UDC 512.5

A. T. Güroğlu, E. T. Meriç (Celal Bayar Univ., Manisa, Turkey)

PRINCIPALLY GOLDIE*-LIFTING MODULES ГОЛОВНІ ГОЛДІ*-ЛІФТИНГ МОДУЛІ

A module M is called a principal Goldie^{*}-lifting if, for every proper cyclic submodule X of M, there is a direct summand D of M such that $X\beta^*D$. We focus our attention on principally Goldie^{*}-lifting modules as a generalization of lifting modules. Various properties of these modules are presented.

Модуль називається головним Голді^{*}-ліфтингом, якщо для кожного власного циклічного субмодуля X модуля M існує прямий доданок D з M такий, що $X\beta^*D$. Ми зосереджуємо нашу увагу на головних Голді^{*}-ліфтинг модулях, що розглядаються як узагальнення ліфтинг модулів. Наведено різні властивості таких модулів.

1. Introduction. Throughout this paper, R denotes an associative ring with identity and all modules are unital right R-modules. $\operatorname{Rad}(M)$ will denote the Jacobson radical of M. Let M be an Rmodule and N, K be submodules of M. The submodule K of M will be denoted by $K \leq M$. K is called *small* (or superfluous) in M, denoted by $K \ll M$, if, for every submodule N of M, the equality K + N = M implies N = M. K is called a supplement of N in M if K is minimal with respect to N + K = M, equivalently K + N = M and $K \cap N \ll K$. A module M is called supplemented (weakly supplemented) if every submodule of M has a supplement (weak supplement) in M. A module M is \oplus -supplemented if every submodule of M has a supplement which is a direct summand of M. [1] defines principally supplemented modules and investigates their properties. A module M is said to be *principally supplemented* if for all cyclic submodule X of M there exists a submodule N of M such that M = N + X and $N \cap X \ll N$. A module M is said to be \oplus -principally supplemented if, for each cyclic submodule X of M, there exists a direct summand D of M such that M = D + X and $D \cap X \ll D$. A nonzero module M is said to be hollow if every proper submodule of M is small in M. A nonzero module M is said to be *principally hollow* if every proper cyclic submodule of M is small in M. Clearly, hollow modules are principally hollow. Given submodules $K \subseteq N \subseteq M$, the inclusion $K \hookrightarrow N$ is called *cosmall* in M, denoted by $K \stackrel{cs}{\hookrightarrow} N$, if $N/K \ll M/K.$

Lifting modules play an important role in module theory. Also their various generalizations are studied by many authors in [1, 2, 5–7, 9, 10]. A module M is called *lifting* if, for every submodule N of M, there is a decomposition $M = D \oplus D'$ such that $D \subseteq N$ and $D' \cap N \ll M$. A module M is called *principally lifting* if for all cyclic submodule X of M, there exists a decomposition $M = D \oplus D'$ such that $D \subseteq X$ and $D' \cap X \ll M$. A module M is said to be H-supplemented if, for every submodule N, there is a direct summand D of M such that M = N + B holds if and only if M = D + B for any submodule B of M. G. F. Birkenmeier et al. [2] defines β^* relation to study on the open problem 'Is every H-supplemented module supplemented?' in [7]. They say submodules X, Y of M are β^* equivalent, $X\beta^*Y$, if and only if $\frac{X+Y}{X}$ is small in $\frac{M}{X}$ and $\frac{X+Y}{Y}$ is small in $\frac{M}{Y}$. M is called *Goldie*-lifting* (or briefly, \mathcal{G}^* -*lifting*) if and only if for each $X \leq M$, there exists a direct summand D of M such that $X\beta^*D$. M is called *Goldie*-supplemented* (or

briefly, \mathcal{G}^* -supplemented) if and only if for each $X \leq M$, there exists a supplement submodule S of M such that $X\beta^*S$ (see [2]).

