В. А. Кофанов (Днепр. нац. ун-т)

ЗАДАЧА БОЯНОВА – НАЙДЕНОВА ДЛЯ ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ НА ОСИ И НЕРАВЕНСТВА РАЗНЫХ МЕТРИК

For given $r \in \mathbb{N}, \ p, \lambda > 0$ and any fixed interval $[a,b] \subset \mathbf{R}$ we solve the extremal problem

$$\int_{a}^{b} |x(t)|^{q} dt \to \sup, \quad q \ge p,$$

on a set of functions $x \in L_{\infty}^{r}$ such that

$$||x^{(r)}||_{\infty} \le 1$$
, $||x||_{p,\delta} \le ||\varphi_{\lambda,r}||_{p,\delta}$, $\delta \in (0, \pi/\lambda]$,

where

$$||x||_{p,\delta} := \sup\{||x||_{L_p[a,b]} : a, b \in \mathbf{R}, \ 0 < b - a \le \delta\}$$

and $\varphi_{\lambda,r}$ is the $(2\pi/\lambda)$ -periodic Euler spline of order r. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k=1,\ldots,r-1$, with $q\geq 1$. In addition, we prove the inequalities of various metrics for the quantities $\|x\|_{p,\delta}$.

Для заданих $r \in \mathbb{N}, \ p, \lambda > 0$ і довільного фіксованого відрізка $[a,b] \subset \mathbf{R}$ розв'язано екстремальну задачу

$$\int_{a}^{b} |x(t)|^{q} dt \to \sup, \quad q \ge p,$$

на деякій підмножині функцій $x \in L^r_\infty$ таких, що

$$||x^{(r)}||_{\infty} \le 1$$
, $||x||_{p,\delta} \le ||\varphi_{\lambda,r}||_{p,\delta}$, $\delta \in (0,\pi/\lambda]$,

де

$$||x||_{p,\delta} := \sup\{||x||_{L_p[a,b]} : a, b \in \mathbf{R}, \ 0 < b - a \le \delta\},\$$

а $\varphi_{\lambda,r}-(2\pi/\lambda)$ -періодичний сплайн Ейлера порядку r. Як наслідок розв'язано ту ж саму екстремальну задачу для проміжних похідних $x^{(k)},\ k=1,\ldots,r-1,$ при $q\geq 1.$

Крім того, доведено нерівності різних метрик для величин $||x||_{p,\delta}$.

1. Введение. Пусть $G={\bf R},\ G=[a,b]$ или $G=I_{2\pi}$ — отрезок $[0,2\pi]$ с отождествленными концами. Будем рассматривать пространства $L_p(G),\ 0< p\leq \infty,$ всех измеримых функций x: $G\to {\bf R},$ для которых величина $\|x\|_{L_p(G)}$ конечна, где

$$\left\|x\right\|_{L_{p}(G)} := \begin{cases} \left(\int_{G}\left|x\left(t\right)\right|^{p}dt\right)^{1/p}, & \text{если} \quad 0$$

Для $r \in \mathbf{N}$ и $p,s \in (0,\infty]$ через $L^r_{p,s}$ обозначим пространство всех функций $x \in L_p(\mathbf{R}),$ имеющих локально абсолютно непрерывные производные до (r-1)-го порядка, причем $x^{(r)} \in L_s(\mathbf{R}).$ Будем писать $\|x\|_p$ вместо $\|x\|_{L_p(\mathbf{R})}$ и L^r_∞ вместо $L^r_{\infty,\infty}$.

Известно (см., например, [1, с. 47]), что задача нахождения точной константы C в неравенстве типа Колмогорова – Надя

$$||x^{(k)}||_q \le C ||x||_p^{\alpha} ||x^{(r)}||_s^{1-\alpha}$$
(1.1)

на классе функций $x \in L^r_{p,s}$, где $\alpha = \frac{r-k+1/q-1/s}{r+1/p-1/s}$, а параметры $q,p,s \geq 1, r \in \mathbf{N},$ $k \in \mathbf{N}_0 := \mathbf{N} \bigcup \{0\}, \ k < r,$ удовлетворяют условию $\alpha \leq (r-k)/r$, равносильна экстремальной задаче

$$||x^{(k)}||_q \to \sup \tag{1.2}$$

на классе функций $x \in L^r_{p,s},$ удовлетворяющих ограничениям

$$||x^{(r)}||_s \le A_r, \quad ||x||_p \le A_0,$$
 (1.3)

где A_0, A_r — заданные положительные числа.

