)$ for any $x, y \in R$ and $a \in I$.

Note that because R has nontrivial idempotents, $[E, E] \neq 0$, and by examining the proof of Theorem 2.1, we see that the nonzero ideal I can be chosen to be $R[E, E] R$. Moreover, $R[E, E] R \subseteq$ $\subseteq \bar{E}$ by Herstein's arguments in [7, p. 4].

Now we consider a more general case. Let $f: R^{3} \rightarrow R$ be a tri-additive map, that is, a map $f(x, y, z)$ that is is additive in each argument. In view of Theorem 2.1 and the proof in [6], we can prove the following theorem.

Theorem 2.2. Let R be a prime ring with nontrivial idempotents. Let $f(x, y, z)$ be a tri-additive map with $f(x, y, z)=0$ whenever $x y=y z=0$. Then

$$
\begin{equation*}
f(x a, y b, z)-f(x, a y b, z)=f(x a, y, b z)-f(x, a y, b z) \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in R$ and $a, b \in I$, where I is some nonzero ideal of R.
Proof. For $z \in R$ and e idempotent, define $F(x, y) \stackrel{\text { df }}{=} f(x, y e,(1-e) z)$, then $F(x, y)=0$ for $x y=0$. By Theorem 2.1 there exists a nonzero ideal I such that $F(x a, y)=F(x, a y)$ for any $a \in I$. That is,

$$
\begin{equation*}
f(x a, y e,(1-e) z)=f(x, \text { aye },(1-e) z) . \tag{2.2}
\end{equation*}
$$

Note that by the remark after Theorem 2.1, the choice of I is independent of e and z. In fact, we can choose $I=R[E, E] R$. Thus, (2.2) holds for any $x, y, z \in R$, any $a \in I$ and any idempotent e. Analogously,

$$
\begin{equation*}
f(x a, y(1-e), e z)=f(x, a y(1-e), e z) . \tag{2.3}
\end{equation*}
$$

Comparing (2.2) and (2.3), we see that

$$
f(x a, y e, z)-f(x, a y e, z)=f(x a, y, e z)-f(x, a y, e z) .
$$

It can be easily checked that

$$
f(x a, y \bar{e}, z)-f(x, a y \bar{e}, z)=f(x a, y, \bar{e} z)-f(x, a y, \bar{e} z)
$$

for any $x, y, z \in R$, any $a \in I$, and any $\bar{e} \in \bar{E}$. Because $I=R[E, E] R \subseteq \bar{E}$, we get

$$
f(x a, y b, z)-f(x, a y b, z)=f(x a, y, b z)-f(x, a y, b z)
$$

for any $x, y, z \in R$, any $a, b \in I$, as asserted.
3. Generalized $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-derivations. Let α, β be automorphisms of R, and let M be an R-bimodule. Recall that an additive map $g: R \rightarrow M$ is a generalized (α, β)-derivation if $g(x y)=$ $=g(x) \alpha(y)+\beta(x) d(y)$ for some (α, β)-derivation $d: R \rightarrow M$.

Here we need a property on extensions of (α, β)-derivations. It is well known that the automorphisms of R and (α, β)-derivations of R can be uniquely extended to $Q_{m \ell}$. We want to show that an (α, β)-derivation from a nonzero ideal to $Q_{m \ell}$ can be also extended to an (α, β)-derivation of $Q_{m \ell}$. The proof simply follows the standard arguments in [10] (Lemma 2) and [11] (Theorem 2) for the case of derivations. For brevity, we only sketch it here.

Proposition 3.1. Let R be a prime ring, I be a nonzero ideal of R, and α, β be automorphisms of R. Then every (α, β)-derivation $\delta: R \rightarrow Q_{m \ell}$ can be uniquely extended to an (α, β)-derivation $\tilde{\delta}$: $Q_{m \ell} \rightarrow Q_{m \ell}$. Moreover, every (α, β)-derivation $\delta: I \rightarrow Q_{\ell}$ can be uniquely extended to an (α, β) derivation $\tilde{\delta}: Q_{m \ell} \rightarrow Q_{m \ell}$.

