A. N. Kochubei (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

LINEAR AND NONLINEAR HEAT EQUATIONS ON A p-ADIC BALL* ЛІНІЙНЕ ТА НЕЛІНІЙНЕ РІВНЯННЯ ТЕПЛОПРОВІДНОСТІ НА \boldsymbol{p}-АДИЧНІЙ КУЛІ

We study the Vladimirov fractional differentiation operator $D_{N}^{\alpha}, \alpha>0, N \in \mathbb{Z}$, on a p-adic ball $B_{N}=\left\{x \in \mathbb{Q}_{p}\right.$: $\left.|x|_{p} \leq p^{N}\right\}$. To its known interpretations via the restriction of a similar operator to \mathbb{Q}_{p} and via a certain stochastic process on B_{N}, we add an interpretation as a pseudodifferential operator in terms of the Pontryagin duality on the additive group of B_{N}. We investigate the Green function of D_{N}^{α} and a nonlinear equation on B_{N}, an analog of the classical equation of porous medium.

Вивчається оператор Владимирова диференціювання дробового порядку $D_{N}^{\alpha}, \alpha>0, N \in \mathbb{Z}$, на p-адичній кулі $B_{N}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq p^{N}\right\}$. До його відомих інтерпретацій у термінах звуження подібного оператора, визначеного на \mathbb{Q}_{p} та через деякий випадковий процес на B_{N}, ми додаємо інтерпретацію у вигляді псевдодиференціального оператора в термінах дуальності Понтрягіна на адитивній групі B_{N}. Вивчено функцію Гріна на D_{N}^{α} та нелінійне рівняння на B_{N}, що є аналогом класичного рівняння пористого середовища.

1. Introduction. The theory of linear parabolic equations for real- or complex-valued functions on the field \mathbb{Q}_{p} of p-adic numbers including the construction of a fundamental solution, investigation of the Cauchy problem, the parametrix method, is well-developed; see, for example, the monographs $[16,21]$. In such equations, the time variable is real and nonnegative while the spatial variables are p adic. There are no differential operators acting on complex-valued functions on \mathbb{Q}_{p}, but there is a lot of pseudodifferential operators. A typical example is Vladimirov's fractional differentiation operator $D^{\alpha}, \alpha>0$; see the details below. This operator (as well as its multidimensional generalization, the so-called Taibleson operator) is a p-adic counterpart of the fractional Laplacian $(-\Delta)^{\alpha / 2}$ of real analysis.

Already in real analysis, an interpretation of nonlocal operators on bounded domains is not straightforward; see [3] for a survey of various possibilities. In the p-adic case, Vladimirov (see [19]) defined a version D_{N}^{α} of the fractional differentiation on a ball $B_{N}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq p^{N}\right\}$ as follows. One takes a test function on B_{N}, extends it onto \mathbb{Q}_{p} by zero, applies D^{α}, and restricts the resulting function to B_{N}. Then it is possible to consider a closure of the obtained operator, for example, on $L^{2}\left(B_{N}\right)$.

In [16] (Section 4.6), a probabilistic interpretation of this operator was given. Let $\xi_{\alpha}(t)$ be the Markov process with the generator D^{α} on \mathbb{Q}_{p}. Suppose that $\xi_{\alpha}(0) \in B_{N}$ and denote by $\xi_{\alpha}^{(N)}(t)$ the sum of all jumps of the process $\xi_{\alpha}(\tau), \tau \in[0, t]$ whose p-adic absolute values exceed p^{N}. Consider the process $\eta_{\alpha}(t)=\xi_{\alpha}(t)-\xi_{\alpha}^{(N)}(t)$. Due to the ultrametric inequality, the jumps of η_{α} never exceed p^{N} by absolute value, so that the process remains almost surely in B_{N}. It is proved in [16] that the generator of the Markov process η_{α} on B_{N} equals (on test function) $D_{N}^{\alpha}-\lambda I$, where

$$
\lambda=\frac{p-1}{p^{\alpha+1}-1} p^{\alpha(1-N)} .
$$

In [16] (Theorem 4.9) the corresponding heat kernel is given explicitly.

[^0]In this paper we find an analytic interpretation of the latter operator using harmonic analysis on B_{N} as an (additive) compact Abelian group (this group property, just as the above probabilistic construction, is of purely non-Archimedean nature and has no analogs in the classical theory of partial differential equations). We give an interpretation of $D_{N}^{\alpha}-\lambda I$ as a pseudodifferential operator on B_{N}, then consider it as an operator on $L^{1}\left(B_{N}\right)$ and study its Green function, the integral kernel of its resolvent. The choice of $L^{1}\left(B_{N}\right)$ as the basic space is motivated by applications to nonlinear equations.

The first model example of a nonlinear parabolic equation over \mathbb{Q}_{p} is the p-adic analog of the classical porous medium equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+D^{\alpha}(\Phi(u))=0, \quad u=u(t, x), \quad t>0, x \in \mathbb{Q}_{p} \tag{1.1}
\end{equation*}
$$

where Φ is a strictly monotone increasing continuous real function on \mathbb{R}. Its study was initiated in [13]. Here we consider this equation on B_{N}, taking the operator D_{N}^{α} instead of D^{α} :

$$
\begin{equation*}
\frac{\partial u}{\partial t}+D_{N}^{\alpha}(\Phi(u))=0 \tag{1.2}
\end{equation*}
$$

As in [13], our study of Eq. (1.2) is based on general results by Crandall-Pierre [10] and Brézis - Strauss [6] enabling us to consider this equation in the framework of nonlinear semigroups of operators. Following [3] we consider Eq. (1.2) also in $L^{\gamma}\left(B_{N}\right), 1<\gamma \leq \infty$.

An important motivation of the present work is provided by the p-adic model of a poropus medium introduced in $[14,15]$.
2. Preliminaries. 2.1. p-Adic numbers [19]. Let p be a prime number. The field of p-adic numbers is the completion \mathbb{Q}_{p} of the field \mathbb{Q} of rational numbers, with respect to the absolute value $|x|_{p}$ defined by setting $|0|_{p}=0$,

$$
|x|_{p}=p^{-\nu} \text { if } x=p^{\nu} \frac{m}{n}
$$

where $\nu, m, n \in \mathbb{Z}$, and m, n are prime to $p . \mathbb{Q}_{p}$ is a locally compact topological field. By Ostrowski's theorem there are no absolute values on \mathbb{Q}, which are not equivalent to the "Euclidean" one, or one of $|\cdot|_{p}$.