Несмотря на большое количество работ по этой тематике точная константа C в неравенстве (1.1) известна для всех $r \in \mathbb{N}$ и всех k < r лишь в немногих случаях. Подробную библиографию можно найти в работах [1-3]. Поэтому представляет интерес модификация задачи (1.2) с ограничениями (1.3), рассмотренная Б. Бояновым и Н. Найденовым [4]. Для произвольного отрезка $[a,b] \subset \mathbb{R}$ ими решена проблема

$$\int_{a}^{b} \Phi(|x^{(k)}(t)|)dt \to \sup, \quad k = 1, \dots, r - 1,$$

на классе функций $x\in L^r_\infty$, удовлетворяющих условиям (1.3) с $p=s=\infty$, где Φ — непрерывно дифференцируемая функция на $[0,\infty)$, положительная на $(0,\infty)$ и такая, что $\Phi(t)/t$ не убывает и $\Phi(0)=0$. Важнейший пример такой функции дается равенством $\Phi(t)=t^p,\ p\geq 1$.

Обозначим через W класс непрерывных, неотрицательных и выпуклых функций Φ , определенных на $[0,\infty)$, таких, что $\Phi(0)=0$. Для p>0 положим [5]

$$L(x)_p := \sup \{ \|x\|_{L_p[a,b]} : a, b \in \mathbf{R}, \ |x(t)| > 0, \ t \in (a,b) \}.$$
(1.4)

Отметим, что $L(x)_{\infty} = ||x||_{\infty}$ и $L(x')_1 \le 2||x||_{\infty}$.

В работе [6] решена следующая модификация задачи Боянова и Найденова:

$$\int_{a}^{b} \Phi(|x(t)|^{p})dt \to \sup, \quad \Phi \in W, \quad p > 0,$$
(1.5)

на классе функций $x \in L^r_\infty$, удовлетворяющих ограничениям

$$||x^{(r)}||_{\infty} \le A_r, \quad L(x)_p \le A_0.$$
 (1.6)

Как следствие получено решение задачи

$$\int_{a}^{b} \Phi(|x^{(k)}(t)|)dt \to \sup, \quad \Phi \in W, \quad k = 1, \dots, r - 1,$$
(1.7)

на классе всех функций $x \in L^r_{\infty}$, удовлетворяющих условиям (1.6).

Обобщение результатов работы [6] получено в [7, 8].

Символом $\varphi_r(t), r \in \mathbb{N}$, обозначим r-й 2π -периодический интеграл с нулевым средним значением на периоде от функции $\varphi_0(t) = \operatorname{sgn} \sin t$ и для $\lambda > 0$ положим $\varphi_{\lambda,r}(t) := \lambda^{-r} \varphi_r(\lambda t)$.

В данной работе получено решение задач (1.5) и (1.7) (теоремы 1 и 3) на классе функций $x \in L^r_\infty$, удовлетворяющих условиям

$$||x^{(r)}||_{\infty} \le A_r, \quad ||x||_{p,\delta} \le A_r ||\varphi_{\lambda,r}||_{p,\delta}, \quad \delta \in (0, \pi/\lambda], \tag{1.8}$$

где

$$||x||_{p,\delta} := \sup\{||x||_{L_p[a,b]} : a, b \in \mathbf{R}, \ 0 < b - a \le \delta\}.$$
(1.9)

Отметим, что при $p \ge 1$ величина $||x||_{p,\delta}$ является нормой в отличие от величины $L(x)_p$, определенной равенством (1.4).

Изучено также соотношение между классами функций $x \in L^r_{\infty}$, задаваемыми ограничениями (1.6), и классами функций $x \in L^r_{\infty}$, которые удовлетворяют условиям (1.8) (теоремы 2 и 4). Кроме того, получены точные неравенства разных метрик для величин $\|x\|_{p,\delta}$, определенных равенством (1.9) (теоремы 5 – 8).

