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MONADS AND TENSOR PRODUCTS
MOHA/IX TA TEH30PHI JOBYTKH

M. Zarichnyi defined an operation of tensor product for each functor that can be complemented to a monad. We investigate
the existence of tensor product for functors which cannot be complemented to monads.

M. 3apiuHuii 03Ha4YMB ONEPALi0 TEH30PHOIO JOOYTKY Ul KOXKHOTO (yHKTOpA, IO JOMOBHIOETHCS O MOHamu. Y Wil
CTaTTi AOCTIKEHO 1CHYBaHHSA TEH30PHOTO HOOYTKY Ui (PyHKTODIB, SKi HE MOKHA JOTIOBHUTH J0 MOHAIH.

0. Introduction. The general theory of functors acting on the category Comp of compact Hausdorff
spaces (compacta) and continuous mappings was founded by Shchepin [9]. He described some
elementary properties of such functors and defined the notion of the normal functor which has
become very fruitful. The classes of all normal functors include many classical constructions: the
hyperspace exp, the space of probability measures P, the space of idempotent measures I, and many
other functors (see [4, 10, 11]).

The algebraic aspect of the theory of functors in categories of topological spaces and continuous
maps is based, mainly, on the existence of monad (or triple) structure in the sense of S. Eilenberg and
J. Moore [2]. This notion turned out, in particular, to be a fruitful tool for investigation of functors
in the category Comp (see [8, 10]).

We recall the definition of monad only for the category Comp. A monad T = (7,7, ) in
the category Comp consists of an endofunctor 7': Comp — Comp and natural transformations 7 :
Idcomp — T (unity), p: T? — T (multiplication) satisfying the relations poTn = ponT =11 and
popul = poTu. (By Idcomp We denote the identity functor on the category Comp and T? is the
superposition T o T of T'.)

The tensor product operation of probability measures is well known and very useful for investiga-
tion of the functor P (see, for example, [3], Chapter 8). Zarichnyi has generalized the tensor product
of probability measures for any functor which can be completed to a monad [10] (Chapter 3.4). The
definition of a functor which admits a tensor product is given in [1].

Definition 0.1 [1]. We say that a functor F: Comp — Comp admits a tensor product if for
each family of compacta {X,} there exists a continuous map ®fx,}" Ha FX, — F (Ha Xa>
which is natural with respect to each argument and for each o we have F(p,)o® = pr,,, where p,,
HB Xg — X4 and pry, : HB FXg — FX, are natural projections. (By naturality with respect
to each argument we mean the following property: for a family of maps {fo: Xo — Yo} we have

Oay o[ Flfa) = F (Ha fa) o ®{Xa}.)

The question naturally arises whether there exists a functor which can not be completed to a monad
but admits a tensor product. Firstly, we investigate the Hartman —Mycielski functor introduced in
[7]. Recently it was proved in [6] that this functor can not be completed to a monad. Unfortunately
the Hartman — Mycielski functor neither admits a tensor product, what we will prove in Section 1 of
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this paper. In Section 2 we investigate iterated functors. We will prove that the second iteration of a
functor, which admits a tensor product, admits tensor product too. We also will show that the second
iteration of hyperspace functor (which is functorial part of hyperspace monad, hence admits a tensor
product) can not be completed to a monad.

1. Hartman — Mycielski functor does not admit a tensor product. All functors we consider are
endofunctors in Comp. A functor F' is called continuous if it preserves the limits of inverse systems.
A functor is called monomorphic if it preserves topological embeddings. For monomorphic functor
F and an embedding i: A — X we shall identify the space F'(A) and the subspace F'(i)(F(A)) C
C F(X). For a functor F' which preserves monomorphisms the intersection-preserving property is
defined as follows: F(N{X,|a € A}) = N{F(X,)|a € A} for every family {X, |« € A} of
closed subsets of X. A functor is called seminormal iff it is continuous, monomorphic, preserves
empty space, one-point spaces and intersection. In what follows, all functors are assumed to be
seminormal. For such a functor there exists a unique natural transformation 7: Idcomp — F.
Each component nX : X — FX is an embedding [3]. Let us remark that the map nX has the
following property: for each z € X we have nX (z) = Fi(F{z}), where i: {z} — X is the natural
embedding.