Section 2 is based on principally Goldie^{*}-lifting modules. These modules are considered as generalization of Goldie^{*}-lifting modules. We give some necessary assumptions for a factor module or a direct summand of a principally Goldie^{*}-lifting module to be principally Goldie^{*}-lifting. Principally lifting, principally Goldie^{*}-lifting and principally supplemented modules are compared. Finally, we show that principally lifting, principally Goldie^{*}-lifting and \oplus -principally supplemented coincide on π -projective modules. In addition, one of the our aims is to determine the connection between principally Goldie^{*}-lifting and Goldie^{*}-lifting. As a consequence, we prove this relation under some restriction.

2. Principally Goldie^{*}-lifting modules. In [2], G. F. Birkenmeier et al. defined β^* relation. We start this section by giving some properties of β^* relation without proofs. The proofs of the following notions can be found in [2]. Moreover, in [2], the authors introduced two notions called Goldie^{*}-supplemented module and Goldie^{*}-lifting module depend on the β^* relation. They showed that Goldie^{*}-lifting modules and *H*-supplemented modules coincide in [2] (Theorem 3.6). In this section, we define principally Goldie^{*}-lifting module (briefly principally \mathcal{G}^* -lifting module) as a generalization of \mathcal{G}^* -lifting module and investigate some properties of this module. In particular, we prove that principally \mathcal{G}^* -lifting and \mathcal{G}^* -lifting coincide under some conditions.

Definition 2.1 ([2], Definition 2.1). Any submodules X, Y of M are β^* equivalent, $X\beta^* Y$, if and only if $\frac{X+Y}{X}$ is small in $\frac{M}{X}$ and $\frac{X+Y}{Y}$ is small in $\frac{M}{Y}$.

Lemma 2.1 ([2], Lemma 2.2). β^* is an equivalence relation.

By [2, p. 43], the zero submodule is β^* equivalent to any small submodule.

Theorem 2.1 ([2], Theorem 2.3). Let X, Y be submodules of M. The following are equivalent: (a) $X\beta^*Y$;

(b) $X \stackrel{cs}{\hookrightarrow} X + Y$ and $Y \stackrel{cs}{\hookrightarrow} X + Y$;

(c) for each submodule A of M such that X + Y + A = M, then X + A = M and Y + A = M;

(d) if $K \leq M$ with X + K = M, then Y + K = M, and if $H \leq M$ with Y + H = M, then X + H = M.

Theorem 2.2 ([2], Theorem 2.6). Let X, Y be submodules of M such that $X\beta^*Y$. Then

1) $X \ll M$ if and only if $Y \ll M$;

2) X has a (weak) supplement C in M if and only if C is a (weak) supplement for Y.

Lemma 2.2. Let $M = D \oplus D'$ and $A, B \leq D$. Then $A\beta^*B$ in M if and only if $A\beta^*B$ in D.

Proof. (\Rightarrow) Let $A\beta^*B$ in M and A + B + N = D for some submodule N of D. Let us show that A + N = D and B + N = D. Since $A\beta^*B$ in M,

$$M = D \oplus D' = A + B + N + D'$$

implies A + N + D' = M and B + N + D' = M. By [11, p. 41], A + N = D and B + N = D. From Theorem 2.1, we get $A\beta^*B$ in D.

 $(\Leftarrow) \text{ Let } A\beta^*B \text{ in } D. \text{ Then } \frac{A+B}{A} \ll \frac{D}{A} \text{ implies } \frac{A+B}{A} \ll \frac{M}{A}. \text{ Similarly, } \frac{A+B}{B} \ll \frac{D}{B}$ implies $\frac{A+B}{B} \ll \frac{M}{B}.$ This means that $A\beta^*B$ in M.**Lemma 2.3.** If a direct summand D of M is β^* equivalent to a cyclic submodule X of M,

Lemma 2.3. If a direct summand D of M is β^* equivalent to a cyclic submodule X of M, then D is also cyclic.

Proof. Assume that $M = D \oplus D'$ for some submodules D, D' of M and X is a cyclic submodule of M which is β^* equivalent to D. By Theorem 2.1 (c), M = X + D'. Since $\frac{X + D'}{D'} =$

 $=\frac{M}{D'}\cong D$ and X is cyclic, D is cyclic.