Proof (Sketch of Proof). Let $\delta: R \rightarrow Q_{m \ell}$ be an (α, β)-derivation. For any $q \in Q_{m \ell}$ choose a dense left ideal λ of R such that $\lambda q \subseteq R$. Define $\phi: Q_{m \ell} \lambda \rightarrow Q_{m \ell}$ by $\phi\left(\sum u_{i} a_{i}\right)=$ $=\sum u_{i} \beta^{-1}\left(\left(\delta\left(a_{i} q\right)-\delta\left(a_{i}\right) \alpha(q)\right)\right)$, where $u_{i} \in Q_{m \ell}$ and $a_{i} \in \lambda$. Then ϕ is a right multiplier induced by an element \hat{q} in the maximal left quotient ring of $Q_{m \ell}$, which is just $Q_{m \ell}$ itself (see Proposition 2.1.7 and Theorem 2.1.11 in [1]). In this sense, δ can be extended to a map $\tilde{\delta}$: $Q_{m \ell} \rightarrow Q_{m \ell}$ by defining $\tilde{\delta}(q) \stackrel{\text { df }}{=} \beta(\hat{q})$. It can be checked that $\tilde{\delta}$ is an (α, β)-derivation of $Q_{m \ell}$ and that this extension is unique. The second part of the proof simply follows the arguments in [11] (Theorem 2).

Now we can prove the following theorem.
Theorem 3.1. Let R be a prime ring with nontrivial idempotents. If $g: R \rightarrow R$ is an additive map such that $\beta(x) g(y) \alpha(z)=0$ for any $x, y, z \in R$ with $x y=y z=0$, then g is a generalized (α, β)-derivation.

Proof. Because R possesses nontrivial idempotents, by Theorem 2.2 we know that

$$
\begin{equation*}
\beta(x a) g(y b) \alpha(z)-\beta(x) g(a y b) \alpha(z)=\beta(x a) g(y) \alpha(b z)-\beta(x) g(a y) \alpha(b z) \tag{3.1}
\end{equation*}
$$

for any $x, y, z \in R$ and $a, b \in I$, where I is a nonzero ideal of R. Because R is prime and α, β are automorphisms and rearranging the terms, the equation (3.1) can be reduced to

$$
\begin{equation*}
\beta(a)(g(y b)-g(y) \alpha(b))=g(a y b)-g(a y) \alpha(b) . \tag{3.2}
\end{equation*}
$$

Now, define $F_{b}(y)=g(y b)-g(y) \alpha(b)$; then (3.2) becomes $\beta^{-1}\left(F_{b}(a y)\right)=a \beta^{-1}\left(F_{b}(y)\right)$. That is, $\beta^{-1} F_{b}$ is a left I-module map and hence a left R-module map. Therefore, $\beta^{-1} F_{b}$ is a right multiplier induced by an element in Q_{ℓ} (see [1], Proposition 2.2.1). This implies

$$
\begin{equation*}
g(y b)-g(y) \alpha(b)=\beta(y) d(b) \tag{3.3}
\end{equation*}
$$

for any $y \in R$ and any $b \in I$, where $d: I \rightarrow Q_{\ell}$ is an additive map. For $y \in R$ and $b, c \in I$, by (3.3)

$$
\begin{equation*}
g(y b c)-g(y) \alpha(b c)=\beta(y) d(b c) . \tag{3.4}
\end{equation*}
$$

