UDC 512.5

M. R. Mozumder (Aligarh Muslim Univ., India), M. R. Jamal (Integral Univ., Lucknow, India)

TRI-ADDITIVE MAPS AND LOCAL GENERALIZED (α, β) -DERIVATIONS ТРИАДИТИВНІ ВІДОБРАЖЕННЯ ТА ЛОКАЛЬНІ УЗАГАЛЬНЕНІ (α, β) -ПОХІДНІ

Let R be a prime ring with nontrivial idempotents. We characterize a tri-additive map $f : \mathbb{R}^3 \to \mathbb{R}$ such that f(x, y, z) = 0 for all $x, y, z \in \mathbb{R}$ with xy = yz = 0. As an application, we show that, in a prime ring with nontrivial idempotents, any local generalized (α, β) -derivation (or a generalized Jordan triple (α, β) -derivation) is a generalized (α, β) -derivation.

Нехай R — просте кільце з нетривіальними ідемпотентами. Охарактеризовано триадитивне відображення $f: R^3 \to R$ таке, що f(x, y, z) = 0 для всіх $x, y, z \in R$ таких, що xy = yz = 0. Як застосування показано, що у простому кільці з нетривіальними ідемпотентами довільна локальна узагальнена (α, β) -похідна (або узагальнена жорданова потрійна (α, β) -похідна) є узагальненою (α, β) -похідною.

1. Introduction. Throughout this paper, R denotes a prime ring with center Z(R), right (resp. left) Martindale quotient ring Q_r (resp. Q_ℓ), and symmetric Martindale quotient ring Q_s . Let Q_{mr} (resp. Q_{ml}) denote the maximal right (resp. left) ring of quotients of R. We refer the reader to the book [1] for details.

In [5], Chebotar, Ke and Lee characterized some maps preserving zero products: assume that the ring R possesses nontrivial idempotents. If $\phi: R \to R$ is a bijective additive map such that $\phi(x)\phi(y) = 0$ whenever xy = 0, then $\phi(xy)\phi(z) = \phi(x)\phi(yz)$ for any $x, y, z \in R$. Moreover, if $1 \in R$, then $\phi(xy) = \lambda\phi(x)\phi(y)$ for any $x, y \in R$, where $\lambda = \phi(1)^{-1} \in C$ [5] (Theorem 3). In [2], Brešar also discussed additive maps preserving zero products. In [6], Chuang and Lee considered a general case, namely, a bi-additive map $\phi: R \times R \to R$ such that $\phi(x, y) = 0$ whenever xy = 0 (see Theorem 2.1). In this paper, we will generalize this result to a tri-additive map $f: R^3 \to R$ such that f(x, y, z) = 0 whenever xy = yz = 0.

Let M be a R-bimodule. An additive mapping $g: R \to M$ is called a generalized derivation with associated derivation $d: R \to M$ if g(xy) = g(x)y + xd(y) for all $x, y \in R$. In [11], Lee gave a characterization of generalized derivations: every generalized derivation g on a dense right ideal of R can be extended to Q_{mr} and can be written in the form g(x) = ax + d(x) for some $a \in Q_{mr}$ and some derivation d on Q_{mr} . Let $\alpha, \beta: R \to R$ be automorphisms of R. An additive map $\delta:$ $R \to M$ is called a skew derivation, or an (α, β) -derivation, if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ for any $x, y \in R$. An additive map $g: R \to M$ is called a generalized (α, β) -derivation if there is an associated (α, β) -derivation $d: R \to M$ such that $g(xy) = g(x)\alpha(y) + \beta(x)d(y)$ for any $x, y \in R$. See [4] and [12] for a discussion of some of its properties.

An additive map $d: R \to R$ is called a local derivation if for every $x \in R$ there exists a derivation $d_x: R \to R$ such that $d(x) = d_x(x)$. Kadison [8] and Larson and Sourour [9] asked under what conditions a local derivation is a derivation. In [2], Brešar proved that a local derivation is a derivation if R has nontrivial idempotents.

