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THE EXPONENTIAL TWICE CONTINUOUSLY DIFFERENTIABLE
B-SPLINE ALGORITHM FOR BURGERS’ EQUATION

ЕКСПОНЕНЦIАЛЬНИЙ ДВIЧI НЕПЕРЕРВНО ДИФЕРЕНЦIЙОВНИЙ
\bfitB -СПЛАЙНОВИЙ АЛГОРИТМ ДЛЯ РIВНЯННЯ БЮРГЕРСА

The exponential twice continuously differentiable B-spline functions known from the literature as the exponential are used
to set up the collocation method for finding solutions of the Burgers’ equation. The effect of the exponential cubic B-splines
in the collocation method is sought by studying the text problems.

Експоненцiальнi двiчi неперервно диференцiйовнi B -сплайновi функцiї, що вiдомi з лiтератури як експоненцiальнi,
застосовано для побудови методу колокацiй для знаходження розв’язкiв рiвняння Бюргерса. Ефект експоненцiальних
кубiчних B -сплайнiв у методi колокацiй знайдено за допомогою аналiзу текстових задач.

1. Introduction. This paper is concerned with adapting the exponential cubic B-spline function into
the collocation method to develop a numerical method for finding numerical solutions of the Burgers’
equation of the form

Ut + UUx  - \lambda Uxx = 0, a \leq x \leq b, t \geq 0, (1)

with the initial condition and the boundary conditions

U(x, 0) = f(x), a \leq x \leq b, (2)

U(a, t) = \sigma 1, U(b, t) = \sigma 2 (3)

where subscripts x and t denote differentiation, \lambda 
.
=

1

\mathrm{R}\mathrm{e}
> 0 and \mathrm{R}\mathrm{e} is the Reynolds number cha-

racterizing the strength of viscosity, \sigma 1, \sigma 2 are the constants u = u(x, t) is a sufficiently differentiable
unknown function and f(x) is a bounded function. Initial condition and boundary conditions will be
defined in the later section depending on the test problems.

Burgers’ equation was first introduced by [2]. Solutions of the Burgers’ equation were presented
by using some numerical methods with splines. A cubic spline collocation procedure has been
developed for the numerical solution of the Burgers’ equation in the papers [3, 4]. A B-spline
Galerkin method is described to solve the Burgers’ equation over the both fixed and varied distribution
of knots to define the B-splines in the studies of Davies [5, 6]. A numerical method [7 – 9] is
developed for solving the Burgers’ equation by using splitting method and cubic spline approximation
method. In [14, 17, 18, 23], numerical solutions of the one-dimensional Burgers’ equation are
obtained by a methods based on collocation of quadratic, cubic and quintic B-splines over finite
elements, in which approximate functions in the collocation method for the Burgers’ equation are
constructed by using the various degree B-splines. Galerkin methods based on various degree B-
splines have been set up to find approximate solutions of the Burgers’ equation in the studies [6,
11, 13]. The least square method is combined with the B-splines to form numerical methods for
solving the Burgers’ equation in the works [10, 22]. Numerical solutions of the Burgers’ equation
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is presented based on the cubic B-spline quasiinterpolation and the compact finite difference method
in [20]. Taylor-collocation and Taylor – Galerkin methods for the numerical solutions of the Burgers’
equation are formed by using both cubic and quadratic B-splines in the study [19] respectively.
Differential quadrature methods based on cubic and quartic B-splines are set up to solve the Burgers’
equation in the works [21, 25, 26]. The hybrid spline difference method is developed to solve the
Burgers’ equation by Chi-Chang Wang et al. [24].

The exponential cubic B-spline function and its some properties are described in detail in the
paper [27]. Since each exponential basis we use is twice continuously differentiable, we can form
twice continuously approximate solution to the differential equations. There exist few articles which
are used to form numerical methods to solve differential equations. The exponential cubic B-splines
are used with the collocation method to find the numerical solution of the singular perturbation
problem by Manabu Sakai et al. [28]. Another application of the collocation method using the
cardinal exponential cubic B-splines was shown for finding the numerical solutions of the singularly
perturbed boundary problem in the study of D. Radunuvic [29]. The exponential cubic B-spline
collocation method is set up to obtain the numerical solutions of the self-adjoint singularly perturbed
boundary-value problems in the work [30]. The only linear partial differential equation known as
the convection-diffusion equation is solved by way of the exponential cubic B-spline collocation
method in the study [31]. Also exponential cubic B-spline collocation method have been applied
to obtain numerical solution of Equal width equation, Korteweg – de Vries equation, Fisher equation
and Kuramoto – Sivashinsky equation [32 – 35] recently.