2. Вспомогательные утверждения. Пусть $r \in \mathbb{N}$ и $p, \lambda > 0$. Введем класс функций

$$F_p^r(\lambda) := \{ x \in L_\infty^r : ||x||_{p,\delta} \le ||\varphi_{\lambda,r}||_{p,\delta} ||x^{(r)}||_\infty, \ \delta \in (0, \pi/\lambda] \},$$
(2.1)

где величина $||x||_{p,\delta}$ определена равенством (1.9).

Примеры функций $x\in F_p^r(\lambda)$ приведены в теоремах 2 и 4. В частности, из этих теорем следует, что произвольная функция $x\in L_\infty^r$ при любом p>0 принадлежит классу $F_p^r(\lambda)$ с некоторым $\lambda>0$, а любая функция $x\in L_\infty^r(I_{2\pi})$, в среднем равная нулю на периоде, принадлежит классу $F_p^r(1)$ при $p\geq 1$.

Через $\tilde{F}_p^r(\lambda)$ обозначим класс функций $x\in F_p^r(\lambda)$, для которых при любых $\Phi\in W$ и $\delta\in(0,\pi/\lambda]$ каждая из точных верхних граней

$$\sup \left\{ \int_{\alpha}^{\beta} \Phi\left(|x(t)|^{p}\right) dt : \alpha, \beta \in \mathbf{R}, \ \beta - \alpha \leq \delta \right\}$$
 (2.2)

И

$$\sup\{\|x\|_{L_{\infty}[\alpha,\beta]}: \alpha,\beta \in \mathbf{R}, \ \beta - \alpha \le \delta\}$$

достигается на некотором отрезке $[\alpha, \beta]$ (зависящем от Φ и δ). Примерами функций класса $\tilde{F}^r_p(\lambda)$ являются функции $x \in F^r_p(\lambda)$, имеющие одно из следующих свойств:

- 1) x периодическая функция (произвольного периода),
- $2) \lim_{|t| \to \infty} x(t) = 0,$
- 3) $x \in L_{p,\infty}$ при $p < \infty$,

4) $x - \phi$ инитная функция.

Отметим, что имеет место включение $\tilde{F}_p^r(\lambda)\subset \tilde{F}_q^r(\lambda)$ при q>p>0 (следствие 1 из леммы 3).

Лемма 1 [9]. Если функция x непрерывна на \mathbf{R} , а точная верхняя грань в определении (1.9) реализуется на отрезке [a,b], то

$$|x(a)| = |x(b)|.$$

Лемма 2. Пусть $r \in \mathbb{N}, \ p, \lambda > 0$. Тогда для любой функции $x \in F_p^r(\lambda)$ имеет место неравенство

$$||x||_{\infty} \le ||\varphi_{\lambda,r}||_{\infty} ||x^{(r)}||_{\infty}. \tag{2.3}$$

Доказательство. Зафиксируем функцию $x \in F_p^r(\lambda)$. Вследствие однородности неравенства (2.3) можно считать, что

$$||x^{(r)}||_{\infty} = 1. {(2.4)}$$

Пусть m — точка максимума сплайна $\varphi_{\lambda,r}$. Заметим, что

$$\|\varphi_{\lambda,r}\|_{p,\delta}^p = \int_{m-\delta/2}^{m+\delta/2} |\varphi_{\lambda,r}(t)|^p dt, \quad \delta \in (0,\pi/\lambda].$$

Поэтому из (2.1) и (2.4) для произвольного $a \in \mathbf{R}$ следует, что

$$\frac{1}{\delta} \int_{a}^{a+\delta} |x(t)|^p dt \le \frac{1}{\delta} \int_{m-\delta/2}^{m+\delta/2} |\varphi_{\lambda,r}(t)|^p dt = \frac{2}{\delta} \int_{m}^{m+\delta/2} |\varphi_{\lambda,r}(t)|^p dt.$$

Переходя в этом соотношении к пределу при $\delta \to 0$, получаем

$$|x(a)|^p < |\varphi_{\lambda,r}(m)|^p = ||\varphi_{\lambda,r}||_{\infty}^p$$

Отсюда в силу (2.4) и произвольности $a \in \mathbf{R}$ следует (2.3).