© M. R. MOZUMDER, M. R. JAMAL, 2017 848 Recently, Wang generalized Brešar's result to the case of generalized derivations. An additive map $g: R \to R$ is called a local generalized derivation if for every $x \in R$, there exists a generalized derivation $g_x: R \to R$ such that $g(x) = g_x(x)$. Wang proved that a local generalized derivation is actually a generalized derivation if R has nontrivial idempotents [14]. In Section 3, we will prove an analogous result for generalized (α, β) -derivations. Precisely, we will prove that a local generalized (α, β) -derivation on a prime ring with nontrivial idempotents is a generalized (α, β) -derivation. We will also prove that a generalized Jordan triple (α, β) -derivation on a prime ring with nontrivial idempotents is a generalized (α, β) -derivation. We have that a generalized (α, β) -derivation, which is a special case of [13] (Theorem 3).

2. Tri-additive maps preserving zero products. Let E be the additive subgroup generated by all idempotents of R, and \overline{E} denote the subring generated by E. Recall that in [5] Chebotar, Ke and Lee proved that if $\phi: R \to R$ is a bijective additive map such that $\phi(x)\phi(y) = 0$ whenever xy = 0, then $\phi(xy)\phi(z) = \phi(x)\phi(yz)$ for any $x, y, z \in R$. In [6], Chuang and Lee considered bi-additive maps preserving zero products. We write their theorem in the following form.

Theorem 2.1 ([6], Theorem 2.3). Let R be a prime ring with nontrivial idempotents. Assume ϕ : $R \times R \to R$ is a bi-additive map preserving zero products. Then there exists a nonzero ideal I such that $\phi(xa, y) = \phi(x, ay)$ for any $x, y \in R$ and $a \in I$.

Note that because R has nontrivial idempotents, $[E, E] \neq 0$, and by examining the proof of Theorem 2.1, we see that the nonzero ideal I can be chosen to be R[E, E]R. Moreover, $R[E, E]R \subseteq \subseteq \overline{E}$ by Herstein's arguments in [7, p. 4].

Now we consider a more general case. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a tri-additive map, that is, a map f(x, y, z) that is additive in each argument. In view of Theorem 2.1 and the proof in [6], we can prove the following theorem.

Theorem 2.2. Let R be a prime ring with nontrivial idempotents. Let f(x, y, z) be a tri-additive map with f(x, y, z) = 0 whenever xy = yz = 0. Then

$$f(xa, yb, z) - f(x, ayb, z) = f(xa, y, bz) - f(x, ay, bz)$$
(2.1)

for all $x, y, z \in R$ and $a, b \in I$, where I is some nonzero ideal of R.

Proof. For $z \in R$ and e idempotent, define $F(x, y) \stackrel{\text{df}}{=} f(x, ye, (1 - e)z)$, then F(x, y) = 0 for xy = 0. By Theorem 2.1 there exists a nonzero ideal I such that F(xa, y) = F(x, ay) for any $a \in I$. That is,

$$f(xa, ye, (1-e)z) = f(x, aye, (1-e)z).$$
(2.2)

Note that by the remark after Theorem 2.1, the choice of I is independent of e and z. In fact, we can choose I = R[E, E]R. Thus, (2.2) holds for any $x, y, z \in R$, any $a \in I$ and any idempotent e. Analogously,

$$f(xa, y(1-e), ez) = f(x, ay(1-e), ez).$$
(2.3)

Comparing (2.2) and (2.3), we see that

$$f(xa, ye, z) - f(x, aye, z) = f(xa, y, ez) - f(x, ay, ez).$$

It can be easily checked that

$$f(xa, y\overline{e}, z) - f(x, ay\overline{e}, z) = f(xa, y, \overline{e}z) - f(x, ay, \overline{e}z)$$

for any $x, y, z \in R$, any $a \in I$, and any $\overline{e} \in \overline{E}$. Because $I = R[E, E]R \subseteq \overline{E}$, we get

$$f(xa, yb, z) - f(x, ayb, z) = f(xa, y, bz) - f(x, ay, bz)$$

for any $x, y, z \in R$, any $a, b \in I$, as asserted.