Let X be a space and d is an admissible metric on X bounded by 1. By HM(X) we shall
denote the space of all maps from [0,1) to the space X such that f|[t;,¢;+1) = const, for some
0=ty <...<t, =1, with respect to the following metric:

1
dni(f.9) = [ GO, g@)dt, f.g€ HIMX).
0

The construction of HM (X)) is known as the Hartman —Mycielski construction [5]. This con-
struction was considered for any compactum Z in [10] (2.5.2). Let ¢/ be the unique uniformity of
Z. Forevery U € Y and € > 0, let

(a,U,e) ={B € HM(Z)[m{t € [0,1) | (a(t), B(t)) ¢ U} < e}

(here m is the Lebesgue measure on [0, 1]) The sets («, U, e) form a base of a topology in HM Z.
The construction HM acts also on maps. Given a map f: X — Y in Comp, define a map
HMX — HMY by the formula HM F(«) = f o a. In general, HM X is not compact.

Let us fix some n € N. For every compactum Z consider

HM,(Z) = {f € HM(Z)| there exist 0=t < ... < typq =1

with f‘ [tiyti—i-l) =z €4, 1= 1,...,71}.

The constructions H M,, define normal functors in Comp [10] (2.5.2).

Zarichnyi has asked if there exists a normal functor in Comp which contains all functors H M,
as subfunctors (see [10]). Such a functor H was constructed in [7]. The main aim of this section is to
show that the functor H does not admit a tensor product. Let us remind the construction of H from
[7]. Let X be a compactum. By C(X) we denote the Banach space of all continuous functions ¢ :
X — R with the usual sup-norm: ||¢|| = sup{|p(z)| | x € X}. We denote the segment [0, 1] by I.

For a compactum X let us define the uniformity of H M X. For each ¢ € C'(X) and a,b € [0, 1]
with a < b we define a function ¢, ;) : HM X — R by the following formula:
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b
1
Plab) = b_a/go oa(t)dt forsome o€ HMX.

a

Define
Stum(X) = {@@p | ¢ € C(X) and (a,b) C (0,1)}.

For 1,...,¢n € Sgm(X) define a pseudometric p,, .., on HMX by the formula

n

p3017---,s0n(f7 g) = maX{\%(f) - Spi(g)‘ ’Z € {17 s 7n}}7

where f,g € HM X. The family of pseudometrics
P =A{ppy,...on |n €N, where ¢1,..., 0, € Sum(X)},

defines a totally bounded uniformity Uy of HM X (see [7]).

For each compactum X we consider the uniform space (H X, Uy x) which is the completion of
(HM X,Uprmx) and the topological space H X with the topology induced by the uniformity U x .
Since U x is totally bounded, the space H X is compact.

Let f: X — Y be a continuous map. Define a map HM f: HM X — HMY by the formula
HMf(a) = foa forall « € HM X. It was shown in [7] that the map HM f: (HM X, Uy x) —
— (HMY,Uppry) is uniformly continuous. Hence there exists a continuous map Hf: HX — HY
such that Hf | HMX = HM f. It is easy to see that H : Comp — Comp is a covariant functor and
H M, is a subfunctor of H for each n € N.

Let us remark that the family of functions Sg/(X) embeds HM X in the product of closed
intervals H@(a,b>€SHM(X) Lo, Where L, = [mingex |o(z)], maxzex |¢(2)]. Thus, the space
HX is the closure of the image of HMX. We denote by py, , : HX — I, , the restriction

b)
of the natural projection. Let us remark that the function H f could be defined by the condition

Pon ©Hf = Pgof)an) for each () € Suum(Y).