Лемма 2 доказана.

Для суммируемой на отрезке [a,b] функции x символом r(x,t) обозначим перестановку функции |x| (см., например, [11], $\S 1.3$). При этом условимся, что r(x,t)=0 для t>b-a.

Лемма 3. Пусть $r \in \mathbb{N}, \ p, \lambda > 0, \ \Phi \in W$. Тогда для любой функции $x \in \tilde{F}_p^r(\lambda)$ и отрезка $[a,b] \subset \mathbf{R},$ для которого $b-a \leq \pi/\lambda,$ выполнено неравенство

$$\int_{a}^{b} \Phi\left(|x(t)|^{p}\right) dt \leq \int_{m-\Theta}^{m+\Theta} \Phi\left(|A_{r}\varphi_{\lambda,r}(t)|^{p}\right) dt, \tag{2.5}$$

где $A_r = \|x^{(r)}\|_{\infty}, \ m$ — точка локального максимума сплайна $\varphi_{\lambda,r},$ а число Θ удовлетворяет условиям

$$\varphi_{\lambda,r}(m-\Theta) = \varphi_{\lambda,r}(m+\Theta), \quad 2\Theta = b-a.$$

В частности,

$$\int_{a}^{b} \Phi\left(|x(t)|^{p}\right) dt \leq \int_{c}^{c+\pi/\lambda} \Phi\left(|A_{r}\varphi_{\lambda,r}(t)|^{p}\right) dt, \tag{2.6}$$

Доказательство. Зафиксируем функцию x и отрезок [a,b], удовлетворяющие условиям леммы. Докажем неравенство (2.5). Не ограничивая общности можем считать, что

$$||x^{(r)}||_{\infty} = 1. (2.7)$$

Положим $\delta:=b-a$. По определению класса $\tilde{F}_p^r(\lambda)$ точная верхняя грань (2.2) реализуется на некотором отрезке $[\alpha,\beta]$. Среди таких отрезков, очевидно, найдется такой, что $\beta-\alpha=\delta$. Неравенство (2.5) достаточно доказать для $[a,b]=[\alpha,\beta]$. Тогда в силу леммы 1

$$|x(a)| = |x(b)|.$$
 (2.8)

Обозначим через \overline{x} сужение функции x на отрезок [a,b], а через $\overline{\varphi}=\overline{\varphi}_{\lambda,r}$ сужение сплайна $\varphi_{\lambda,r}$ на $[m-\Theta,m+\Theta]$. Докажем сначала неравенство

$$\int_{0}^{\xi} r^{p}(\overline{x}, t)dt \leq \int_{0}^{\xi} r^{p}(\overline{\varphi}_{\lambda, r}, t)dt, \quad \xi > 0.$$
(2.9)

Убедимся прежде всего в том, что разность $\delta(t):=r(\overline{x},t)-r(\overline{\varphi}_{\lambda,r},\,t)$ меняет знак на $[0,\infty)$ не более одного раза (с минуса на плюс). Для этого заметим, что

$$\delta(0) \le ||x||_{\infty} - ||\varphi_{\lambda,r}||_{\infty} \le 0 \tag{2.10}$$

в силу леммы 2 и предположения (2.7). Далее положим

$$A := \min\{|\overline{x}(t)| : t \in [a, b]\}, \quad B := \max\{|\overline{x}(t)| : t \in [a, b]\}.$$

Если $B \leq |\varphi_{\lambda,r}(m+\Theta)|$, то разность $\delta(t)$ не меняет знак. Пусть $B > |\varphi_{\lambda,r}(m+\Theta)|$. Тогда положим $C = \max\{A, |\varphi_{\lambda,r}(m+\Theta)|\}$. В силу (2.8) и (2.10) для любого $z \in (C,B)$ существуют точки

$$t_i \in [a, b], \quad i = 1, \dots, m, \quad m \ge 2, \quad y_j \in [m - \Theta, m + \Theta], \quad j = 1, 2,$$