The absolute value $|x|_{p}, x \in \mathbb{Q}_{p}$, has the following properties:

$$
\begin{gathered}
|x|_{p}=0 \text { if and only if } x=0 \\
|x y|_{p}=|x|_{p} \cdot|y|_{p} \\
|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)
\end{gathered}
$$

The latter property called the ultrametric inequality (or the non-Archimedean property) implies the total disconnectedness of \mathbb{Q}_{p} in the topology determined by the metric $|x-y|_{p}$, as well as many unusual geometric properties. Note also the following consequence of the ultrametric inequality: $|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right)$, if $|x|_{p} \neq|y|_{p}$.

The absolute value $|x|_{p}$ takes the discrete set of non-zero values $p^{N}, N \in \mathbb{Z}$. If $|x|_{p}=p^{N}$, then x admits a (unique) canonical representation

$$
\begin{equation*}
x=p^{-N}\left(x_{0}+x_{1} p+x_{2} p^{2}+\ldots\right), \tag{2.1}
\end{equation*}
$$

where $x_{0}, x_{1}, x_{2}, \ldots \in\{0,1, \ldots, p-1\}, x_{0} \neq 0$. The series converges in the topology of \mathbb{Q}_{p}. For example,

$$
-1=(p-1)+(p-1) p+(p-1) p^{2}+\ldots, \quad|-1|_{p}=1
$$

We denote $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\} . \mathbb{Z}_{p}$, as well as all balls in \mathbb{Q}_{p}, is simultaneously open and closed.

Proceeding from the canonical representation (2.1) of an element $x \in \mathbb{Q}_{p}$, one can define the fractional part of x as the rational number

$$
\{x\}_{p}= \begin{cases}0, & \text { if } N \leq 0 \text { or } x=0 \\ p^{-N}\left(x_{0}+x_{1} p+\ldots+x_{N-1} p^{N-1}\right), & \text { if } N>0\end{cases}
$$

The function $\chi(x)=\exp \left(2 \pi i\{x\}_{p}\right)$ is an additive character of the field \mathbb{Q}_{p}, that is a character of its additive group. It is clear that $\chi(x)=1$ if and only if $|x|_{p} \leq 1$.

Denote by $d x$ the Haar measure on the additive group of \mathbb{Q}_{p} normalized by the equality $\int_{\mathbb{Z}_{p}} d x=$ $=1$.

The additive group of \mathbb{Q}_{p} is self-dual, so that the Fourier transform of a complex-valued function $f \in L^{1}\left(\mathbb{Q}_{p}\right)$ is again a function on \mathbb{Q}_{p} defined as

$$
(\mathcal{F} f)(\xi)=\int_{\mathbb{Q}_{p}} \chi(x \xi) f(x) d x
$$

If $\mathcal{F} f \in L^{1}\left(\mathbb{Q}_{p}\right)$, then we have the inversion formula

$$
f(x)=\int_{\mathbb{Q}_{p}} \chi(-x \xi) \widetilde{f}(\xi) d \xi
$$

It is possible to extend \mathcal{F} from $L^{1}\left(\mathbb{Q}_{p}\right) \cap L^{2}\left(\mathbb{Q}_{p}\right)$ to a unitary operator on $L^{2}\left(\mathbb{Q}_{p}\right)$, so that the Plancherel identity holds in this case.

In order to define distributions on \mathbb{Q}_{p}, we have to specify a class of test functions. A function f : $\mathbb{Q}_{p} \rightarrow \mathbb{C}$ is called locally constant if there exists such an integer $l \geq 0$ that for any $x \in \mathbb{Q}_{p}$

$$
f\left(x+x^{\prime}\right)=f(x) \quad \text { if } \quad\left\|x^{\prime}\right\| \leq p^{-l}
$$

The smallest number l with this property is called the exponent of local constancy of the function f.
Typical examples of locally constant functions are additive characters, and also cutoff functions like

$$
\Omega(x)=\left\{\begin{array}{lll}
1, & \text { if } & \|x\| \leq 1 \\
0, & \text { if } & \|x\|>1
\end{array}\right.
$$

In particular, Ω is continuous, which is an expression of the non-Archimedean properties of \mathbb{Q}_{p}.
Denote by $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ the vector space of all locally constant functions with compact supports. Note that $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ is dense in $L^{q}\left(\mathbb{Q}_{p}\right)$ for each $q \in[1, \infty)$. In order to furnish $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ with a topology, consider first the subspace $D_{N}^{l} \subset \mathcal{D}\left(\mathbb{Q}_{p}\right)$ consisting of functions with supports in a ball

$$
B_{N}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq p^{N}\right\}, \quad N \in \mathbb{Z}
$$

and the exponents of local constancy $\leq l$. This space is finite-dimensional and possesses a natural direct product topology. Then the topology in $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ is defined as the double inductive limit topology, so that

$$
\mathcal{D}\left(\mathbb{Q}_{p}\right)=\underset{N \rightarrow \infty}{\lim } \underset{l \rightarrow \infty}{\lim } D_{N}^{l} .
$$

If $V \subset \mathbb{Q}_{p}$ is an open set, the space $\mathcal{D}(V)$ of test functions on V is defined as a subspace of $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ consisting of functions with supports in V. For a ball $V=B_{N}$, we can identify $\mathcal{D}\left(B_{N}\right)$ with the set of all locally constant functions on B_{N}.

The space $\mathcal{D}^{\prime}\left(\mathbb{Q}_{p}\right)$ of Bruhat - Schwartz distributions on \mathbb{Q}_{p} is defined as a strong conjugate space to $\mathcal{D}\left(\mathbb{Q}_{p}\right)$.