We will use certain properties of the functor H proved in [7]. Since the functor H preserves
embeddings, we can identify the space F'A with Fi(FFA) C FX for each closed subset A C X,
where i: A — X is the natural embedding. We can define for each o € HX the closed set
supp @ = N{A is a closed subset of X such that o« € HA}. Since H preserves intersection, we have
a € H(supp «).

By D we denote two-point space {0,1} with discrete topology. For n € N define «f and

21 21+1
af € HMD C HD as follows: ag(s) =0, af(s) =1, if s € [ s > and af(s) = 1;
214+1 i1+1

20’ 2n
5 ),Whereie{o,...,n—l},sG[O,l).Fork,je{O,l}and
n

n € N define o ; € HM(D x D) C H(D x D) by the formula aj; ;(s) = (aj(s), a}(s)). Denote

or=H(pr)): H(D x D) — HD, where | € {1,2} and pr; : D x D — D are natural projections.

Obviously, we have o1 (aj; ;) = af and ga(af ;) = of.

Lemma 1.1. We have (01)~'(aft) N (02) ' (af) = {a ;}.

af(s) =0, if s €
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Proof. We will prove the lemma for k = j = 0. The proof is the same for other cases. Consider
any v € (1)~ ' (agy) N (¢2) ' (af). Firstly, let us show that suppy C supp(ag o) = {(0;0), (1;1)}.
Suppose the contrary. We can assume that (0;1) € supp~. Consider a function ¢: D x D — R
such that ¢(0;1) = 1 and ¢(k;l) = 0 for each (k;l) # (0;1). By Lemma 2.5 from [6] there
exists @ > 0 such that pw(m)(v) > a. For r € {0,...,n — 1} define functions ¢a,, ©or41:
D — R as follows: ¢2,(0) = 1, ¢2,(1) = 0 and @2,41(0) = 0, p2,41(1) = 1. For k € {1,2}
and | € {0,...,2n — 1} we consider the functions ¢} = ¢, o prj: D x D — R. Choose a

neighborhood V' of v defined as follows: V' = {y" € H(D x D) | |py,,,(7) — Py, (V)] < g and

(") —mf%’%)(v)

Consider any 71 € HM (D x D) NV. Since [py,, (V) = Py (1) < %, we have m{t €

< 41 for each k € {1,2} and r € {0,...,2n — 1}.
n

p¢f( r ”V‘JFI)

2n’ 2n

e [0, = (0;1)} > %. Hence there exists r» € {0,...,2n — 1} such that
r r+1
mete | —,
2n" 2n

If r = 21 for some [ € {0,...,n—1} we have p,2

71(t) = (0;1)} > %-

. 2n 2 a
(’71) =n X gpro’yl(t)dt< 1—5

r r+1
"\ 2n°2n n
But p,2 () = Peropr; » wiay (V) =P\ eay ©02(7) =Dy, .y () =1 and we
(g 7P (g ) r( ) Pr(gmmm)
obtain a contradiction with the definition of V.
If 7 = 21+ 1 for some [ € {0,...,n — 1} we obtain a contradiction using the function ¢.. Hence

we have the inclusion suppy C {(0;0), (1;1)}.

Consider any ¢ € C(D x D) and (a,b) C (0,1). Define ¢» € C(D) as follows: (i) = ¢(i;1)
for i € D and put { = ¢ o pry. Since suppy C {(i;4)|i € D}, we have py, , (7) = P, (V)
by Lemma 2.3 from [6]. Then Poan) (v) = De (v) = Py (a,b) (af) = De oy (048,0) = Pogar (0‘8,0)-
Hence v = ag .

Theorem 1.1. There is no continuous map t: HD x HD — H(D x D) such that g; ot = s;
Sor each i € {1,2}, where s;: HD x HD — HD is the natural projection.