такие, что

$$z = |\overline{x}(t_i)| = |\overline{\varphi}_{\lambda,r}(y_i)|. \tag{2.11}$$

В силу (2.7) и (2.10) выполнены условия теоремы сравнения Колмогорова [10]. По этой теореме для точек t_i и y_j , удовлетворяющих условию (2.11), выполнены неравенства

$$|\overline{x}'(t_i)| \leq |\overline{\varphi}'_{\lambda r}(y_i)|.$$

Поэтому если точки $\Theta_1, \Theta_2 > 0$ выбраны так, что

$$z = r(\overline{x}, \Theta_1) = r(\overline{\varphi}, \Theta_2),$$

то по теореме о производной перестановки (см., например, [11], предложение 1.3.2)

$$|r'(\overline{x}, \theta_1)| = \left[\sum_{i=1}^m |\overline{x}'(t_i)|^{-1}\right]^{-1} \le \left[\sum_{j=1}^2 |\overline{\varphi}'(y_j)|^{-1}\right]^{-1} = |r'(\overline{\varphi}, \theta_2)|.$$

Отсюда следует, что разность $\delta(t):=r(\overline{x},t)-r(\overline{\varphi},t)$ меняет знак на $[0,\infty)$ не более одного раза (с минуса на плюс). То же самое справедливо и для разности $\delta_p(t):=r^p(\overline{x},t)-r^p(\overline{\varphi},t)$. Рассмотрим интеграл

$$I_p(\xi) := \int_0^{\xi} \delta_p(t) dt.$$

Ясно, что $I_p(0)=0,$ и в силу определения класса $\tilde{F}_p^r(\lambda)$ и предположения (2.7) имеем

$$I_p(\xi) = ||x||_{p,\delta} - ||\varphi_{\lambda,r}||_{p,\delta} \le 0, \quad \xi \ge \delta.$$

Кроме того, производная $I_p'(t) = \delta_p(t)$ меняет знак не более одного раза (с минуса на плюс). Таким образом, $I_p(\xi) \le 0$ для всех $\xi \ge 0$ и неравенство (2.9) доказано. Из него в силу теоремы Харди – Литлвуда – Полиа (см., например, [11], предложение 1.3.11) и условия (2.7) следует неравенство (2.5). Ясно, что (2.6) непосредственно следует из (2.5).

Лемма 3 доказана.

Следствие 1. Пусть $r \in \mathbb{N}, p, \lambda > 0$. Тогда для любого q > p имеет место включение

$$\tilde{F}_p^r(\lambda) \subset \tilde{F}_q^r(\lambda).$$

Доказательство. Включение $\tilde{F}_p^r(\lambda) \subset F_q^r(\lambda)$ следует из определения (2.1) и неравенства (2.5), если положить в нем $\Phi(t) = t^{q/p}, \ q > p$. Докажем требуемое включение $\tilde{F}_p^r(\lambda) \subset \tilde{F}_q^r(\lambda)$. Учитывая (2.2) и определение класса $\tilde{F}_q^r(\lambda)$, зафиксируем произвольную функцию $\Phi \in W$ и покажем, что для любого $\delta \in (0, \pi/\lambda)$ точная верхняя грань

$$S_q(\Phi) := \sup \left\{ \int_{\alpha}^{\beta} \Phi\left(|x(t)|^q\right) dt : \alpha, \beta \in \mathbf{R}, \ \beta - \alpha \le \delta \right\}$$

достигается на некотором отрезке. Положим $\Phi_1(t)=t^{q/p}$. Тогда $S_q(\Phi)=S_p(\Phi(\Phi_1))$. Ясно, что суперпозиция функций класса W является функцией этого класса. Следовательно, указанная точная верхняя грань $S_q(\Phi)$ достигается, если $x\in \tilde{F}_p^r(\lambda)$, так как в этом случае достигается верхняя грань $S_p(\Phi(\Phi_1))$.

Следствие 1 доказано.