In this paper, we have compared results of the Burgers’ equation with those obtained with both
the cubic B-spline collocation method and cubic B-spline Galerkin finite element method [12, 13]
since the B-spline and exponential cubic B-spline functions have almost the same properties. In
Section 2, exponential cubic B-spline collocation method is described. In Section 3, three classical
test examples are studied to show the versatility of proposed algorithm and finally the conclusion is
included to discuss the outcomes of the algorithm.

2. Collocation method via exponential cubic B-spline. The problem domain [a, b] is parti-
tioned equally at the knots

\pi : a = x0 < x1 < . . . < xN = b

with distance h = (b  - a)/N between consecutive knots. The exponential cubic B-splines, Bi (x),

at the points of \pi , can be defined as

Bi(x) =

\left\{                         

b2

\biggl( 
(xi - 2  - x) - 1

p
(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}(p (xi - 2  - x)))

\biggr) 
, [xi - 2, xi - 1] ,

a1 + b1 (xi  - x) + c1 \mathrm{e}\mathrm{x}\mathrm{p} (p (xi  - x)) + d1 \mathrm{e}\mathrm{x}\mathrm{p} ( - p (xi  - x)) , [xi - 1, xi] ,

a1 + b1(x - xi) + c1 \mathrm{e}\mathrm{x}\mathrm{p} (p (x - xi)) + d1 \mathrm{e}\mathrm{x}\mathrm{p} ( - p (x - xi)) , [xi, xi+1] ,

b2

\biggl( 
(x - xi+2) - 

1

p
(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h} (p (x - xi+2)))

\biggr) 
, [xi+1, xi+2] ,

0, otherwise,

(4)

where
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Fig. 1. Exponential cubic B-splines over the interval [0, 1].

a1 =
phc

phc - s
, b1 =

p

2

\biggl[ 
c(c - 1) + s2

(phc - s)(1 - c)

\biggr] 
, b2 =

p

2(phc - s)
,

c1 =
1

4

\biggl[ 
\mathrm{e}\mathrm{x}\mathrm{p}( - ph)(1 - c) + s(\mathrm{e}\mathrm{x}\mathrm{p}( - ph) - 1)

(phc - s)(1 - c)

\biggr] 
,

d1 =
1

4

\biggl[ 
\mathrm{e}\mathrm{x}\mathrm{p}(ph)(c - 1) + s(\mathrm{e}\mathrm{x}\mathrm{p}(ph) - 1)

(phc - s)(1 - c)

\biggr] 
and c = \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(ph), s = \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}(ph), p is a free parameter. On the particular interval [0, 1], the
exponential cubic B-spline function is depicted for p = 1 in Fig. 1.

\{ B - 1(x), B0(x), . . . , BN+1(x)\} composes a basis, so that any function defined on the interval
[a, b] can be expressed as the linear combination of the element of the basis. Each basis function
Bi(x) has got the second derivatives. The values of Bi(x), B

\prime 
i(x) and B

\prime \prime 
i (x) at the knots xi’s can

be computed from Eq. (4) shown Table 1.

Table 1. Values of Bi(x) and its principle two derivatives at the knot points

x xi - 2 xi - 1 xi xi+1 xi+2

Bi 0
s - ph

2(phc - s)
1

s - ph

2(phc - s)
0

B
\prime 
i 0

p(1 - c)

2(phc - s)
0

p(c - 1)

2(phc - s)
0

B
\prime \prime 
i 0

p2s

2(phc - s)
 - p2s

phc - s

p2s

2(phc - s)
0

Let UN be approximate solution for U

UN (x, t) =

N+1\sum 
i= - 1

\delta iBi(x), (5)

where \delta i are time dependent parameters. Nodal values U(x, t) and its first and second derivatives at
the knots can be computed from Eq. (5) with respect to the parameters as
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Ui = U(xi, t) =
s - ph

2(phc - s)
\delta i - 1 + \delta i +

s - ph

2(phc - s)
\delta i+1,

U \prime 
i = U \prime (xi, t) =

p(1 - c)

2(phc - s)
\delta i - 1 +

p(c - 1)

2(phc - s)
\delta i+1, (6)

U \prime \prime 
i = U \prime \prime (xi, t) =

p2s

2(phc - s)
\delta i - 1  - 

p2s

phc - s
\delta i +

p2s

2(phc - s)
\delta i+1.