In contrast to the classical situation, the Fourier transform is a linear automorphism of the space $\mathcal{D}\left(\mathbb{Q}_{p}\right)$. By duality, \mathcal{F} is extended to a linear automorphism of $\mathcal{D}^{\prime}\left(\mathbb{Q}_{p}\right)$. For a detailed theory of convolutions and direct products of distributions on \mathbb{Q}_{p} closely connected with the theory of their Fourier transforms see [1, 16, 19].
2.2. Vladimirov's operator [1, 16, 19]. The Vladimirov operator $D^{\alpha}, \alpha>0$, of fractional differentiation, is defined first as a pseudodifferential operator with the symbol $|\xi|_{p}^{\alpha}$:

$$
\begin{equation*}
\left(D^{\alpha} u\right)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left[|\xi|_{p}^{\alpha} \mathcal{F}_{y \rightarrow \xi} u\right], \quad u \in \mathcal{D}\left(\mathbb{Q}_{p}\right) \tag{2.2}
\end{equation*}
$$

where we show arguments of functions and their direct/inverse Fourier transforms. There is also a hypersingular integral representation giving the same result on $\mathcal{D}\left(\mathbb{Q}_{p}\right)$ but making sense on much wider classes of functions (for example, bounded locally constant functions)

$$
\begin{equation*}
\left(D^{\alpha} u\right)(x)=\frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{\mathbb{Q}_{p}}|y|_{p}^{-\alpha-1}[u(x-y)-u(x)] d y \tag{2.3}
\end{equation*}
$$

The Cauchy problem for the heat-like equation

$$
\frac{\partial u}{\partial t}+D^{\alpha} u=0, \quad u(0, x)=\psi(x), \quad x \in \mathbb{Q}_{p}, \quad t>0
$$

is a model example for the theory of p-adic parabolic equations. If ψ is regular enough, for example, $\psi \in \mathcal{D}\left(\mathbb{Q}_{p}\right)$, then a classical solution is given by the formula

$$
u(t, x)=\int_{\mathbb{Q}_{p}} Z(t, x-\xi) \psi(\xi) d \xi
$$

where Z is, for each t, a probability density and

$$
Z\left(t_{1}+t_{2}, x\right)=\int_{\mathbb{Q}_{p}} Z\left(t_{1}, x-y\right) Z\left(t_{2}, y\right) d y, \quad t_{1}, t_{2}>0, \quad x \in \mathbb{Q}_{p}
$$

The "heat kernel" Z can be written as the Fourier transform

$$
\begin{equation*}
Z(t, x)=\int_{\mathbb{Q}_{p}} \chi(\xi x) e^{-t|\xi|_{p}^{\alpha}} d \xi \tag{2.4}
\end{equation*}
$$

See [16] for various series representations and estimates of the kernel Z.
As it was mentioned in Introduction, the natural stochastic process in B_{N} corresponds to the Cauchy problem

$$
\begin{gather*}
\frac{\partial u(t, x)}{\partial t}+\left(D_{N}^{\alpha} u\right)(t, x)-\lambda u(t, x)=0, \quad x \in B_{N}, \quad t>0 \tag{2.5}\\
u(0, x)=\psi(x), \quad x \in B_{N} \tag{2.6}
\end{gather*}
$$

where the operator D_{N}^{α} is defined by restricting D^{α} to functions u_{N} supported in B_{N} and considering the resulting function $D^{\alpha} u_{N}$ only on B_{N}. Note that D_{N}^{α} defines a positive definite selfadjoint operator on $L^{2}\left(B_{N}\right), \lambda$ is its smallest eigenvalue.

Under certain regularity assumptions, for example if $\psi \in \mathcal{D}\left(B_{N}\right)$, the problem (2.5), (2.6) possesses a classical solution

$$
u(t, x)=\int_{B_{N}} Z_{N}(t, x-y) \psi(y) d y, \quad t>0, \quad x \in B_{N}
$$

where

$$
\begin{gather*}
Z_{N}(t, x)=e^{\lambda t} Z(t, x)+c(t) \tag{2.7}\\
c(t)=p^{-N}-p^{-N}\left(1-p^{-1}\right) e^{\lambda t} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{n} \frac{p^{-N \alpha n}}{1-p^{-\alpha n-1}} .
\end{gather*}
$$

Another interpretation of the kernel Z_{N} was given in [8].
It was shown in [13] that the family of operators

$$
\left(T_{N}(t) u\right)(x)=\int_{B_{N}} Z_{N}(t, x-y) \psi(y) d y
$$

is a strongly continuous contraction semigroup on $L^{1}\left(B_{N}\right)$. Its generator A_{N} coincides with $D_{N}^{\alpha}-\lambda I$ at least on $\mathcal{D}\left(B_{N}\right)$. More generally, this is true in the distribution sense on restrictions to B_{N} of functions from the domain of the generator of the semigroup on $L^{1}\left(\mathbb{Q}_{p}\right)$ corresponding to D^{α}.
3. Harmonic analysis on the additive group of a \boldsymbol{p}-adic ball. Let us consider the p-adic ball B_{N} as a compact subgroup of \mathbb{Q}_{p}. As we know, any continuous additive character of \mathbb{Q}_{p} has the form $x \mapsto \chi(\xi x), \xi \in \mathbb{Q}_{p}$. The annihilator $\left\{\xi \in \mathbb{Q}_{p}: \chi(\xi x)=1\right.$ for all $\left.x \in B_{N}\right\}$ coincides with the ball B_{-N}. By the duality theorem (see, for example, [18], Theorem 27), the dual group $\widehat{B_{N}}$ to B_{N} is isomorphic to the discrete group \mathbb{Q}_{p} / B_{-N} consisting of the cosets

$$
\begin{equation*}
p^{m}\left(r_{0}+r_{1} p+\ldots+r_{N-m-1} p^{N-m-1}\right)+B_{-N}, \quad r_{j} \in\{0,1, \ldots, p-1\}, \quad m \in \mathbb{Z}, \quad m<N \tag{3.1}
\end{equation*}
$$

Analytically, this isomorphism means that any nontrivial continuous character of B_{N} has the form $\chi(\xi x), x \in B_{N}$, where $|\xi|_{p}>p^{-N}$ and $\xi \in \mathbb{Q}_{p}$ is considered as a representative of the class $\xi+B_{-N}$. Note that $|\xi|_{p}$ does not depend on the choice of a representative of the class.

The normalized Haar measure on B_{N} is $p^{-N} d x$. The normalization of the Haar measure on \mathbb{Q}_{p} / B_{-N} can be made in such a way (the normalized measure will be denoted $d \mu\left(x+B_{-N}\right)$) that the equality

$$
\begin{equation*}
\int_{\mathbb{Q}_{p}} f(x) d x=\int_{\mathbb{Q}_{p} / B_{-N}}\left(p^{N} \int_{B_{-N}} f(x+h) d h\right) d \mu\left(x+B_{-N}\right) \tag{3.2}
\end{equation*}
$$

holds for any $f \in \mathcal{D}\left(\mathbb{Q}_{p}\right)$; see [4], Chapter VII, Proposition 10; [12], (28.54). With this normalization, the Plancherel identity for the corresponding Fourier transform also holds; see [12], (31.46)(c).