Definition 2.2. A module M is called principally Goldie^{*}-lifting (briefly principally \mathcal{G}^* -lifting) if for each cyclic submodule X of M, there exists a direct summand D of M such that $X\beta^*D$.

Clearly, every \mathcal{G}^* -lifting module is principally \mathcal{G}^* -lifting. However, the converse does not hold as the next example shows.

Example 2.1. Consider the \mathbb{Z} -module \mathbb{Q} . Since $\operatorname{Rad}(\mathbb{Q}) = \mathbb{Q}$, every cyclic submodule of \mathbb{Q} is small in \mathbb{Q} . By [2] (Example 2.15), the \mathbb{Z} -module \mathbb{Q} is principally \mathcal{G}^* -lifting. But the \mathbb{Z} -module \mathbb{Q} is not supplemented. It follows from [2] (Theorem 3.6) that it is not \mathcal{G}^* -lifting.

A module M is said to be *radical* if Rad(M) = M.

Lemma 2.4. *Every radical module is principally* \mathcal{G}^* *-lifting.*

Proof. Let $m \in M$. As M is radical, $mR \subseteq \text{Rad}(M)$. By [11] (21.5), $mR \ll M$. So we get $mR\beta^*0$. Thus M is principally \mathcal{G}^* -lifting.

Theorem 2.3. Let M be a module. Consider the following conditions:

- (a) *M* is principally lifting,
- (b) *M* is principally \mathcal{G}^* -lifting,
- (c) *M* is principally supplemented.

Then (a)
$$\Rightarrow$$
 (b) \Rightarrow (c).

Proof. (a) \Rightarrow (b) Let $m \in M$. From (a), there is a decomposition $M = D \oplus D'$ such that $D \leq mR$ and $mR \cap D' \ll M$. Since $D \leq mR$, $\frac{mR+D}{mR} \ll \frac{M}{mR}$. By modularity, $mR = M \cap mR = (D \oplus D') \cap mR = D \oplus (mR \cap D')$. Then $\frac{mR}{D} \cong mR \cap D'$ and $\frac{M}{D} \cong D'$. If $mR \cap D' \ll M$, by [11] (19.3), $mR \cap D' \ll D'$. It implies that $\frac{mR+D}{D} \ll \frac{M}{D}$. Therefore it is seen that $mR\beta^*D$ from Definition 2.1. Hence M is principally \mathcal{G}^* -lifting.

(b) \Rightarrow (c) Let $m \in M$. By the hypothesis, there exists a direct summand D of M such that $mR\beta^*D$. Since $M = D \oplus D'$ for some submodule D' of M and D' is a supplement of D, D' is a supplement of mR in M by [2] (Theorem 2.6 (ii)). Thus M is principally supplemented.

We expect that a principally \mathcal{G}^* -lifting module is principally lifting. But unfortunately, it is not true in general:

Example 2.2. Consider the \mathbb{Z} -module $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. From [10] (Example 3.7), we can say that M is a H-supplemented module. Then M is \mathcal{G}^* -lifting by [2] (Theorem 3.6). Since every \mathcal{G}^* -lifting module is principally \mathcal{G}^* -lifting, M is also principally \mathcal{G}^* -lifting. But from [1] (Examples 7.(3)), M is not principally lifting.

Theorem 2.4. Let *M* be an indecomposable module. Then the following conditions are equivalent:

- (a) *M* is principally lifting,
- (b) *M* is principally hollow,
- (c) *M* is principally \mathcal{G}^* -lifting.

Proof. $(a) \Leftrightarrow (b)$ It is easy to see from [1] (Lemma 14).

(b) \Rightarrow (c) Suppose that M is principally hollow and $m \in M$. Then $mR \ll M$. It means that $mR\beta^*0$.