Time discretization of unknown U is managed by way of the Grank – Nicolson scheme in the
Burgers’ equation to obtain following equation:

Un+1  - Un

\Delta t
+

(UUx)
n+1 + (UUx)

n

2
 - \lambda 

Un+1
xx + Un

xx

2
= 0, (7)

where Un+1 = U(x, t) is the solution of the equation at the (n + 1)th time level. Here tn+1 =

= tn +\Delta t, and \Delta t is the time step, superscripts denote nth time level, tn = n\Delta t.

The nonlinear term (UUx)
n+1 in Eq. (7) is linearized by using the following form given by Rubin

and Graves [3]:

(UUx)n+1 = Un+1Un
x + UnUn+1

x  - UnUn
x , (8)

is applied to Eq. (7) to obtain the time discretized Burgers’ equation

Un+1  - Un +
\Delta t

2
(Un+1Un

x + UnUn+1
x ) - \lambda 

\Delta t

2
(Un+1

xx  - Un
xx) = 0. (9)

Place Eq. (5) in (9) to have fully discretized system of equations\biggl( 
\alpha 1 +

\Delta t

2
(\alpha 1L2 + \beta 1L1  - \lambda \gamma 1)

\biggr) 
\delta n+1
m - 1 +

\biggl( 
\alpha 2 +

\Delta t

2
(\alpha 2L2  - \lambda \gamma 2)

\biggr) 
\delta n+1
m +

+

\biggl( 
\alpha 3 +

\Delta t

2
(\alpha 3L2 + \beta 2L1  - \lambda \gamma 3)

\biggr) 
\delta n+1
m+1 =

\biggl( 
\alpha 1 + \lambda 

\Delta t

2
\gamma 1

\biggr) 
\delta nm - 1+

+

\biggl( 
\alpha 2 + \lambda 

\Delta t

2
\gamma 2

\biggr) 
\delta nm +

\biggl( 
\alpha 3 + \lambda 

\Delta t

2
\gamma 3

\biggr) 
\delta nm+1, (10)

where

L1 = \alpha 1\delta i - 1 + \alpha 2\delta i + \alpha 3\delta i+1,

L2 = \beta 1\delta i - 1 + \beta 2\delta i+1,

\alpha 1 =
s - ph

2(phc - s)
, \alpha 2 = 1, \alpha 3 =

s - ph

2(phc - s)
,

\beta 1 =
p(1 - c)

2(phc - s)
, \beta 2 =

p(c - 1)

2(phc - s)
,

\gamma 1 =
p2s

2(phc - s)
, \gamma 2 =  - p2s

phc - s
, \gamma 3 =

p2s

2(phc - s)
.
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The system consist of N + 1 linear equation in N + 3 unknown parameters \bfd n+1 = (\delta n+1
 - 1 ,

\delta n+1
0 , . . . , \delta n+1

N+1). The boundary conditions \sigma 1 = U0, \sigma 2 = UN are gives two additional linear
equations

\delta  - 1 =
1

\alpha 1
(U0  - \alpha 2\delta 0  - \alpha 3\delta 1) ,

\delta N+1 =
1

\alpha 3
(UN  - \alpha 1\delta N - 1  - \alpha 2\delta N ) .

(11)

Eqs. (11) can be used to eliminate \delta  - 1, \delta N+1 from the system (10) which then becomes the solvable
matrix equation for the unknown \delta n+1

0 , . . . , \delta n+1
N . A variant of Thomas algorithm is used to solve

the system.
Use of the initial condition and first space derivative of the initial conditions at the boundaries

allows to have a system:

UN (xi, 0) = U(xi, 0), i = 0, . . . , N,

(Ux)N (x0, 0) = U \prime (x0),

(Ux)N (xN , 0) = U \prime (xN ).