On the other hand, the invariant measure on the discrete group \mathbb{Q}_{p} / B_{-N} equals the sum of δ-measures concentrated on its elements multiplied by a coefficient β. In order to find β, it suffices to compute both sides of (3.2) for the case where f is the indicator function of the set $\left\{x \in \mathbb{Q}_{p}\right.$: $\left.\left|x-p^{N-1}\right|_{p} \leq p^{-N}\right\}$. Then the left-hand side equals p^{-N} while the right-hand side equals β. Therefore $\beta=p^{-N}$.

The Fourier transform on B_{N} is given by the formula

$$
\left(\mathcal{F}_{N} f\right)(\xi)=p^{-N} \int_{B_{N}} \chi(x \xi) f(x) d x, \quad \xi \in\left(\mathbb{Q}_{p} \backslash B_{-N}\right) \cup\{0\}
$$

where the right-hand side, thus also $\mathcal{F}_{N} f$, can be understood as a function on \mathbb{Q}_{p} / B_{-N}.
The fact that $\mathcal{F}: \mathcal{D}\left(\mathbb{Q}_{p}\right) \rightarrow \mathcal{D}\left(\mathbb{Q}_{p}\right)$ implies that \mathcal{F} maps $\mathcal{D}\left(B_{N}\right)$ onto the set of functions on the discrete set $\widehat{B_{N}}$ having only a finite number of nonzero values. This set $\mathcal{D}\left(\widehat{B_{N}}\right)$ with a natural locally convex topology can be seen as the set of test functions on $\widehat{B_{N}}=\mathbb{Q}_{p} / B_{-N}$. The conjugate space $\mathcal{D}^{\prime}\left(\widehat{B_{N}}\right)$ consists of all functions on $\widehat{B_{N}}$ (see, for example, [11]). Therefore the Fourier transform is extended, via duality, to the mapping from $\mathcal{D}^{\prime}\left(B_{N}\right)$ to $\mathcal{D}^{\prime}\left(\widehat{B_{N}}\right)$. A theory of distributions on locally compact groups covering the case of B_{N} was developed by Bruhat [7]. To study deeper the operator D_{N}^{α}, we need, within harmonic analysis on B_{N}, a construction similar to the well-known construction of a homogeneous distribution on \mathbb{Q}_{p} [19].

Let us introduce the usual Riesz kernel on \mathbb{Q}_{p},

$$
f_{\alpha}^{(N)}(x)=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}}|x|_{p}^{\alpha-1}, \quad \operatorname{Re} \alpha>0, \quad \alpha \not \equiv 1\left(\bmod \frac{2 \pi i}{\log p} \mathbb{Z}\right)
$$

Using the formula [19]

$$
\int_{|x|_{p} \leq p^{N}}|x|_{p}^{\alpha-1} d x=\frac{1-p^{-1}}{1-p^{-\alpha}} p^{\alpha N}
$$

we introduce a distribution from $\mathcal{D}^{\prime}\left(B_{N}\right)$ setting

$$
\begin{equation*}
\left\langle f_{\alpha}^{(N)}, \varphi\right\rangle=\frac{1-p^{-1}}{1-p^{\alpha-1}} p^{\alpha N} \varphi(0)+\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{B_{N}}[\varphi(x)-\varphi(0)]|x|_{p}^{\alpha-1} d x, \quad \varphi \in \mathcal{D}\left(B_{N}\right) \tag{3.3}
\end{equation*}
$$

For $\operatorname{Re} \alpha>0$, this gives

$$
\left\langle f_{\alpha}^{(N)}, \varphi\right\rangle=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{B_{N}}|x|_{p}^{\alpha-1} \varphi(x) d x
$$

On the other hand, the distribution (3.3) is holomorphic in $\alpha \not \equiv 1\left(\bmod \frac{2 \pi i}{\log p} \mathbb{Z}\right)$. Therefore $f_{-\alpha}^{(N)}$ makes sense for any $\alpha>0$. Noticing that

$$
\frac{1-p^{-1}}{1-p^{-\alpha-1}} p^{-\alpha N}=\frac{p-1}{p^{\alpha+1}-1} p^{-\alpha N+\alpha}=\lambda
$$

(see Introduction), so that

$$
\begin{equation*}
\left\langle f_{-\alpha}^{(N)}, \varphi\right\rangle=\lambda \varphi(0)+\frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{B_{N}}[\varphi(x)-\varphi(0)]|x|_{p}^{-\alpha-1} d x \tag{3.4}
\end{equation*}
$$

The emergence of λ in (3.4) "explains" its role in the probabilistic construction of a process on B_{N} ([16], Theorem 4.9).

Theorem 3.1. The operator $D_{N}^{\alpha}, \alpha>0$, acts from $\mathcal{D}\left(B_{N}\right)$ to $\mathcal{D}\left(B_{N}\right)$ and admits, for each $\varphi \in \mathcal{D}\left(B_{N}\right)$, the representations:
(i) $D_{N}^{\alpha} \varphi=f_{-\alpha}^{(N)} * \varphi$ where the convolution is understood in the sense of harmonic analysis on the additive group of B_{N};
(ii) $\left(D_{N}^{\alpha} \varphi\right)(x)=\lambda \varphi(x)+\frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{B_{N}}|y|_{p}^{-\alpha-1}[\varphi(x-y)-\varphi(x)] d y, \quad \alpha>0$;
(iii) on $\mathcal{D}\left(B_{N}\right), D_{N}^{\alpha}-\lambda I$ coincides with the pseudodifferential operator $\varphi \mapsto \mathcal{F}_{N}^{-1}\left(P_{N, \alpha} \mathcal{F}_{N} \varphi\right)$, where

$$
\begin{equation*}
P_{N, \alpha}(\xi)=\frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{B_{N}}|y|_{p}^{-\alpha-1}[\chi(y \xi)-1] d y \tag{3.5}
\end{equation*}
$$

This symbol is extended uniquely from $\left(\mathbb{Q}_{p} \backslash B_{-N}\right) \cup\{0\}$ onto \mathbb{Q}_{p} / B_{-N}.
Proof. Denote, for brevity, $a_{p}=\frac{1-p^{\alpha}}{1-p^{-\alpha-1}}$. Let $x \in B_{N}$. Assuming that φ is extended by zero onto \mathbb{Q}_{p}, we find

$$
\left(D_{N}^{\alpha} \varphi\right)(x)=a_{p} \int_{\mathbb{Q}_{p}}|y|_{p}^{-\alpha-1}[\varphi(x-y)-\varphi(x)] d y=I_{1}+I_{2}+I_{3}
$$

where

$$
\begin{gathered}
I_{1}=a_{p} \int_{B_{N}}|y|_{p}^{-\alpha-1}[\varphi(x-y)-\varphi(x)] d y \\
I_{2}=a_{p} \int_{|y|_{p}>p^{N}}|y|_{p}^{-\alpha-1} \varphi(x-y) d y \\
I_{3}=-a_{p} \varphi(x) \int_{|y|_{p}>p^{N}}|y|_{p}^{-\alpha-1} d y
\end{gathered}
$$