(c) \Rightarrow (b) Let mR be a proper cyclic submodule of M. By (c), there exists a decomposition $M = D \oplus D'$ such that $mR\beta^*D$. Since M is indecomposable, D = M or D = 0. If D = M, from [2] (Corollary 2.8 (iii)), we obtain that mR = M, which is a contradiction. Thus D must be zero, that is, $mR\beta^*0$ and we have $mR \ll M$. Hence M is principally hollow.

We shall give the following example of modules which are principally supplemented but not principally \mathcal{G}^* -lifting.

Example 2.3. Let F be a field, x and y commuting indeterminates over F. Let R = F[x, y] be a polynomial ring and $I_1 = (x^2)$ and $I_2 = (y^2)$ be ideals of R and the ring $S = R/(x^2, y^2)$. Consider the S-module $M = \overline{x}S + \overline{y}S$. By [1] (Example 15), M is an indecomposable S-module and it is not principally hollow. Then from Theorem 2.4 M is not principally \mathcal{G}^* -lifting. Therefore it follows from [1] (Example 15) that M is principally supplemented.

A module M is said to be *principally semisimple* if every cyclic submodule of M is a direct summand of M.

Lemma 2.5. Every principally semisimple module is principally \mathcal{G}^* -lifting.

Proof. Let X be a cyclic submodule of M. By the assumption, X is a direct summand of M. Then $M = X \oplus X'$ for some submodule X' of M. Since β^* is an equivalence relation, we have $X\beta^*X$. Thus M is principally \mathcal{G}^* -lifting.

Recall that a submodule N of M is called *fully invariant* if for each endomorphism f of M, f(N) is contained in N. Clearly 0 and M are fully invariant submodules of M. A module M is said to be a *duo module* provided every submodule of M is fully invariant. For example, if M is a simple right R-module, then M is a duo module but $M \oplus M$ is not duo (see [8]). A module M is called *distributive* if for all submodules A, B, C of $M, A + (B \cap C) = (A + B) \cap (A + C)$ or $A \cap (B + C) = (A \cap B) + (A \cap C)$ (see [3]).

Proposition 2.1. Let $M = M_1 \oplus M_2$ be a duo module (or distributive module). Then M is principally \mathcal{G}^* -lifting if and only if M_1 and M_2 are principally \mathcal{G}^* -lifting.

Proof. (\Rightarrow) Take any $m \in M_1$. Since M is principally \mathcal{G}^* -lifting, then for $m \in M$, there exists a direct decomposition $M = D \oplus D'$ such that $mR\beta^*D$ in M for $D, D' \leq M$. As M is a duo module, it is obtained that $M_1 = (M_1 \cap D) \oplus (M_1 \cap D')$. We claim that $mR\beta^*(M_1 \cap D)$ in M_1 . To prove this, it is enough to show that for some submodule A of M_1 , $M_1 = mR + A$ and $M_1 = (M_1 \cap D) + A$. Let $M_1 = mR + (M_1 \cap D) + A$ for some submodule A of M_1 . Then

$$M = M_1 \oplus M_2 = [mR + (M_1 \cap D) + A] \oplus M_2 = mR + D + A + M_2.$$

By Theorem 2.1, $M = D + A + M_2$ and $M = mR + A + M_2$. Because M is duo, we can write as $M_1 = M_1 \cap (D + A + M_2) = A + [M_1 \cap (D + M_2)] = A + (M_1 \cap D)$ and $M_1 = M_1 \cap (mR + A + M_2) = mR + A$. Again by Theorem 2.1, we get $mR\beta^*(M_1 \cap D)$ in M_1 . Hence M_1 is principally \mathcal{G}^* -lifting. Similarly, it can be showed that M_2 is principally \mathcal{G}^* -lifting.