ISSN 1027-3190. Укр. мат. журн., 2017, т. 69, № 6

3. Generalized (α, β) -derivations. Let α , β be automorphisms of R, and let M be an R-bimodule. Recall that an additive map $g: R \to M$ is a generalized (α, β) -derivation if $g(xy) = g(x)\alpha(y) + \beta(x)d(y)$ for some (α, β) -derivation $d: R \to M$.

Here we need a property on extensions of (α, β) -derivations. It is well known that the automorphisms of R and (α, β) -derivations of R can be uniquely extended to $Q_{m\ell}$. We want to show that an (α, β) -derivation from a nonzero ideal to $Q_{m\ell}$ can be also extended to an (α, β) -derivation of $Q_{m\ell}$. The proof simply follows the standard arguments in [10] (Lemma 2) and [11] (Theorem 2) for the case of derivations. For brevity, we only sketch it here.

Proposition 3.1. Let R be a prime ring, I be a nonzero ideal of R, and α , β be automorphisms of R. Then every (α, β) -derivation $\delta : R \to Q_{m\ell}$ can be uniquely extended to an (α, β) -derivation $\tilde{\delta} : Q_{m\ell} \to Q_{m\ell}$. Moreover, every (α, β) -derivation $\delta : I \to Q_{\ell}$ can be uniquely extended to an (α, β) derivation $\tilde{\delta} : Q_{m\ell} \to Q_{m\ell}$.

Proof (Sketch of Proof). Let $\delta: R \to Q_{m\ell}$ be an (α, β) -derivation. For any $q \in Q_{m\ell}$ choose a dense left ideal λ of R such that $\lambda q \subseteq R$. Define $\phi: Q_{m\ell}\lambda \to Q_{m\ell}$ by $\phi\left(\sum u_i a_i\right) = \sum u_i \beta^{-1} \left(\left(\delta(a_i q) - \delta(a_i) \alpha(q) \right) \right)$, where $u_i \in Q_{m\ell}$ and $a_i \in \lambda$. Then ϕ is a right multiplier induced by an element \hat{q} in the maximal left quotient ring of $Q_{m\ell}$, which is just $Q_{m\ell}$ itself (see Proposition 2.1.7 and Theorem 2.1.11 in [1]). In this sense, δ can be extended to a map $\tilde{\delta}: Q_{m\ell} \to Q_{m\ell}$ by defining $\tilde{\delta}(q) \stackrel{\text{df}}{=} \beta(\hat{q})$. It can be checked that $\tilde{\delta}$ is an (α, β) -derivation of $Q_{m\ell}$ and that this extension is unique. The second part of the proof simply follows the arguments in [11] (Theorem 2).

Now we can prove the following theorem.

Theorem 3.1. Let R be a prime ring with nontrivial idempotents. If $g: R \to R$ is an additive map such that $\beta(x)g(y)\alpha(z) = 0$ for any $x, y, z \in R$ with xy = yz = 0, then g is a generalized (α, β) -derivation.

Proof. Because R possesses nontrivial idempotents, by Theorem 2.2 we know that

$$\beta(xa)g(yb)\alpha(z) - \beta(x)g(ayb)\alpha(z) = \beta(xa)g(y)\alpha(bz) - \beta(x)g(ay)\alpha(bz)$$
(3.1)

for any $x, y, z \in R$ and $a, b \in I$, where I is a nonzero ideal of R. Because R is prime and α , β are automorphisms and rearranging the terms, the equation (3.1) can be reduced to

$$\beta(a)(g(yb) - g(y)\alpha(b)) = g(ayb) - g(ay)\alpha(b).$$
(3.2)

Now, define $F_b(y) = g(yb) - g(y)\alpha(b)$; then (3.2) becomes $\beta^{-1}(F_b(ay)) = a\beta^{-1}(F_b(y))$. That is, $\beta^{-1}F_b$ is a left *I*-module map and hence a left *R*-module map. Therefore, $\beta^{-1}F_b$ is a right multiplier induced by an element in Q_ℓ (see [1], Proposition 2.2.1). This implies

$$g(yb) - g(y)\alpha(b) = \beta(y)d(b), \tag{3.3}$$

for any $y \in R$ and any $b \in I$, where $d: I \to Q_{\ell}$ is an additive map. For $y \in R$ and $b, c \in I$, by (3.3)

$$g(ybc) - g(y)\alpha(bc) = \beta(y)d(bc).$$
(3.4)