We get using properties of p-adic integrals [19]

$$
\begin{gathered}
I_{2}=a_{p} \int_{|x-z|_{p}>p^{N}}|x-z|_{p}^{-\alpha-1} \varphi(z) d z=a_{p} \int_{|z|_{p}>p^{N}}|z|_{p}^{-\alpha-1} \varphi(z) d z=0, \\
I_{3}=-a_{p} \varphi(x) \sum_{j=N+1}^{\infty} \int_{|y|_{p}=p^{j}}|y|_{p}^{-\alpha-1} d y=-a_{p} \varphi(x)\left(1-\frac{1}{p}\right) \sum_{j=N+1}^{\infty} p^{-\alpha j}=\lambda \varphi(x),
\end{gathered}
$$

which implies (ii). Comparing with (3.4) we prove (i).
In order to prove (3.5) we note that

$$
\begin{gathered}
\mathcal{F}_{N}\left(D_{N}^{\alpha} \varphi-\lambda \varphi\right)(\xi)=a_{p} p^{-N} \int_{B_{N}} \chi(x \xi) d x \int_{B_{N}}|y|_{p}^{-\alpha-1}[\varphi(x-y)-\varphi(x)] d y= \\
=a_{p} p^{-N} \int_{B_{N}}|y|_{p}^{-\alpha-1} d y \int_{B_{N}} \chi(x \xi)[\varphi(x-y)-\varphi(x)] d x=P_{n, \alpha}(\xi)\left(\mathcal{F}_{N} \varphi\right)(\xi), \\
\xi \in \mathbb{Q}_{p} / B_{-N} .
\end{gathered}
$$

Theorem 3.1 is proved.
An important consequence of the representations given in Theorem 3.1 is the fact that, in contrast to operators on $\mathbb{Q}_{p}, D_{N}^{\alpha}: \mathcal{D}\left(B_{N}\right) \rightarrow \mathcal{D}\left(B_{N}\right)$, so that we can define in a straightforward way, the action of this operator on distributions. In particular, the pseudodifferential representation remains valid on $\mathcal{D}^{\prime}\left(B_{N}\right)$. Below (Theorem 4.2) this will be used to describe the domain of the operator A_{N} on $L^{1}\left(B_{N}\right)$.
4. The Green function. In Section 2 (just as in [13]) we defined the operator A_{N} as the generator of the semigroup T_{N} on $L^{1}\left(B_{N}\right)$. We can write its resolvent $\left(A_{N}+\mu I\right)^{-1}, \mu>0$, as

$$
\begin{equation*}
\left(\left(A_{N}+\mu I\right)^{-1} u\right)(x)=\int_{0}^{\infty} e^{-\mu t} d t \int_{B_{N}} Z_{N}(t, x-\xi) u(\xi) d \xi, \quad u \in L^{1}\left(B_{N}\right) \tag{4.1}
\end{equation*}
$$

where Z_{N} is given in (2.7).
Theorem 4.1. The resolvent (4.1) admits the representation

$$
\begin{equation*}
\left(\left(A_{N}+\mu I\right)^{-1} u\right)(x)=\int_{B_{N}} K_{\mu}(x-\xi) u(\xi) d \xi+\mu^{-1} p^{-N} \int_{B_{N}} u(\xi) d \xi, \quad u \in L^{1}\left(B_{N}\right), \mu>0 \tag{4.2}
\end{equation*}
$$

where for $0 \neq x \in B_{N}, \quad|x|_{p}=p^{m}$,

$$
\begin{equation*}
K_{\mu}(x)=\int_{p^{-N+1} \leq|\eta|_{p} \leq p^{-m+1}} \frac{\chi(\eta x)}{|\eta|_{p}^{\alpha}-\lambda+\mu} d \eta \tag{4.3}
\end{equation*}
$$

If $\alpha>1$, then, for any $x \in B_{N}$,

$$
\begin{equation*}
K_{\mu}(x)=\int_{|\eta|_{p} \geq p^{-N+1}} \frac{\chi(\eta x)}{|\eta|_{p}^{\alpha}-\lambda+\mu} d \eta \tag{4.4}
\end{equation*}
$$

The kernel K_{μ} is continuous for $x \neq 0$ and belongs to $L^{1}\left(B_{N}\right)$.
If $\alpha>1$, then K_{μ} is continuous on B_{N}. If $\alpha=1$, then

$$
\begin{equation*}
\left|K_{\mu}(x)\right| \leq\left. C|\log | x\right|_{p} \mid, \quad x \in B_{N} \tag{4.5}
\end{equation*}
$$

If $\alpha<1$, then

$$
\begin{equation*}
\left|K_{\mu}(x)\right| \leq C|x|_{p}^{\alpha-1}, \quad x \in B_{N} \tag{4.6}
\end{equation*}
$$

Proof. Let us use the representation (2.7) substituting it into the equality

$$
\int_{B_{N}} Z_{N}(t, x) d x=1
$$

(for the latter see Theorem 4.9 in [16]). We find

$$
c(t)=p^{-N}-e^{\lambda t} p^{-N} \int_{B_{N}} Z(t, y) d y
$$

so that

$$
Z_{N}(t, x)=e^{\lambda t}\left[Z(t, x)-p^{-N} \int_{B_{N}} Z(t, y) d y\right]+p^{-N}, \quad x \in B_{N} .
$$