 (\Leftarrow) Let $m \in M$. If M is a duo module, for the cyclic submodule mR of M, $mR = (mR \cap \cap M_1) \oplus (mR \cap M_2)$. If $M = M_1 \oplus M_2$, then $mR = m_1R + m_2R$ for some $m_1 \in M_1$ and $m_2 \in M_2$. So $mR \cap M_1 = m_1R$ and $mR \cap M_2 = m_2R$. Since M_1 and M_2 are principally \mathcal{G}^* -lifting, there are decompositions $M_1 = D_1 \oplus D'_1$ and $M_2 = D_2 \oplus D'_2$ such that $m_1R\beta^*D_1$ in M_1 and $m_2R\beta^*D_2$ in M_2 . By Lemma 2.2, $m_1R\beta^*D_1$ and $m_2R\beta^*D_2$ in M. By [2] (Proposition 2.11), $(m_1R + m_2R)\beta^*(D_1 \oplus D_2)$. Since $mR = m_1R + m_2R$, we get $mR\beta^*(D_1 \oplus D_2)$.

Let M, N and P be R-modules. P is called M-projective if for each epimorphism $g: M \to N$ and each homomorphism $f: P \to N$, there exists a homomorphism $h: P \to M$ such that gh = f. If P is P-projective, then P is also called *self-injective* (or *quasi-injective*). An R-module M is said to be π -projective if for every two submodules U, V of M with U + V = M there exists $f \in \operatorname{End}(M)$ with $\operatorname{Im}(f) \subset U$ and $\operatorname{Im}(1-f) \subset V$. Clearly every self-projective module is also π -projective [11].

Proposition 2.2. Let any cyclic submodule of M have a supplement which is a relatively projective direct summand of M. Then M is principally \mathcal{G}^* -lifting.

Proof. Let m \in M. By the hypothesis, there exists a decomposition $M = D \oplus D'$ such that M = mR + D' and $mR \cap D' \ll D'$. Because D is D'-projective, $M = A \oplus D'$ for some submodule A of mR by [7] (Lemma 4.47). So M is principally lifting. It follows from Theorem 2.3 that M is principally \mathcal{G}^* -lifting.

Proposition 2.3. Let M be principally \mathcal{G}^* -lifting and N be a submodule of M. If $\frac{N+D}{N}$ is a direct summand of $\frac{M}{N}$ for any cyclic direct summand D of M, then $\frac{M}{N}$ is principally \mathcal{G}^* -lifting.

Proof. Let $\frac{mR+N}{N}$ be a cyclic submodule of $\frac{M}{N}$ for $m \in M$. If M is principally \mathcal{G}^* -lifting, there exists a decomposition $M = D \oplus D'$ such that $mR\beta^*D$. Then D is also cyclic from Lemma 2.3. By the hypothesis, $\frac{D+N}{N}$ is a direct summand in $\frac{M}{N}$. We claim that $\frac{mR+N}{N}\beta^*\frac{D+N}{N}$. Consider the canonical epimorphism $\theta: M \to M/N$. By [2] (Proposition 2.9 (i)), $\theta(mR)\beta^*\theta(D)$, that is, $\frac{mR+N}{N}\beta^*\frac{D+N}{N}$. Thus $\frac{M}{N}$ is principally \mathcal{G}^* -lifting. Corollary 2.1. Let M be principally \mathcal{G}^* -lifting. Then

(a) If M is a distributive (or duo) module, then any factor module of M is principally \mathcal{G}^* -lifting.

(b) Let N be a projection invariant, that is, $eN \subseteq N$ for all $e^2 = e \in End(M)$. Then $\frac{M}{N}$ is

principally \mathcal{G}^* -lifting. In particular, $\frac{M}{A}$ is principally \mathcal{G}^* -lifting for every fully invariant submodule A of M.