Expanding otherwise and simplifying, the equation (3.4) reduces to

$$
\begin{equation*}
g(y b c)-(g(y) \alpha(b)+\beta(y) d(b)) \alpha(c)=\beta(y b) d(c) . \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5), we obtain $d(b c)=d(b) \alpha(c)+\beta(b) d(c)$, so $d: I \rightarrow Q_{\ell}$ is an (α, β) derivation. Up to now we have

$$
\begin{equation*}
g(x a)=g(x) \alpha(a)+\beta(x) d(a) \tag{3.6}
\end{equation*}
$$

for any $x \in R$ and any $a \in I$, where $d: I \rightarrow Q_{\ell}$ is an (α, β)-derivation. By Proposition 3.1, d can be uniquely extended to an (α, β)-derivation of Q_{ℓ}, which we still denote by d. For any $x, y \in R$ and any $a \in I$, by (3.6)

$$
\begin{gather*}
g(x(y a))=g(x) \alpha(y a)+\beta(x) d(y a)= \\
=g(x) \alpha(y) \alpha(a)+\beta(x) d(y) \alpha(a)+\beta(x) \beta(y) d(a) . \tag{3.7}
\end{gather*}
$$

On the other hand,

$$
\begin{equation*}
g((x y) a)=g(x y) \alpha(a)+\beta(x y) d(a) \tag{3.8}
\end{equation*}
$$

Comparing (3.7), (3.8) and using the primeness, we get $g(x y)=g(x) \alpha(y)+\beta(x) d(y)$ for any $x, y \in R$. This means that g is a generalized (α, β)-derivation of R.

By analogy with the local derivations and local generalized derivations mentioned in Section 1, we introduce the following notion.

Definition 3.1. An additive map $g: R \rightarrow R$ is called a local generalized (α, β)-derivation if for every $x \in R$, there exists a generalized (α, β)-derivation g_{x}, which depends on x, such that $g(x)=g_{x}(x)$.

The following theorem shows that a local generalized (α, β)-derivation is a generalized (α, β) derivation. This generalizes the derivation case in [2] and the generalized derivation case in [14].

Theorem 3.2. Let R be a prime ring with nontrivial idempotents, and let α, β be automorphisms of R. Then a local generalized (α, β)-derivation is a generalized (α, β)-derivation.

Proof. Let g be a local generalized (α, β)-derivation of R. For every $y \in R$, there is a generalized (α, β)-derivation g_{y} with associated (α, β)-derivation d_{y} such that $g(y)=g_{y}(y)$. Hence for any $x, y, z \in R$ with $x y=y z=0$, we have

$$
\beta(x) g(y) \alpha(z)=\beta(x) g_{y}(y) \alpha(z)=\beta(x) g_{y}(y z)-\beta(x y) d_{y}(z)=0
$$

By Theorem 3.1, g is actually a generalized (α, β)-derivation.
Recall that an additive map $\delta: R \rightarrow R$ is called a Jordan triple (α, β)-derivation, if

$$
\begin{equation*}
\delta(x y x)=\delta(x) \alpha(y) \alpha(x)+\beta(x) \delta(y) \alpha(x)+\beta(x) \beta(y) \delta(x) \tag{3.9}
\end{equation*}
$$

for any $x, y \in R$. An additive map $g: R \rightarrow R$ is called a generalized Jordan triple (α, β)-derivation if there exists a Jordan triple (α, β)-derivation δ of R such that

$$
\begin{equation*}
g(x y x)=g(x) \alpha(y) \alpha(x)+\beta(x) \delta(y) \alpha(x)+\beta(x) \beta(y) \delta(x) \tag{3.10}
\end{equation*}
$$

for any $x, y \in R$.
In [13], Liu and Shiue proved that a generalized Jordan triple (α, β)-derivation on a 2 -torsion free semiprime ring must be a generalized (α, β)-derivation [13] (Theorem 3). Now we want to prove an analogous theorem for the special case of prime rings with nontrivial idempotents, but where the associated map δ in (3.10) is any map.

In order to prove the theorem, we need a result in functional identities.

Lemma 3.1. Let R be a prime ring and $\alpha, \beta: R \rightarrow R$ be automorphisms of R. If F, G : $R \rightarrow R$ are two additive maps such that $F(x) \alpha(y)=\beta(x) G(y)$ for any $x, y \in R$, then there exists an element $q \in Q_{s}$ such that $F(x)=\beta(x) q$ and $G(y)=q \alpha(y)$.