Let us consider the expression in brackets proceeding from the definition (2.4) of the kernel Z. Using the integration formula from Chapter $1, \S 4$ of [19] we obtain

$$
Z(t, x)-p^{-N} \int_{B_{N}} Z(t, y) d y=I_{1}(t, x)+I_{2}(t, x)
$$

where

$$
\begin{gathered}
I_{1}(t, x)=\int_{|\xi| p \geq p^{-N+1}} \chi(\xi x) e^{-t|\xi|_{p}^{\alpha}} d \xi, \\
I_{2}(t, x)=\int_{|\xi|_{p} \leq p^{-N}}[\chi(\xi x)-1] e^{-t|\xi|_{p}^{\alpha}} d \xi,
\end{gathered}
$$

and $I_{2}(t, x)=0$ for $x \in B_{N}$.
Let $|x|_{p}=p^{m}, m \leq N$. Then there exists such an element $\xi_{0} \in \mathbb{Q}_{p},\left|\xi_{0}\right|_{p}=p^{-m+1}$, that $\chi\left(\xi_{0} x\right) \neq 0$. Then making the change of variables $\xi=\eta+\xi_{0}$ we find using the ultrametric property

$$
\int_{|\xi|_{p} \geq p^{-m+2}} \chi(x \xi) e^{-t|\xi|_{p}^{\alpha}} d \xi=\chi\left(x \xi_{0}\right) \int_{|\eta|_{p} \geq p^{-m+2}} \chi(x \eta) e^{-t| |_{p}^{\alpha}} d \eta,
$$

so that

$$
\int_{|\xi| p \geq p^{-m+2}} \chi(x \xi) e^{-t|\xi|_{p}^{\alpha}} d \xi=0 .
$$

Therefore

$$
I_{1}(t, x)=\int_{p^{-N+1} \leq|\xi|_{p} \leq p^{-m+1}} \chi(x \xi) e^{-t|\xi|_{p}^{\alpha}} d \xi
$$

thus

$$
Z_{N}(t, x)=e^{\lambda t} \int_{p^{-N+1} \leq|\xi|_{p} \leq p^{-m+1}} \chi(x \xi) e^{-t|\xi|_{p}^{\alpha}} d \xi+p^{-N}, \quad|x|_{p}=p^{m} .
$$

ISSN 1027-3190. Укр. мат. жури., 2018, т. 70, № 2

Substituting this in (4.1) and integrating in t we come to (4.2) and (4.3). Note that $|\eta|_{p}^{\alpha}>\lambda$, as $|\eta|_{p} \geq p^{-N+1}$.

If $\alpha>1$, then the integral in (4.4) is convergent. For $|x|_{p}=p^{m}$ we prove repeating the above argument that

$$
\int_{|\eta|_{p} \geq p^{-m+2}} \frac{\chi(\eta x)}{|\eta|_{p}^{\alpha}-\lambda+\mu} d \eta=0 .
$$

Therefore in this case the representation (4.3) can be written in the form (4.4).
Obviously, $K_{\mu}(x)$ is continuous for $x \neq 0$. If $\alpha>1$, then there exists the limit

$$
\lim _{x \rightarrow 0} K_{\mu}(x)=\int_{|\eta|_{p} \geq p^{-N+1}} \frac{d \eta}{|\eta|_{p}^{\alpha}-\lambda+\mu}<\infty,
$$

so that in this case K_{μ} is continuous on B_{N}.
Let $\alpha<1$. By (4.3) and an integration formula from [19], Chapter 1 , $\S 4$,

$$
\begin{gathered}
K_{\mu}(x)=\sum_{l=-N+1}^{-m+1} \frac{1}{p^{\alpha l}-\lambda+\mu} \int_{|\xi| p^{2}=p^{l}} \chi(\xi x) d \xi= \\
=\left(1-\frac{1}{p}\right) \sum_{l=-N+1}^{-m} \frac{p^{l}}{p^{\alpha l}-\lambda+\mu}-\frac{p^{-m}}{p^{\alpha(-m+1)}-\lambda+\mu}, \quad|x|_{p}=p^{m} .
\end{gathered}
$$

For some $\gamma>0, p^{\alpha l}-\lambda+\mu \geq \gamma p^{\alpha l}$. Computing the sum of a progression we obtain the estimate (4.6). Similarly, if $\alpha=1$, then $\left|K_{\mu}(x)\right| \leq C(-m+N)$, which gives, as $m \rightarrow-\infty$, the inequality (4.5).

Theorem 4.1 is proved.
If $\alpha>1$, we can also give an interpretation of the resolvent $\left(A_{N}+\mu I\right)^{-1}$ in terms of the harmonic analysis on B_{N}. We have

$$
\begin{equation*}
\left(A_{N}+\mu I\right)^{-1} u=\left(K_{\mu}+\mu^{-1} \mathbf{1}\right) * u, \quad u \in L^{1}\left(B_{N}\right), \tag{4.7}
\end{equation*}
$$

where $\mathbf{1}(x) \equiv 1, K_{\mu}$ is given by (4.4), and the convolution is taken in the sense of the additive group of B_{N}.

Denote by Π_{N} the set of all rational numbers of the form

$$
p^{l}\left(\nu_{0}+\nu_{1} p+\ldots+\nu_{-l+N-1} p^{-l+N-1}\right), \quad l<N,
$$

where $\nu_{j} \in\{0,1, \ldots, p-1\}, \nu_{0} \neq 0$. As a set, the quotient group \mathbb{Q}_{p} / B_{-N} coincides with $\Pi_{N} \cup\{0\}$, and

$$
\left\{\xi \in \mathbb{Q}_{p}:|\xi|_{p} \geq p^{-N+1}\right\}=\bigcup_{\eta \in \Pi_{N}}\left(\eta+B_{-N}\right)
$$

where the sets $\eta+B_{-N}$ with different $\eta \in \Pi_{N}$ are disjoint.
Taking into account the fact that $\chi(\rho x)=1$ for $x \in B_{N}, \rho \in B_{-N}$, we find from (4.4) that

$$
K_{\mu}(x)=p^{-N} \sum_{0 \neq \eta \in \mathbb{Q}_{p} / B_{-N}} \frac{\chi(\eta x)}{|\eta|_{p}^{\alpha}-\lambda+\mu} .
$$

Let us describe the domain $\operatorname{Dom} A_{N}$ of the generator of our semigroup $T_{N}(t)$ on $L^{1}\left(B_{N}\right)$ in terms of distributions on B_{N}.

Theorem 4.2. If $\alpha>1$, then the set $\operatorname{Dom} A_{N}$ consists of those and only those $u \in L^{1}\left(B_{N}\right)$, for which $f_{-\alpha}^{(N)} * u \in L^{1}\left(B_{N}\right)$ where the convolution is understood in the sense of the distribution space $\mathcal{D}^{\prime}\left(B_{N}\right)$. If $u \in \operatorname{Dom} A_{N}$, then $A_{N} u=f_{-\alpha}^{(N)} * u-\lambda u$ where the convolution is understood in the sense of the distributions from $\mathcal{D}^{\prime}\left(B_{N}\right)$.