Expanding otherwise and simplifying, the equation (3.4) reduces to

$$g(ybc) - (g(y)\alpha(b) + \beta(y)d(b))\alpha(c) = \beta(yb)d(c).$$
(3.5)

ISSN 1027-3190. Укр. мат. журн., 2017, т. 69, № 6

Combining (3.4) and (3.5), we obtain $d(bc) = d(b)\alpha(c) + \beta(b)d(c)$, so $d: I \to Q_{\ell}$ is an (α, β) -derivation. Up to now we have

$$g(xa) = g(x)\alpha(a) + \beta(x)d(a)$$
(3.6)

for any $x \in R$ and any $a \in I$, where $d: I \to Q_{\ell}$ is an (α, β) -derivation. By Proposition 3.1, d can be uniquely extended to an (α, β) -derivation of Q_{ℓ} , which we still denote by d. For any $x, y \in R$ and any $a \in I$, by (3.6)

$$g(x(ya)) = g(x)\alpha(ya) + \beta(x)d(ya) =$$

= $g(x)\alpha(y)\alpha(a) + \beta(x)d(y)\alpha(a) + \beta(x)\beta(y)d(a).$ (3.7)

On the other hand,

$$g((xy)a) = g(xy)\alpha(a) + \beta(xy)d(a).$$
(3.8)

Comparing (3.7), (3.8) and using the primeness, we get $g(xy) = g(x)\alpha(y) + \beta(x)d(y)$ for any $x, y \in R$. This means that g is a generalized (α, β) -derivation of R.

By analogy with the local derivations and local generalized derivations mentioned in Section 1, we introduce the following notion.

Definition 3.1. An additive map $g: R \to R$ is called a local generalized (α, β) -derivation if for every $x \in R$, there exists a generalized (α, β) -derivation g_x , which depends on x, such that $g(x) = g_x(x)$.

The following theorem shows that a local generalized (α, β) -derivation is a generalized (α, β) -derivation. This generalizes the derivation case in [2] and the generalized derivation case in [14].

Theorem 3.2. Let R be a prime ring with nontrivial idempotents, and let α , β be automorphisms of R. Then a local generalized (α, β) -derivation is a generalized (α, β) -derivation.

Proof. Let g be a local generalized (α, β) -derivation of R. For every $y \in R$, there is a generalized (α, β) -derivation g_y with associated (α, β) -derivation d_y such that $g(y) = g_y(y)$. Hence for any $x, y, z \in R$ with xy = yz = 0, we have

$$\beta(x)g(y)\alpha(z) = \beta(x)g_y(y)\alpha(z) = \beta(x)g_y(yz) - \beta(xy)d_y(z) = 0.$$

By Theorem 3.1, g is actually a generalized (α, β) -derivation.

Recall that an additive map $\delta \colon R \to R$ is called a Jordan triple (α, β) -derivation, if

$$\delta(xyx) = \delta(x)\alpha(y)\alpha(x) + \beta(x)\delta(y)\alpha(x) + \beta(x)\beta(y)\delta(x)$$
(3.9)

for any $x, y \in R$. An additive map $g: R \to R$ is called a generalized Jordan triple (α, β) -derivation if there exists a Jordan triple (α, β) -derivation δ of R such that

$$g(xyx) = g(x)\alpha(y)\alpha(x) + \beta(x)\delta(y)\alpha(x) + \beta(x)\beta(y)\delta(x)$$
(3.10)

for any $x, y \in R$.

In [13], Liu and Shiue proved that a generalized Jordan triple (α, β) -derivation on a 2-torsion free semiprime ring must be a generalized (α, β) -derivation [13] (Theorem 3). Now we want to prove an analogous theorem for the special case of prime rings with nontrivial idempotents, but where the associated map δ in (3.10) is any map.

In order to prove the theorem, we need a result in functional identities.