3. Основные результаты. Пусть $r \in \mathbb{N}, \ p, \lambda > 0, \ [a,b] \subset \mathbb{R}.$ Следуя Б. Боянову и Н. Найденову [4], представим длину отрезка [a,b] в виде

$$b - a = n\frac{\pi}{\lambda} + 2\Theta, \quad n \in \mathbf{N} \bigcup \{0\}, \quad 2\Theta \in [0, \pi/\lambda).$$
 (3.1)

Пусть далее $\tau \in \mathbf{R}$ таково, что

$$|\varphi_{\lambda,r}(a+\Theta+\tau)| = |\varphi_{\lambda,r}(b-\Theta+\tau)| = ||\varphi_{\lambda,r}||_{\infty}.$$
(3.2)

Ясно, что $\varphi_{\lambda,r}(\cdot+ au)\in \tilde{F}^r_p(\lambda)$ для любых $au\in {f R}$ и p>0.

Следующая теорема дает решение задачи (1.5) с ограничениями (1.8). Не теряя общности будем считать, что $A_r = 1$ в (1.8), и положим

$$W_{\infty}^r := \left\{ x \in L_{\infty}^r : \left\| x^{(r)} \right\|_{\infty} \le 1 \right\}.$$

Теорема 1. Пусть $r \in \mathbb{N}, \ p, \lambda > 0$. Тогда для любой функции $\Phi \in W$ и произвольного отрезка $[a,b] \subset \mathbf{R}$

$$\sup \left\{ \int_{a}^{b} \Phi\left(|x(t)|^{p}\right) dt : x \in \tilde{F}_{p}^{r}(\lambda) \cap W_{\infty}^{r} \right\} = \int_{a}^{b} \Phi\left(|\varphi_{\lambda,r}(t+\tau)|^{p}\right) dt, \tag{3.3}$$

где число au определено соотношением (3.2). В частности, для любого $q \geq p$

$$\sup \left\{ \int_a^b |x(t)|^q dt : x \in \tilde{F}_p^r(\lambda) \cap W_\infty^r \right\} = \int_a^b |\varphi_{\lambda,r}(t+\tau)|^q dt.$$

Доказательство. Зафиксируем произвольные функцию $x \in \tilde{F}_p^r(\lambda) \cap W_\infty^r$ и отрезок $[a,b] \subset \mathbf{R}$. Представим длину отрезка [a,b] в виде (3.1). Пусть $a_k := a + k\pi/\lambda, \ k = 0,1,\ldots,n$. По лемме 3

$$\int_{a_k}^{a_{k+1}} \Phi(|x(t)|^p) dt \le \int_{c}^{c+\pi/\lambda} \Phi(|\varphi_{\lambda,r}(t)|^p) dt, \quad k = 0, 1, \dots, n-1,$$

И

$$\int_{a_n}^b \Phi(|x(t)|^p) dt \le \int_{m-\Theta}^{m+\Theta} \Phi(|\varphi_{\lambda,r}(t)|^p) dt,$$

где c — нуль, m — точка локального максимума сплайна $\varphi_{\lambda,r}$, а число Θ определено равенством (3.1). Таким образом,

$$\int_{a}^{b} \Phi(|x(t)|^{p})dt \leq n \int_{c}^{c+\pi/\lambda} \Phi(|\varphi_{\lambda,r}(t)|^{p})dt + \int_{m-\Theta}^{m+\Theta} \Phi(|\varphi_{\lambda,r}(t)|^{p})dt =$$

$$= \int_{c}^{b} \Phi(|\varphi_{\lambda,r}(t+\tau)|^{p})dt,$$

причем равенство здесь достигается для функции $x(t)=\varphi_{\lambda,r}(t+\tau)$. Соотношение (3.3) доказано. Полагая в нем $\Phi(t)=t^{q/p}$, получаем второе утверждение теоремы.

Теорема 1 доказана.

Теорема 2. Пусть $r \in \mathbb{N}, \ p > 0$. Если для функции $x \in L^r_\infty$ число λ выбрано так, что

$$L(x)_p \le L(\varphi_{\lambda,r})_p ||x^{(r)}||_{\infty}, \tag{3.4}$$

где величина $L(x)_p$ определена равенством (1.4), то x принадлежит $F_p^r(\lambda)$.