Proof. Let $u=\left(A_{N}+\mu I\right)^{-1} f, f \in L^{1}\left(B_{N}\right), \mu>0$. Representing this resolvent as a pseudodifferential operator, we prove that $f_{-\alpha}^{(N)} * u-\lambda u+\mu u=f$ in the sense of $\mathcal{D}^{\prime}\left(B_{N}\right)$.

Conversely, let $u \in L^{1}\left(B_{N}\right), D_{N}^{\alpha} u=f_{-\alpha}^{(N)} * u \in L^{1}\left(B_{N}\right)$ where D_{N}^{α} is understood in the sense of $\mathcal{D}^{\prime}\left(B_{N}\right)$. Set $f=\left(D_{N}^{\alpha}-\lambda I+\mu I\right) u, \mu>0$. Denote $u^{\prime}=\left(A_{N}+\mu I\right)^{-1} f$. Then $u^{\prime} \in \operatorname{Dom} A_{N}$, and the above argument shows that

$$
\left(D_{N}^{\alpha}-\lambda I+\mu I\right)\left(u-u^{\prime}\right)=0
$$

Applying the pseudodifferential representation we see that

$$
\left[P_{N, \alpha}(\xi)+\mu\right]\left[\left(\mathcal{F}_{N} u\right)(\xi)-\left(\mathcal{F}_{N} u^{\prime}\right)(\xi)\right]=0, \quad \xi \in \mathbb{Q}_{p} / B_{-N}
$$

It is seen from (3.5) that the factor $P_{N, \alpha}(\xi)+\mu$ is real-valued, strictly positive and locally constant on B_{N}. Therefore the distribution $\mathcal{F}_{N} u-\mathcal{F}_{N} u^{\prime}$ is zero. Since \mathcal{F}_{N} is an isomorphism (see [7]), we find that $u=u^{\prime}$, so that $u \in \operatorname{Dom} A_{N}$.

Theorem 4.2 is proved.
5. Nonlinear equations. Let us consider the equation (1.2) where Φ is a strictly monotone increasing continuous real function, $\Phi(0)=0$, and the linear operator D_{N}^{α} is understood as the operator $A_{N}+\lambda I$ on $L^{1}\left(B_{N}\right)$. By the results from [10] and [6], the nonlinear operator $D_{N}^{\alpha} \circ \Phi$ is m-accretive, which implies the unique mild solvability of the Cauchy problem for the equation (1.2) with the initial condition $u(0, x)=u_{0}(x), u_{0} \in L^{1}\left(B_{N}\right)$; see, e.g., [2] for the definitions. As in the classical case [3], this mild solution can be interpreted also as a weak solution.

Following [3], we will show that the above construction of the L^{1}-mild solution gives also L^{γ}-solutions for $1<\gamma \leq \infty$.

Theorem 5.1. Let $u(t, x), t>0, x \in B_{N}$, be the above mild solution. If $0<u_{0} \in L^{\gamma}\left(B_{N}\right)$, $1 \leq \gamma \leq \infty$, then $u(t, \cdot) \in L^{\gamma}\left(B_{N}\right)$ and

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{\gamma}\left(B_{N}\right)} \leq\left\|u_{0}\right\|_{L^{\gamma}\left(B_{N}\right)} \tag{5.1}
\end{equation*}
$$

Proof. The case $\gamma=1$ has been considered, while the case $\gamma=\infty$ will be implied by the inequality (5.1) for finite values of γ (see Exercise 4.6 in [5]).

Thus, now we assume that $1<\gamma<\infty$. It is sufficient to prove (5.1) for $u_{0} \in \mathcal{D}\left(B_{N}\right)$. Indeed, if that is proved, we approximate in $L^{\gamma}\left(B_{N}\right)$ an arbitrary function $u_{0} \in L^{\gamma}\left(B_{N}\right)$ by a sequence $u_{0, j} \in \mathcal{D}\left(B_{N}\right)$. For the corresponding solutions $u_{j}(t, x)$ we have

$$
\begin{equation*}
\left\|u_{j}(t, \cdot)\right\|_{L^{\gamma}\left(B_{N}\right)} \leq\left\|u_{0, j}\right\|_{L^{\gamma}\left(B_{N}\right)} \tag{5.2}
\end{equation*}
$$

Since our nonlinear semigroup consists of operators continuous on $L^{1}\left(B_{N}\right)$, we see that, for each $t \geq 0, u_{j}(t, \cdot) \rightarrow u(t, \cdot)$ in $L^{1}\left(B_{N}\right)$. By (5.2), the sequence $\left\{u_{j}(t, \cdot)\right\}$ is bounded in $L^{\gamma}\left(B_{N}\right)$. These two properties imply the weak convergence $u_{j}(t, \cdot) \rightharpoonup u(t, \cdot)$ in $L^{\gamma}\left(B_{N}\right)$ (see Exercise 4.16 in [5]).

Next, we use the weak lower semicontinuity of the L^{γ}-norm (see Theorem 2.11 in [17]), that is the inequality

$$
\underset{j}{\liminf }\left\|u_{j}(t, \cdot)\right\|_{L^{\gamma}\left(B_{N}\right)} \geq\|u(t, \cdot)\|_{L^{\gamma}\left(B_{N}\right)}
$$

Passing to the lower limit in both sides of (5.2), we come to (5.1).
Let us prove (5.1) for $u_{0} \in \mathcal{D}\left(B_{N}\right), 1<\gamma<\infty$. By the Crandall-Liggett theorem (see [2] or [9]), $u(t, x)$ is obtained as a limit in $L^{1}\left(B_{N}\right)$,

$$
u(t, \cdot)=\lim _{k \rightarrow \infty}\left(I+\frac{t}{k} D_{N}^{\alpha} \circ \Phi\right)^{-k} u_{0}
$$

that is $u(t, \cdot)=\lim _{k \rightarrow \infty} u_{k}$ where u_{k} are found recursively from the relation

$$
\begin{equation*}
\frac{t}{k+1} D_{N}^{\alpha} \circ \Phi\left(u_{k+1}\right)+u_{k+1}=u_{k} \tag{5.3}
\end{equation*}
$$

Under our assumptions, $u(t, x)>0$ (this follows from Theorem 4 in [10]). The nonlinear operator $\left(I+\frac{t}{k} D_{N}^{\alpha} \circ \Phi\right)^{-1}$ is also positivity preserving (Proposition 1 in [10]), so that $u_{k}>0$ for all k.