3. Computational examples. Solution of the system produces initial parameters \delta 0 - 1, \delta 
0
0 , . . .

. . . , \delta 0N+1, so that we can start solving the recursive system at times requested. Numerical method
described in the previous section will be tested on three text problems for getting solutions of the
Burgers’ equation. Three kinds of examples are presented in order to demonstrate the versatility and
the accuracy of the proposed method. The discrete L2 and L\infty error norm

L2 =

\sqrt{}    h

N\sum 
j=0

\bigm| \bigm| (Un
j  - (UN )nj )

2
\bigm| \bigm| ,

L\infty = \mathrm{m}\mathrm{a}\mathrm{x}
j

\bigm| \bigm| Un
j  - (UN )nj

\bigm| \bigm| 
are used to measure error between the analytical and numerical solutions.

(a) The Burger’s equation, with the sine wave initial condition U(x, 0) = \mathrm{s}\mathrm{i}\mathrm{n}(\pi x) and boundary
conditions U(0, t) = U(1, t) = 0, has analytic solution in the form of the infinite series defined by
[15] as

U(x, t) =

4\pi \lambda 
\sum \infty 

j=1
jIj

\biggl( 
1

2\pi \lambda 

\biggr) 
\mathrm{s}\mathrm{i}\mathrm{n} (j\pi x) \mathrm{e}\mathrm{x}\mathrm{p} ( - j2\pi 2\lambda t)

I0

\biggl( 
1

2\pi \lambda 

\biggr) 
+ 2

\sum \infty 

j=1
Ij

\biggl( 
1

2\pi \lambda 

\biggr) 
\mathrm{c}\mathrm{o}\mathrm{s} (j\pi x) \mathrm{e}\mathrm{x}\mathrm{p} ( - j2\pi 2\lambda t)

, (12)

where \bfI j are the modified Bessel functions. This problem gives the decay of sinusoidal disturbance.
Numerical solutions at different times are depicted in Figs. 2 – 5 for the parameters N = 40 and
N = 80, \Delta t = 0.0001, \lambda = 1, 0.1, 0.01, 0.001. From the figures we see that the smaller viscosities \lambda 

cause to develop the sharp front thorough the right boundary and amplitude of the sharp front starts
to decay as time progress. These properties of solutions are in very good agreement with findings of
Saka and Dağ [16, 17].
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Fig. 2. Solutions for \lambda =1, N=40, \Delta t=0.0001. Fig. 3. Solutions for \lambda =0.1, N=40, \Delta t=0.0001.

Fig. 4. Solutions for \lambda =0.01, N=80, \Delta t=0.0001. Fig. 5. Solutions for \lambda =0.001, N=80, \Delta t=0.0001.

Two dimensional solutions are depicted from time t = 0 to t = 1 with time increment \Delta t =

= 0.0001 for space increment h = 0.25 and various \lambda in Figs. 6 – 9. When the smaller \lambda = 0.001

is taken, the solutions starts to decay after about time t = 0.6 when N = 40 is used. So to have
acceptable solution with \lambda = 0.001, we decrease the space step to h = 0.125 and graph of the
solution is shown in Figs. 8, 9.

A comparison has been made between the present collocation method and alternative approaches
including the cubic B-spline collocation method and cubic B-spline Galerkin method for parameters
of \Delta t = 0.0001, N = 80, \lambda = 0.01. Exact solutions for \lambda > 10 - 2 are not practical because of the
low convergence of the infinite series so that these results are not compared with the exact solutions.
It can be seen from Tables 2 and 3 that accuracy of the presented solutions is much the same with
both the cubic B-spline collocation method and cubic B-spline Galerkin method. When the size of the
space variable is reduced, the error becomes less than that of the cubic B-spline collocation methods
and is almost close to the cubic B-spline Galerkin method and solution values are documented in
Table 3 at time t = 0.1.

(b) As the second example, we consider particular solution of Burgers’ equation with initial
condition
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Fig. 6. Solutions for \lambda = 1, N = 40, \Delta t = 0.01.
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Fig. 7. Solutions for \lambda = 0.1, N = 40, \Delta t = 0.01.
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Fig. 8. Solutions for \lambda = 0.01, N = 80, \Delta t = 0.01.
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Fig. 9. Solutions for \lambda = 0.001, N = 80, \Delta t = 0.001.