Proof. (a) Let N be any submodule of M and D be a cyclic direct summand of M. Note that $M = D \oplus D'$ for some submodules D' of M. Therefore we have

$$\frac{M}{N} = \frac{D \oplus D'}{N} = \frac{D+N}{N} + \frac{D'+N}{N}.$$

We will show that $\frac{D+N}{N} \cap \frac{D'+N}{N} = 0$. Since M is distributive and $D \cap D' = 0$,

$$(D+N) \cap (D'+N) = ((D+N) \cap D') + ((D+N) \cap N) = (D \cap D') + (N \cap D') + N = N.$$

We obtain $\frac{M}{N} = \frac{D+N}{N} \oplus \frac{D'+N}{N}$. By Proposition 2.3, $\frac{M}{N}$ is principally \mathcal{G}^* -lifting. (b) Let D be a cyclic direct summand of M and N be a projection invariant of M. Then

 $M = D \oplus D'$ for some $D' \leq M$. For the projection map $\pi_D \colon M \to D, \ \pi_D^2 = \pi \in \text{End}(M)$ and $\pi_D(N) \subseteq N$. So $\pi_D(N) = N \cap D$. Similarly, $\pi_{D'}(N) = N \cap D'$ for the projection map $\pi_{D'}$: $M \to D'$. Hence we have $N = (N \cap D) + (N \cap D')$. So

$$M = (D + N) + (D' + N) = [D + (N \cap D) + (N \cap D')] + (D' + N) =$$

$$= \left[D \oplus (N \cap D') \right] + (D' + N)$$

and, by modularity,

$$[D \oplus (N \cap D')] \cap (D' + N) = [D \cap (D' + N)] + (N \cap D') = (N \cap D) + (N \cap D') = N.$$

Thus it can be seen that $\frac{M}{N} = \frac{D \oplus (N \cap D')}{N} \oplus \frac{D' + N}{N}$. By Proposition 2.3, $\frac{M}{N}$ is principally \mathcal{G}^* -lifting.

Another consequence of Proposition 2.2 is given in the next result.

A module M is said to have the summand sum property (SSP) if the sum of any two direct summands of M is again a direct summand.

Proposition 2.4. Let M be a principally \mathcal{G}^* -lifting module. If M has SSP, then any direct summand of M is principally \mathcal{G}^* -lifting.

Proof. Let $M = N \oplus N'$ for some submodules N, N' of M. Our aim is to show that N is principally \mathcal{G}^* -lifting. Take any cyclic direct summand D of M. From the SSP property, we can write as $M = (D + N') \oplus T$ for some submodule T of M. Then

$$N \cong \frac{M}{N'} = \frac{D+N'}{N'} + \frac{T+N'}{N'}.$$

By modular law,

(

$$(D + N') \cap (T + N') = N' + [(D + N') \cap T] = N'.$$

So we obtain

$$\frac{M}{N'} = \frac{D+N'}{N'} \oplus \frac{T+N'}{N'}.$$

Using Proposition 2.3, it can be said that $N \cong \frac{M}{N'}$ is principally \mathcal{G}^* -lifting.

Next, we give a sufficient condition for $\hat{M}/\operatorname{Rad}(M)$ is principally semisimple in case M is principally \mathcal{G}^* -lifting module.

Proposition 2.5. Let M be principally \mathcal{G}^* -lifting and distributive module. Then $\frac{M}{\operatorname{Rad}(M)}$ is principally semisimple.

Proof. Let $m \in M$. By the assumption, there exists a decomposition $M = D \oplus D'$ such that $mR\beta^*D$ for some submodule D, D' of M. By [2] (Theorem 2.6 (ii)), D' is a supplement of mR, that is, M = mR + D' and $mR \cap D' \ll D'$. Then

$$\frac{M}{\operatorname{Rad}(M)} = \frac{mR + D'}{\operatorname{Rad}(M)} = \frac{mR + \operatorname{Rad}(M)}{\operatorname{Rad}(M)} + \frac{D' + \operatorname{Rad}(M)}{\operatorname{Rad}(M)}.$$

Because M is distributive,

$$(mR + \operatorname{Rad}(M)) \cap (D' + \operatorname{Rad}(M)) = (mR \cap D') + \operatorname{Rad}(M).$$

Since $mR \cap D' \ll D'$, so $mR \cap D' \subseteq \operatorname{Rad}(M)$. In this case, $(mR + \operatorname{Rad}(M)) \cap (D' + \operatorname{Rad}(M)) = \operatorname{Rad}(M)$. As a result, $\frac{mR + \operatorname{Rad}(M)}{\operatorname{Rad}(M)}$ is a direct summand in $\frac{M}{\operatorname{Rad}(M)}$, this means that $\frac{M}{\operatorname{Rad}(M)}$ is a principally semisimple module.