Доказательство. Зафиксируем произвольную функцию $x \in L^r_\infty$ и число $\delta \in (0,\pi/\lambda].$ Докажем неравенство

$$||x||_{p,\delta} \le ||\varphi_{\lambda,r}||_{p,\delta} ||x^{(r)}||_{\infty}. \tag{3.5}$$

Вследствие однородности неравенств (3.4), (3.5) можно считать, что

$$||x^{(r)}||_{\infty} = 1. {(3.6)}$$

Для функций, удовлетворяющих ограничениям (3.4) и (3.6), в работе [6] (лемма 3) доказано неравенство

$$\int_{a}^{b} \Phi(|x(t)|^{p}) dt \le \int_{m-\Theta}^{m+\Theta} \Phi(|\varphi_{\lambda,r}(t)|^{p}) dt, \quad \Phi \in W,$$

для произвольного отрезка [a,b], для которого $b-a \le \pi/\lambda$, где m — точка локального максимума сплайна $\varphi_{\lambda,r}$, а $2\Theta=b-a$. Полагая в этом неравенстве $\Phi(t)=t$ и учитывая (3.6), получаем оценку (3.5) и, как следствие, включение $x \in F_p^r(\lambda)$.

Теорема 2 доказана.

Пусть $k, r \in \mathbf{N}, \ k < r, \ p > 0, \ [a,b] \subset \mathbf{R}.$ Снова представим длину отрезка [a,b] в виде (3.1). Пусть далее $\tau_k \in \mathbf{R}$ таково, что

$$|\varphi_{\lambda,r-k}(a+\Theta+\tau_k)| = |\varphi_{\lambda,r-k}(b-\Theta+\tau_k)| = ||\varphi_{\lambda,r-k}||_{\infty}.$$
(3.7)

Следующая теорема дает решение задачи (1.7) с ограничениями (1.8).

Теорема 3. Пусть $k, r \in \mathbb{N}, \ k < r, \ \lambda > 0$. Тогда для любой функции $\Phi \in W$ и произвольного отрезка $[a,b] \subset \mathbf{R}$

$$\sup \left\{ \int_a^b \Phi\left(|x^{(k)}(t)|\right) dt \colon x \in F_p^r(\lambda) \cap W_\infty^r \right\} =$$

$$= \int_{a}^{b} \Phi\left(\left|\varphi_{\lambda, r-k}(t+\tau_{k})\right|\right) dt, \tag{3.8}$$

где число τ_k определено в (3.7). В частности, для любого $q \ge 1$

$$\sup \left\{ \int_a^b |x^{(k)}(t)|^q dt \colon x \in F_p^r(\lambda) \cap W_\infty^r \right\} = \int_a^b |\varphi_{\lambda, r-k}(t + \tau_k)|^q dt.$$

Доказательство. Зафиксируем произвольные функцию $x \in F_p^r(\lambda) \cap W_\infty^r$ и отрезок $[a,b] \subset \mathbb{R}$. Докажем (3.8). Без ограничения общности можно считать, что

$$||x^{(r)}||_{\infty} = 1.$$

Тогда согласно лемме 2

$$||x||_{\infty} \le ||\varphi_{\lambda,r}||_{\infty}.$$

Отсюда в силу неравенства Колмогорова [10] имеем

$$||x^{(i)}||_{\infty} \le ||\varphi_{\lambda,r-i}||_{\infty}, \quad i = 1, \dots, r-1.$$