U(x, 1) = \mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
1

8\lambda 

\biggr) 
, 0 \leq x \leq 1,

and boundary conditions U(0, t) = 0 and U(1, t) = 0.
This problem has the following analytical solution:

U(x, t) =

x

t

1 +

\sqrt{} 
t

t0
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
x2

4\lambda t

\biggr) , t \geq 1, 0 \leq x \leq 1. (13)

This solution represents the propagation of the shock and the selection of the smaller \lambda result in steep
shock solution. So the success of the numerical method depends on dealing with the steep shock
efficiently.
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Table 2. Numerical results for p = 1, \lambda = 0.01,

N = 40, \Delta t = 0.0001 at different times

x Time Present Ref. [12] Ref. [13] Exact

0.25 0.4 0.34192 0.34192 0.34192 0.34191

0.6 0.26897 0.26897 0.26897 0.22896

0.8 0.22148 0.22148 0.22148 0.22148

1.0 0.18819 0.18819 0.18819 0.18819

3.0 0.07511 0.07511 0.07511 0.07511

0.50 0.4 0.66071 0.66071 0.66071 0.66071

0.6 0.52942 0.52942 0.52942 0.52942

0.8 0.43914 0.43914 0.43914 0.43914

1.0 0.37442 0.37442 0.37442 0.37442

3.0 0.15018 0.15018 0.15018 0.15018

0.75 0.4 0.91027 0.91027 0.91027 0.91026

0.6 0.76725 0.76725 0.76724 0.76724

0.8 0.64740 0.64740 0.64740 0.64740

1.0 0.55605 0.55605 0.55605 0.55605

3.0 0.22483 0.22483 0.22481 0.22481

Table 3. Numerical results for p = 1, t = 0.1, \lambda = 1, \Delta t = 0.0001 at different sizes

x h Present Ref. [12] Ref. [13] Exact

0.1 0.0125 0.10953 0.10952 0.10954 0.10954

0.2 0.20977 0.20975 0.20979 0.20979

0.3 0.29186 0.29184 0.29189 0.29190

0.4 0.34788 0.34788 0.34792 0.34792

0.5 0.37153 0.37153 0.37158 0.37158

0.6 0.35899 0.35896 0.35904 0.35905

0.7 0.30986 0.30983 0.30990 0.30991

0.8 0.22778 0.22776 0.22782 0.22782

0.9 0.12067 0.12065 0.12069 0.12069

0.1 h = 0.0625 0.10954 0.10953 0.10954 0.10954

0.2 0.20979 0.20977 0.20979 0.20979

0.3 0.29189 0.29186 0.29190 0.29190

0.4 0.34792 0.34788 0.34792 0.34792

0.5 0.37156 0.37153 0.37158 0.37158

0.6 0.35903 0.35900 0.35904 0.35905

0.7 0.30989 0.30986 0.30990 0.30991

0.8 0.22781 0.22778 0.22782 0.22782

0.9 0.12068 0.12067 0.12069 0.12069
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Table 4. Numerical results for p = 1, \lambda = 0.0005, h = 0.005, \Delta t = 0.01 at different times