Note that the operator D_{N}^{α} commutes with shifts while the equation (5.3) for u_{k+1} has a unique solution in $L^{1}\left(B_{N}\right)$. As a result, if $u_{0} \in \mathcal{D}\left(B_{N}\right)$, then all the functions u_{k} belong to $\mathcal{D}\left(B_{N}\right)$.

Rewriting (5.3) in the form

$$
\begin{equation*}
\left(\frac{t}{k+1}\right)^{-1}\left(u_{k+1}-u_{k}\right)=-D_{N}^{\alpha} \circ \Phi\left(u_{k+1}\right) \tag{5.4}
\end{equation*}
$$

multiplying both sides by $u_{k+1}^{\gamma-1}$ and integrating on B_{N} we find

$$
\begin{equation*}
\left(\frac{t}{k+1}\right)^{-1} \int_{B_{N}}\left(u_{k+1}-u_{k}\right) u_{k+1}^{\gamma-1} d x=-\int_{B_{N}} u_{k+1}^{\gamma-1} D_{N}^{\alpha} \circ \Phi\left(u_{k+1}\right) d x \tag{5.5}
\end{equation*}
$$

Let $w=u_{k+1}^{\gamma-1}$. Then $w \in \mathcal{D}\left(B_{N}\right)$. It follows from (5.4) that $D_{N}^{\alpha} \Phi\left(u_{k+1}\right) \in \mathcal{D}\left(B_{N}\right)$. Also we have $\Phi\left(u_{k+1}\right) \in \mathcal{D}\left(B_{N}\right)$, so that $\Phi\left(u_{k+1}\right)$ belongs to the domain of a selfadjoint realization of the operator D_{N}^{α} in $L^{2}\left(B_{N}\right)$. Therefore we can transform the integral in the right-hand side of (5.5) as follows:

$$
\begin{equation*}
\int_{B_{N}} u_{k+1}^{\gamma-1} D_{N}^{\alpha} \circ \Phi\left(u_{k+1}\right) d x=\int_{B_{N}} \Phi\left(w^{\frac{1}{\gamma-1}}\right) D_{N}^{\alpha}(w) d x \tag{5.6}
\end{equation*}
$$

The right-hand side of (5.6) is nonnegative by Lemma 2 of [6]. Now it follows from (5.5) that

$$
\int_{B_{N}} u_{k+1}^{\gamma} d x \leq \int_{B_{N}} u_{k} u_{k+1}^{\gamma-1} d x
$$

Applying the Hölder inequality we find

$$
\int_{B_{N}} u_{k+1}^{\gamma} d x \leq\left(\int_{B_{N}} u_{k}^{\gamma} d x\right)^{1 / \gamma}\left(\int_{B_{N}} u_{k+1}^{\gamma} d x\right)^{\frac{\gamma-1}{\gamma}}
$$

which implies the inequality

$$
\left\|u_{k+1}\right\|_{L^{\gamma}\left(B_{N}\right)} \leq\left\|u_{k}\right\|_{L^{\gamma}\left(B_{N}\right)}
$$

and, by induction, the inequality

$$
\left\|u_{k+1}\right\|_{L^{\gamma}\left(B_{N}\right)} \leq\left\|u_{0}\right\|_{L^{\gamma}\left(B_{N}\right)}
$$

Passing to the limit, we prove (5.1).
Theorem 5.1 is proved.

References

1. Albeverio S., Khrennikov A. Yu., Shelkovich V. M. Theory of p-adic distributions. Linear and nonlinear models. Cambridge Univ. Press, 2010.
2. Barbu V. Nonlinear differential equations of monotone types in Banach spaces. - New York: Springer, 2010.
3. Bonforte M., Vázquez J. L. Fractional nonlinear degenerate diffusion equations on bounded domains // Nonlinear Anal. - 2016. - 131. - P. 363-398.
4. Bourbaki N. Elements of mathematics. Integration II. - Berlin: Springer, 2004.
5. Brézis H. Functional analysis, Sobolev spaces and partial differential equations. - New York: Springer, 2011.
6. Brézis H., Strauss W. Semilinear elliptic equations in $L^{1} / /$ J. Math. Soc. Jap. - 1973. - 25. - P. 15-26.
7. Bruhat F. Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques // Bull. Soc. Math. France. - 1961. - 89. - P. 43-75.
8. Casas-Sánchez O. F., Rodríguez-Vega J. J. Parabolic type equations on p-adic balls // Bol. Mat. - 2015. - 22. P. 97-106.
9. Clément Ph. et al. One-parameter semigroups. - Amsterdam: North-Holland, 1987.
10. Crandall M., Pierre M. Regularizing effects for $u_{t}+A \psi(u)=0$ in $L^{1} / /$ J. Funct. Anal. - 1982. - 45. - P. 194-212.
11. Helemskii A. Ya. Lectures and exercises on functional analysis. - Providence: Amer. Math. Soc., 2006.
12. Hewitt E., Ross K. A. Abstract harmonic analysis. - Berlin: Springer, 1979. - Vol. II.
13. Khrennikov A., Kochubei A. N. p-Adic analogue of the porous medium equation // J. Fourier Anal. and Appl. (to appear), arXiv: 1611.08863.
14. Khrennikov A., Oleschko K., Correa Lopez M. J. Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media // J. Fourier Anal. and Appl. - 2016. - 22. - P. 809-822.
15. Khrennikov A., Oleschko K., Correa Lopez M. J. Modeling fluid's dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks // Entropy. - 2016. - 18. - Art. 249. - 28 p.
16. Kochubei A. N. Pseudo-differential equations and stochastics over non-Archimedean fields. - New York: Marcel Dekker, 2001.
17. Lieb E. H., Loss M. Analysis. - Providence: Amer. Math. Soc., 2001.
18. Morris S. A. Pontryagin duality and the structure of locally compact Abelian groups. - Cambridge Univ. Press, 1977.
19. Vladimirov V. S., Volovich I. V., Zelenov E. I. p-Adic analysis and mathematical physics. - Singapore: World Sci., 1994.
20. Vladimirov V. S. Tables of integrals of complex-valued functions of p-adic arguments. - Moscow: Steklov Math. Inst., 2003 (in Russian). English version: ArXiv: math-ph/9911027.
21. Zúñiga-Galindo W. A. Pseudodifferential equations over non-Archimedean spaces // Lect. Notes Math. - 2016. 2174. - xvi+175 p.

[^0]: * This work was supported in part by Grant 23/16-18 "Statistical dynamics, generalized Fokker-Planck equations, and their applications in the theory of complex systems" of the Ministry of Education and Science of Ukraine.