ISSN 1027-3190. Укр. мат. журн., 2017, т. 69, № 6

851

Lemma 3.1. Let R be a prime ring and $\alpha, \beta: R \to R$ be automorphisms of R. If $F, G: R \to R$ are two additive maps such that $F(x)\alpha(y) = \beta(x)G(y)$ for any $x, y \in R$, then there exists an element $q \in Q_s$ such that $F(x) = \beta(x)q$ and $G(y) = q\alpha(y)$.

Proof. It is well known that any automorphism of R can be uniquely extended to an automorphism of Q_s , Q_ℓ , or Q_r . A direct computation shows that $F(rx)\alpha(y) - \beta(r)F(x)\alpha(y) = 0$ for any $r, x, y \in R$, so because R is prime, we see that $F(rx) = \beta(r)F(x)$. That is, $\beta^{-1}F$ is a left R-module map of R. Therefore, there exists an element $s \in Q_\ell$ such that $\beta^{-1}F(x) = xs$. Hence, $F(x) = \beta(x)q$, where $q = \beta(s) \in Q_\ell$. By assumption we have $\beta(x)q\alpha(y) = \beta(x)G(y)$, which implies that $G(y) = q\alpha(y)$ because R is a prime ring. Moreover, q is an element of Q_s because $qR \subseteq R$.

Theorem 3.3. Let R be a prime ring with nontrivial idempotents, and let α , β be automorphisms of R. If $g: R \to R$ is an additive map and $d: R \to R$ is any map such that

$$g(xyx) = g(x)\alpha(y)\alpha(x) + \beta(x)d(y)\alpha(x) + \beta(x)\beta(y)d(x)$$
(3.11)

for any $x, y \in R$, then g is a generalized (α, β) -derivation with the associated derivation δ , and one of the following holds:

(1) $d = \delta$, is exactly the associated (α, β) -derivation of g;

(2) char R = 2 and there exists an invertible element $q \in Q_s$, such that $d(x) = \delta(x) + \beta(x)q = \delta(x) - q\alpha(x)$ and $\beta(x) = q\alpha(x)q^{-1}$.

Proof. For any $s \in R$ and $x, y, z \in R$ with xy = yz = 0, it follows from (3.11) that

$$0 = \beta(x)g(yzsy) = \beta(x)g(y)\alpha(z)\alpha(s)\alpha(y).$$

Because α , β are automorphisms and R is prime, we have $\beta(x)g(y)\alpha(z) = 0$ or $\alpha(y) = 0$. Take $I_1 = \{y \in R \mid \beta(x)g(y)\alpha(z) = 0\}$ for all $x, z \in R$ and $I_2 = \{y \in R \mid \alpha(y) = 0\}$. Clearly, I_1 and I_2 both are additive subgroups of R, whose union is R. But, a group can not be union of two of its proper subgroups. Hence, either $I_1 = R$ and $I_2 = R$. But, if $I_2 = R$ gives $\alpha = 0$, a contradiction. Hence, $\beta(x)g(y)\alpha(z) = 0$ for all $x, y, z \in R$ with xy = yz = 0. Hence g is a generalized (α, β) -derivation with associated (α, β) -derivation δ by Theorem 3.1.

Now we claim that d is additive. Substituting y by y + z in (3.11), and because g, α and β are all additive, we get

$$\beta(x)(d(y+z) - d(y) - d(z))\alpha(x) = 0.$$
(3.12)

Linearizing on x, it follows that

$$\beta(u) \big(d(y+z) - d(y) - d(z) \big) \alpha(x) + \beta(x) \big(d(y+z) - d(y) - d(z) \big) \alpha(u) = 0.$$
(3.13)

Substituting u by ux in (3.13) and using (3.12), we see that

$$\beta(x)\big(d(y+z) - d(y) - d(z)\big)\alpha(ux) = 0$$

for all $u, x, y, z \in R$. Again, because α is an automorphism and R is prime, $\beta(x)(d(y+z) - d(y) - d(z)) = 0$ or $\alpha(x) = 0$ for all $x, y, z \in R$. As discuss in the beginning of the theorem, we have $\beta(x)(d(y+z) - d(y) - d(z)) = 0$ for all $x, y, z \in R$. This implies that d(y+z) = d(y) + d(z) for all $y, z \in R$. That is, d is additive.