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 7

910

Proposition 2.6. Let M be a principally \mathcal{G}^* -lifting module and $\operatorname{Rad}(M) \ll M$. Then $\frac{M}{\operatorname{Rad}(M)}$ is principally semisimple.

Proof. Let $\frac{X}{\operatorname{Rad}(M)}$ be a cyclic submodule of $\frac{M}{\operatorname{Rad}(M)}$ for any submodule X of M containing $\operatorname{Rad}(M)$. Then $X = mR + \operatorname{Rad}(M)$ for some $m \in M$. By the assumption, there exists a decomposition $M = D \oplus D'$ such that $mR\beta^*D$ for submodules $D, D' \leq M$. It follows from [2] (Corollary 2.12) that $(mR + \operatorname{Rad}(M))\beta^*D$. Moreover, D' is a supplement of $mR + \operatorname{Rad}(M)$ in M from by [2] (Theorem 2.6 (ii)). Then we have $M = mR + \operatorname{Rad}(M) + D'$ and $D' \cap (mR + \operatorname{Rad}(M)) = D' \cap X \ll D'$, that is, $D' \cap X \subseteq \operatorname{Rad}(M)$. On the other hand,

$$\frac{M}{\operatorname{Rad}(M)} = \frac{X}{\operatorname{Rad}(M)} + \frac{D' + \operatorname{Rad}(M)}{\operatorname{Rad}(M)}.$$

By modular law,

$$\frac{X}{\operatorname{Rad}(M)} \cap \frac{D' + \operatorname{Rad}(M)}{\operatorname{Rad}(M)} = \frac{(X \cap D') + \operatorname{Rad}(M)}{\operatorname{Rad}(M)}$$

and since $X \cap D' \subseteq \operatorname{Rad}(M)$, we obtain

$$\frac{M}{\operatorname{Rad}(M)} = \frac{X}{\operatorname{Rad}(M)} \oplus \frac{D' + \operatorname{Rad}(M)}{\operatorname{Rad}(M)}.$$

Theorem 2.5 ([4], 4.14). Let M be π -projective and let $U, V \leq M$ be submodules with M = U + V.

(1) If U is a direct summand in M, then there exists $V' \subset V$ with $M = U \oplus V'$.

(2) If $U \cap V = 0$, then V is U-projective (and U is V-projective).

(3) If $U \cap V = 0$ and $V \cong U$, then M is self-projective.

(4) If U and V are direct summands of M, then $U \cap V$ is also direct summand of M.

In general, it is not true that principally lifting and principally \mathcal{G}^* -lifting modules coincide. As we will see in the following theorem, we need π -projectivity condition.

Theorem 2.6. Let M be a module. Consider the following conditions:

- (a) *M* is principally lifting,
- (b) *M* is principally \mathcal{G}^* -lifting,
- (c) M is \oplus -principally supplemented.

Then (a) \Rightarrow (b) \Rightarrow (c). If M is π -projective, then (c) \Rightarrow (a) holds.

Proof. (a) \Rightarrow (b) It follows from Theorem 2.3.

(b) \Rightarrow (c) It follows from [2] (Theorem 2.6 (ii)).

(c) \Rightarrow (a) Consider any $m \in M$. By the assumption, mR has a supplement D which is a direct summand in M, that is, $M = mR + D = D \oplus A$ and $mR \cap D \ll D$ for some submodule A of M. Since M is π -projective, there exists a complement D' of D such that $D' \subseteq mR$ by [4] (4.14 (1)). Then we have $M = D \oplus D'$. Thus M is principally lifting.

Proposition 2.7. Let M be a π -projective module. Then M is principally \mathcal{G}^* -lifting if and only if every cyclic submodule X of M can be written as $X = D \oplus A$ such that D is a direct summand in M and $A \ll M$.