Proof. It is well known that any automorphism of R can be uniquely extended to an automorphism of Q_{s}, Q_{ℓ}, or Q_{r}. A direct computation shows that $F(r x) \alpha(y)-\beta(r) F(x) \alpha(y)=0$ for any $r, x, y \in R$, so because R is prime, we see that $F(r x)=\beta(r) F(x)$. That is, $\beta^{-1} F$ is a left R-module map of R. Therefore, there exists an element $s \in Q_{\ell}$ such that $\beta^{-1} F(x)=x s$. Hence, $F(x)=\beta(x) q$, where $q=\beta(s) \in Q_{\ell}$. By assumption we have $\beta(x) q \alpha(y)=\beta(x) G(y)$, which implies that $G(y)=q \alpha(y)$ because R is a prime ring. Moreover, q is an element of Q_{s} because $q R \subseteq R$.

Theorem 3.3. Let R be a prime ring with nontrivial idempotents, and let α, β be automorphisms of R. If $g: R \rightarrow R$ is an additive map and $d: R \rightarrow R$ is any map such that

$$
\begin{equation*}
g(x y x)=g(x) \alpha(y) \alpha(x)+\beta(x) d(y) \alpha(x)+\beta(x) \beta(y) d(x) \tag{3.11}
\end{equation*}
$$

for any $x, y \in R$, then g is a generalized (α, β)-derivation with the associated derivation δ, and one of the following holds:
(1) $d=\delta$, is exactly the associated (α, β)-derivation of g;
(2) $\operatorname{char} R=2$ and there exists an invertible element $q \in Q_{s}$, such that $d(x)=\delta(x)+\beta(x) q=$ $=\delta(x)-q \alpha(x)$ and $\beta(x)=q \alpha(x) q^{-1}$.

Proof. For any $s \in R$ and $x, y, z \in R$ with $x y=y z=0$, it follows from (3.11) that

$$
0=\beta(x) g(y z s y)=\beta(x) g(y) \alpha(z) \alpha(s) \alpha(y) .
$$

Because α, β are automorphisms and R is prime, we have $\beta(x) g(y) \alpha(z)=0$ or $\alpha(y)=0$. Take $I_{1}=\{y \in R \mid \beta(x) g(y) \alpha(z)=0\}$ for all $x, z \in R$ and $I_{2}=\{y \in R \mid \alpha(y)=0\}$. Clearly, I_{1} and I_{2} both are additive subgroups of R, whose union is R. But, a group can not be union of two of its proper subgroups. Hence, either $I_{1}=R$ and $I_{2}=R$. But, if $I_{2}=R$ gives $\alpha=0$, a contradiction. Hence, $\beta(x) g(y) \alpha(z)=0$ for all $x, y, z \in R$ with $x y=y z=0$. Hence g is a generalized (α, β)-derivation with associated (α, β)-derivation δ by Theorem 3.1.

Now we claim that d is additive. Substituting y by $y+z$ in (3.11), and because g, α and β are all additive, we get

$$
\begin{equation*}
\beta(x)(d(y+z)-d(y)-d(z)) \alpha(x)=0 . \tag{3.12}
\end{equation*}
$$

Linearizing on x, it follows that

$$
\begin{equation*}
\beta(u)(d(y+z)-d(y)-d(z)) \alpha(x)+\beta(x)(d(y+z)-d(y)-d(z)) \alpha(u)=0 . \tag{3.13}
\end{equation*}
$$

Substituting u by $u x$ in (3.13) and using (3.12), we see that

$$
\beta(x)(d(y+z)-d(y)-d(z)) \alpha(u x)=0
$$

for all $u, x, y, z \in R$. Again, because α is an automorphism and R is prime, $\beta(x)(d(y+z)-d(y)-$ $-d(z))=0$ or $\alpha(x)=0$ for all $x, y, z \in R$. As discuss in the beginning of the theorem, we have $\beta(x)(d(y+z)-d(y)-d(z))=0$ for all $x, y, z \in R$. This implies that $d(y+z)=d(y)+d(z)$ for all $y, z \in R$. That is, d is additive.