x Times Present Ref. [12] Exact

0.1 1.7 0.05882 0.05883 0.05882

0.2 0.11765 0.11765 0.11765

0.3 0.17647 0.17648 0.17647

0.4 0.23529 0.23531 0.23529

0.5 0.29412 0.29414 0.29412

0.6 0.35294 0.35296 0.35294

0.7 0.00000 0.00000 0.00000

0.8 0.00000 0.00000 0.00000

0.9 0.00000 0.00000 0.00000

0.1 2.5 0.04000 0.04000 0.04000

0.2 0.08000 0.08000 0.08000

0.3 0.12000 0.12001 0.12000

0.4 0.16000 0.16001 0.16000

0.5 0.20000 0.20001 0.20000

0.6 0.24000 0.24001 0.24000

0.7 0.28000 0.28001 0.28000

0.8 0.00828 0.00811 0.00977

0.9 0.00000 0.00000 0.00000

0.1 3.25 0.03077 0.03077 0.03077

0.2 0.06154 0.06154 0.06154

0.3 0.09231 0.09231 0.09231

0.4 0.12308 0.12308 0.12308

0.5 0.15385 0.15385 0.15385

0.6 0.18462 0.18462 0.18462

0.7 0.21538 0.21539 0.21538

0.8 0.24615 0.24616 0.24615

0.9 0.12394 0.12358 0.12435

The propogation of the shock is studied with parameters \lambda = 0.005, 0.0005. Numerical solutions
obtained by exponential collocation method can be favorably compared with results reported in the
papers [12, 13] at some times in the same Table 4. Figs. 10 and 11 show propagation of shock
\lambda = 0.005, h = 0.02, \Delta t = 0.1 and \lambda = 0.0005, h = 0.005, \Delta t = 0.01 respectively. As time
advances, the initial steep shock becomes smoother when the the larger viscosity is used but for the
small viscosity it is steeper. These observations are in complete agreement with those reported in the
papers [9].

(c) Travelling wave solution of the Burgers’ equation has the form:

U(x, t) =
\alpha + \mu + (\mu  - \alpha ) \mathrm{e}\mathrm{x}\mathrm{p} \eta 

1 + \mathrm{e}\mathrm{x}\mathrm{p} \eta 
, 0 \leq x \leq 1, t \geq 0, (14)

where
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Fig. 10. Shock propagation, \lambda = 0.005. Fig. 11. Shock propagation, \lambda = 0.0005.

\eta =
\alpha (x - \mu t - \gamma )

\lambda 
,

and \alpha , \mu and \gamma are arbitrary constants. The boundary conditions is

U(0, t) = 1, U(1, t) = 0.2

or

Ux(0, t) = 0, Ux(1, t) = 0 for t \geq 0

and initial condition is obtained from the analytical solution (14) when t = 0. Analytical solution
takes values between 1 and 0.2 and the propagation of the wave front through the right will be
observed with varying \lambda . The smaller \lambda we take for the Burgers’ equation, the steeper the wave
front propagates. The robustness of the algorithm will be shown by monitoring the motion of the
wave front with smaller \lambda . The algorithm has run for the values \alpha = 0.4, \mu = 0.6, \gamma = 0.125 and
\lambda = 0.01, h = 1/36, \Delta t = 0.001, p = 1. Visual motion of the wave front is depicted in Figs. 12
and 13 for the \lambda = 0.01, 0.05. The numerical results demonstrate the formation of the steep front and
very steeper front. Error graphs of the numerical solutions are also shown in Figs. 14 and 15. From
figures the maximum error occurs in the midle of the solution domain. Solutions from time t = 0 to
t = 1.2 at some times are visualised in 3D graph to see the propogation of the sharp behaviours in
Figs. 16 and 17 for h = 1/80 and \Delta t = 0.0001.

4. Conclusion. The exponential cubic B-spline collocation method for the numerical solutions
of the Burges’ equation is presented over the finite elements so that the continuity of the dependent
variable and its first two derivatives is satisfied for the approximate solution throughout the solution
range. The equation has been integrated into a system of the linearized iterative algebraic equations.
The system of the iterative at each time step in which it has got a three-banded coefficients matrix
is solved with the Thomas algorithm. Generally, comparative results show that results of our finding
is better than the cubic B-spline collocation method and is much the same with that of the cubic
B-spline Galerkin method. Since cost of the cubic B-spline Galerkin method is higher than the
suggested method, that is advantages of the exponential cubic B-spline collocation method over the
cubic B-spline Galerkin method. During all runs of the algorithm, the best result are found for the
free parameter p = 1 for the exponential cubic B-spline functions.
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Fig. 12. Solutions for \lambda = 0.01. Fig. 13. Solutions for \lambda = 0.005.

Fig. 14. L2 error norm for \lambda = 0.01, t = 1.2. Fig. 15. L2 error norm for \lambda = 0.005, t = 1.2.
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Fig. 16. Shock propagation, \lambda = 0.01.
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Fig. 17. Shock propagation, \lambda = 0.005.
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10. Kutluay S., Esen A., Dağ I. Numerical solutions of the Burgers’ equation by the least squares quadratic B-spline finite

element method // J. Comput. and Appl. Math. – 2004. – 167. – P. 21 – 33.
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