Proof. (\Rightarrow) Suppose M is principally \mathcal{G}^* -lifting and π -projective module. By Theorem 2.6, M is principally lifting. Then we observe that for any cyclic submodule X of M, there exists a direct decomposition $M = D \oplus D'$ such that $D \leq X$ and $X \cap D' \ll M$. By modularity, we conclude that $X = D \oplus (X \cap D')$.

(\Leftarrow) Let X be any cyclic submodule of M. By the assumption and [5] (Lemma 2.10), M is principally lifting. Therefore from Theorem 2.6, M is principally \mathcal{G}^* -lifting.

Now we mention that principally \mathcal{G}^* -lifting and \mathcal{G}^* -lifting modules coincide under some conditions.

Proposition 2.8. Let M be Noetherian and have SSP. Then M is principally \mathcal{G}^* -lifting if and only if M is \mathcal{G}^* -lifting.

Proof. (\Leftarrow) Clear.

 (\Rightarrow) If M is Noetherian, for any submodule X of M there exist some $m_1, m_2, \ldots, m_n \in M$ such that $X = m_1R + m_2R + \ldots + m_nR$ by [11] (27.1). Since M is principally \mathcal{G}^* -lifting, there exist some direct summands D_1, D_2, \ldots, D_n of M such that $m_1R\beta^*D_1, m_2R\beta^*D_2, \ldots, m_nR\beta^*D_n$. Then $D = D_1 + D_2 + \ldots + D_n$ is also a direct summand in M because of SSP. By [2] (Proposition 2.11), $X\beta^*D$. Hence M is \mathcal{G}^* -lifting.

Proposition 2.9. Let any submodule N of M be a sum of a cyclic submodule X and a small submodule A in M. Then M is principally \mathcal{G}^* -lifting if and only if M is \mathcal{G}^* -lifting.

Proof. (\Leftarrow) Clear.

 (\Rightarrow) Let N be any submodule of M and N = X + A for a cyclic submodule X and a small submodule A of M. Since M is principally \mathcal{G}^* -lifting, there exists a direct summand D of M such that $X\beta^*D$. From [2] (Corollary 2.12), $(X + A)\beta^*D$, that is, $N\beta^*D$. Hence M is \mathcal{G}^* -lifting.

References

- 1. Acar U., Harmanci A. Principally supplemented modules // Alban. J. Math. 2010. 4, № 3. P. 79-88.
- Birkenmeier G. F., Mutlu F. T., Nebiyev C., Sokmez N., Tercan A. Goldie*-supplemented modules // Glasg. Math. J. 2010. – 52. – P. 41–52.
- 3. Camillo V. Distributive modules // J. Algebra. 1975. 36, № 1. P. 16-25.
- Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting modules: supplements and projectivity in module theory. Basel, Switzerland: Birkhäuser-Verlag, 2006.
- 5. Kamal M., Yousef A. On principally lifting modules // Int. Electron. J. Algebra. 2007. 2. P. 127-137.
- 6. Koşan T., Tütüncü Keskin D. H-supplemented duo modules // J. Algebra and Appl. 2007. 6, Issue 6. P. 965–971.
- Mohamed S. H., Müller B. J. Continuous and discrete modules // London Math. Soc. Lecture Note Ser. 1990. 147.
- 8. Özcan A.Ç., Harmancı A. Duo modules // Glasg. Math. J. 2006. 48. P. 533 545.
- Talebi Y., Hamzekolaee A. R., Tercan A. Goldie-rad-supplemented modules // An. Ştiinţ. Univ. "Ovidius" Constanţa. Ser. Mat. - 2014. - 22, № 3. - P. 205-218.
- 10. Yongduo W., Dejun W. On H-supplemented modules // Communs Algebra. 2012. 40. P. 3679-3689.
- 11. Wisbauer R. Foundations of module and ring theory. Gordon and Breach, 1991.

Received 27.02.14, after revision - 18.03.18