Now g is a generalized (α, β)-derivation with associated (α, β)-derivation δ. From (3.9) and (3.11) we get

$$
\beta(x) d(y) \alpha(x)+\beta(x) \beta(y) d(x)=\beta(x) \delta(y) \alpha(x)+\beta(x) \beta(y) \delta(x)
$$

for all $x, y \in R$, and hence $d(y) \alpha(x)+\beta(y) d(x)=\delta(y) \alpha(x)+\beta(y) \delta(x)$. That is, $(d-\delta)(y) \alpha(x)+$ $+\beta(y)(d-\delta)(x)=0$. Because $d-\delta$ is additive, it follows by Lemma 3.1 that $(d-\delta)(x)=$ $=\beta(x) q=-q \alpha(x)$ for some $q \in Q_{s}$, which means that $d(x)=\delta(x)+\beta(x) q=\delta(x)-q \alpha(x)$. For any $x, y \in R$, we have

$$
\beta(x y) q=\beta(x) \beta(y) q=-\beta(x) q \alpha(y)=q \alpha(x) \alpha(y)
$$

Therefore, $2 q R^{2}=0$, and this implies that $2 q=0$. If char $R \neq 2$, then $q=0$ and $d=\delta$, as asserted. In case char $R=2$ and $q \neq 0$, by $\beta(x) q=-q \alpha(x)=q \alpha(x)$ we can conclude that q is invertible in Q_{s} and hence $\beta(x)=q \alpha(x) q^{-1}$.

The following is a special case of [3] (Theorem 1).
Corollary 3.1. Let R be a prime ring with nontrivial idempotents and α, β be automorphisms of R. If $\operatorname{char}(R) \neq 2$ and $d: R \rightarrow R$ is a Jordan triple (α, β)-derivation, then d is an (α, β)-derivation.

References

1. Beidar K. I., Martindale III W. S., Mikhalev A. V. Rings with generalized identities // Monographs and Textbooks in Pure and Appl. Math. - New York: Marcel Dekker, Inc., 1996. - 196.
2. Bresar M. Characterizing homomorphisms, derivations, and multipliers in rings with idempotens // Proc. Roy. Soc. Edinburgh A. - 2007. - 137. - P. 9-21.
3. Brešar M., Vukman J. Jordan (Θ, ϕ)-derivations // Glas. mat. Ser. III. - 1991. - 26(46). - P. $13-17$.
4. Chang J.-C. On the identity $h(x)=a f(x)+g(x) b / /$ Taiwanese J. Math. - 2003. - 7. - P. 103-113.
5. Chebotar M. A., Ke W.-F., Lee P.-H. Maps characterized by action on zero products // Pacif. J. Math. - 2004. - 216. P. 217-228.
6. Chuang C.-L., Lee T.-K. Derivations modulo elementary operatiors // J. Algebra. - 2011. - 338. - P. 56-70.
7. Herstein I. N. Topics in ring theory. - Chicago: Univ. Chicago Press, 1969.
8. Kadison R. V. Local derivations // J. Algebra. - 1990. - 130. - P. 494-509.
9. Larson D. R., Sourour A. R. Local derivations and local automorphisms of $B(X) / /$ Proc. Symp. Pure Math. - 1990. 51. - P. 187-194.
10. Lee T.-K. Semiprime rings with differential identites // Bull. Inst. Math. Acad. Sinica. - 1992. - 20, № 1. - P. $27-38$.
11. Lee T.-K. Generalized derivations of left faithful rings // Communs Algebra. - 1999. - 27, № 8. - P. 4057 - 4073.
12. Lee T.-K., Liu K.-S. Generalized skew derivations with algebraic values of bounded degree // Houston J. Math. (to appear).
13. Liu C.-K., Shiue W.-K. Generalized Jordan triple (θ, ϕ)-derivations on semiprime rings // Taiwanese J. Math. 2007. - 11. - P. 1397-1406.
14. Wang Y. Local generalized derivations in prime rings with idempotents // Algebra Colloq. - 2010. - 17. - P. 295 - 300.

Received 11.04.13, after revision - 19.02.17