Now g is a generalized (α, β) -derivation with associated (α, β) -derivation δ . From (3.9) and (3.11) we get

ISSN 1027-3190. Укр. мат. журн., 2017, т. 69, № 6

 $\beta(x)d(y)\alpha(x) + \beta(x)\beta(y)d(x) = \beta(x)\delta(y)\alpha(x) + \beta(x)\beta(y)\delta(x)$

for all $x, y \in R$, and hence $d(y)\alpha(x) + \beta(y)d(x) = \delta(y)\alpha(x) + \beta(y)\delta(x)$. That is, $(d - \delta)(y)\alpha(x) + \beta(y)(d - \delta)(x) = 0$. Because $d - \delta$ is additive, it follows by Lemma 3.1 that $(d - \delta)(x) = \beta(x)q = -q\alpha(x)$ for some $q \in Q_s$, which means that $d(x) = \delta(x) + \beta(x)q = \delta(x) - q\alpha(x)$. For any $x, y \in R$, we have

$$\beta(xy)q = \beta(x)\beta(y)q = -\beta(x)q\alpha(y) = q\alpha(x)\alpha(y).$$

Therefore, $2qR^2 = 0$, and this implies that 2q = 0. If char $R \neq 2$, then q = 0 and $d = \delta$, as asserted. In case char R = 2 and $q \neq 0$, by $\beta(x)q = -q\alpha(x) = q\alpha(x)$ we can conclude that q is invertible in Q_s and hence $\beta(x) = q\alpha(x)q^{-1}$.

The following is a special case of [3] (Theorem 1).

Corollary 3.1. Let R be a prime ring with nontrivial idempotents and α , β be automorphisms of R. If char $(R) \neq 2$ and $d: R \rightarrow R$ is a Jordan triple (α, β) -derivation, then d is an (α, β) -derivation.

References

- Beidar K. I., Martindale III W. S., Mikhalev A. V. Rings with generalized identities // Monographs and Textbooks in Pure and Appl. Math. – New York: Marcel Dekker, Inc., 1996. – 196.
- Bresar M. Characterizing homomorphisms, derivations, and multipliers in rings with idempotens // Proc. Roy. Soc. Edinburgh A. – 2007. – 137. – P. 9–21.
- 3. Brešar M., Vukman J. Jordan (Θ, ϕ) -derivations // Glas. mat. Ser. III. 1991. 26(46). P. 13–17.
- 4. Chang J.-C. On the identity h(x) = af(x) + g(x)b // Taiwanese J. Math. 2003. 7. P. 103 113.
- Chebotar M. A., Ke W.-F., Lee P.-H. Maps characterized by action on zero products // Pacif. J. Math. 2004. 216. P. 217–228.
- 6. Chuang C.-L., Lee T.-K. Derivations modulo elementary operations // J. Algebra. 2011. 338. P. 56-70.
- 7. Herstein I. N. Topics in ring theory. Chicago: Univ. Chicago Press, 1969.
- 8. Kadison R. V. Local derivations // J. Algebra. 1990. 130. P. 494-509.
- Larson D. R., Sourour A. R. Local derivations and local automorphisms of B(X) // Proc. Symp. Pure Math. 1990. 51. – P. 187–194.
- 10. Lee T.-K. Semiprime rings with differential identites // Bull. Inst. Math. Acad. Sinica. 1992. 20, № 1. P. 27-38.
- 11. Lee T.-K. Generalized derivations of left faithful rings // Communs Algebra. 1999. 27, № 8. P. 4057–4073.
- 12. Lee T.-K., Liu K.-S. Generalized skew derivations with algebraic values of bounded degree // Houston J. Math. (to appear).
- Liu C.-K., Shiue W.-K. Generalized Jordan triple (θ, φ)-derivations on semiprime rings // Taiwanese J. Math. 2007. – 11. – P. 1397–1406.
- 14. Wang Y. Local generalized derivations in prime rings with idempotents // Algebra Colloq. 2010. 17. P. 295–300.

Received 11.04.13,

after revision - 19.02.17