Proof. Suppose that there exists such map. It is easy to check that both sequences () and

(af) converge to o € HD defined as follows py, , (@) = %(gp(()) + ¢(1)) for each p € C(D)
and (a,b) C (0,1). Since ¢ is continuous, both sequences t(af, () and t(of,af) converge to
B =t(a, ). We have t(af, o) = ag o and t(ag, o) = ag; by Lemma 1.1. Consider a function ¢ :
D x D — R defined as follows: ¢(0;0) = ¢(1;1) = 0 and ¢(1;0) = ¢(0;1) = 1. Then we have
Do) (0‘8,0) =0#1=ppgq, (a&l) for each n € N. We obtain a contradiction and the theorem is
proved.

2. Iterated functors. Let F' be a functor. By F? we denote the second iteration F' o F of the
functor F. If we have a family {X,}, by pa: Hﬁ X5 — Xa, pry - Hﬁ FXg— FX, and pr? :

HB F’X g — F 2X,, we denote the corresponding natural projections.

Theorem 2.1. Let F be a functor which admits a tensor product. Then F? admits a tensor
product.
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Proof. Let ®@(x.}: H FXo, = F (H Xa) be a tensor product for a family {X,} and a

functor F. Define a map ®%Xa} : Ha F?X, — F? (Ha Xa) by formula ®%Xa} = F(®¢x,})°
© ®(Fx,}- The naturality of ®* is obvious.

For each o we have F2pao®%Xa} = F2paOF(®{Xa})°®{FXQ} = F(Fpoco@{Xa})O@{FXa} =
= F(pr,) o ®gpx,1 = pr2 . Hence the operation ®? defines a tensor product for the functor F2.

Now we consider the hyperspace functor exp . For a compactum X by exp X we denote the set
of nonempty compact subsets of X provided with the Vietoris topology. A base of this topology

consists of the sets of the form (U, ..., U,) = {A cexp X|AC Ué_l U;, ANU; # @ for each
ie{l,... ,n}}, where Uy, ...,U, are open in X. The space exp X is called the hyperspace of X.

For a continuous mapping f: X — Y the mapping exp f: exp X — exp Y is defined by the
formula exp f(A) = fA € exp Y, A € exp X. It is easy to see that this defines a functor exp :
Comp — Comp (the hyperspace functor). It is well known that the functor exp define the natural
transformations s: Idcomp — exp and u: exp? — exp as follows: sX(z) = {z} for each z € X,
uX(A) = UA, A € exp? X. Then the triple H = (exp,s,u) is a monad (see [10] for more
information). Hence the hyperspace functor admits a tensor product and, by Theorem 2.1, the iterated
functor exp? admits tensor product too.

Let us remark that there exists a unique natural transformation 7: Idcomp — exp? defined as
follows nX = sexp X o sX = expsX o sX for each compactum X. We have nX (z) = {{z}} for
z e X.

Theorem 2.2. There is no natural transformation 1. exp® — exp? such that p o exp’n =
= ponexp? =1eyp2.

Proof. Suppose the contrary. Consider X = {a,b,c,d} and a = {{{{a}, {b}},{{d},{c}}}} €
€ exp* X. Define maps f1, fo: X — {0,1} as follows: fi(a) = fi(b) = 1, fi(e) = fi(d) =
= 0 and fo(a) = fo(c) = 0, fa(b) = fi(d) = 1. Then exp’ fi(e) = {{{{0}}, {{1}}}} =
= exp?n{0,1}({{0,1}}) and we have pu{0,1} o exp* fi(a) = {{0,1}}. Since yu is a natural
transformation, we obtain that exp? f; o uX(a) = {{0,1}}. On the other hand exp? fo(a) =
= {{{{0}, {1}}}} = nexp*{0,1}({{0}, {1}}) and we have that exp? f o X () = {{0}, {1}}. It
is easy to check that uX () = {{a,c}, {b,d}}.

But if we consider maps g1, g2: X — {0, 1} defined by equalities g1 = f1 and g2(a) = g2(d) =
=0, g2(b) = g2(c) = 1, we obtain that uX () = {{a,d}, {b,c}} using the same arguments as
before. Hence we have a contradiction.

Corollary 2.1. The functor exp?® can not be completed to a monad.

Let us remark that the functors exp and exp? are normal (see, for example, [10]).
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