Поэтому для любого отрезка $[\alpha, \beta]$, для которого

$$|x^{(k)}(t)| > 0, \quad t \in (\alpha, \beta),$$

получаем

$$\int_{\alpha}^{\beta} |x^{(k)}(t)|dt = |x^{(k-1)}(\beta) - x^{(k-1)}(\alpha)| \le 2||x^{(k-1)}||_{\infty} \le$$

$$\leq 2\|\varphi_{\lambda,r-k+1}\|_{\infty} = L(\varphi_{\lambda,r-k})_1,$$

где величина $L(x)_p$ определена равенством (1.4). Отсюда следует, что

$$L(x^{(k)})_1 \le L(\varphi_{\lambda,r-k})_1.$$

Для функций $x \in W^r_{\infty}$, удовлетворяющих этому ограничению, и для произвольного отрезка [a,b] в работе [6] (теорема 1) получена оценка

$$\int_{a}^{b} \Phi\left(|x^{(k)}(t)|\right) dt \le \int_{a}^{b} \Phi\left(|\varphi_{\lambda,r-k}(t+\tau_{k})|\right) dt, \quad \Phi \in W,$$

где τ_k определено в (3.7). Равенство в этой оценке достигается для функции $x(t)=\varphi_{\lambda,r}(t+\tau_k)$. Соотношение (3.8) доказано. Полагая в нем $\Phi(t)=t^q$, получаем второе утверждение теоремы.

Теорема 3 доказана.

В следующей теореме содержатся примеры функций класса $\tilde{F}_p^r(1)$.

Теорема 4. Пусть $k, r \in \mathbb{N}, \ k < r, \ p \ge 1$. Тогда для любой функции $x \in L^r_\infty(I_{2\pi})$ имеет место неравенство

$$L(x^{(k)})_p \le L(\varphi_{r-k})_p ||x^{(r)}||_{\infty},$$
 (3.9)

где величина $L(x)_p$ определена равенством (1.4). В частности, для любой функции $x\in L^r_\infty(I_{2\pi})$, в среднем равной нулю на периоде, имеет место включение $x\in \tilde{F}^r_p(1)$.

Доказательство. В работе [12] для функций $x \in L^r_{\infty}(I_{2\pi})$ доказано неравенство

$$L(x^{(k)})_p \le \frac{L(\varphi_{r-k})_p}{\|\varphi_r\|_{\alpha}^{\alpha}} E_0(x)_s^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha},$$

где $p, s \ge 1, \ k < r, \ \alpha = (r - k + 1/p)/(r + 1/s), \ E_0(x)_s$ — наилучшее приближение функции x константами в метрике пространства L_s . Из этого неравенства и известного неравенства типа Бора – Фавара (см., например, [13], § 6.9)

$$E_0(x)_s \le \|\varphi_r\|_s \|x^{(r)}\|_{\infty}$$

следует (3.9).

Пусть теперь функция $x\in L^r_\infty(I_{2\pi})$ в среднем равна нулю на периоде. Через x_1 обозначим ее первообразную. Ясно, что $x_1\in L^{r+1}_\infty(I_{2\pi})$. Применяя к x_1 неравенство (3.9) при k=1, получаем

$$L(x)_p \leq L(\varphi_r)_p ||x^{(r)}||_{\infty}.$$

Из этого неравенства и теоремы 2 вследствие периодичности функции x следует включение $x \in \tilde{F}_{n}^{r}(1)$.

Теорема 4 доказана.

Теорема 5. Пусть $r \in \mathbb{N}, \ q > p > 0, \ \varepsilon \in (0,\pi]$. Тогда для любой функции $x \in \tilde{F}_p^r(1)$ имеет место неулучшаемое неравенство

$$||x||_{q,\varepsilon} \le \frac{||\varphi_r||_{q,\varepsilon}}{||\varphi_r||_{p,\varepsilon}^{\alpha}} ||x||_{p,\varepsilon}^{\alpha} ||x^{(r)}||_{\infty}^{1-\alpha}, \tag{3.10}$$

где $\alpha=(r+1/q)/(r+1/p)$, а величина $\|x\|_{p,\varepsilon}$ определена равенством (1.9). В частности, неравенство (3.10) при $p\geq 1$ имеет место для любой функции $x\in L^r_\infty(I_{2\pi})$, в среднем равной нулю на периоде.

Доказательство. Зафиксируем функцию $x \in \tilde{F}_p^r(1)$. Вследствие однородности неравенства (3.10) можно считать, что

$$||x^{(r)}||_{\infty} = 1. (3.11)$$

Выберем далее $\lambda > 0$ так, чтобы

$$||x||_{p,\varepsilon} = ||\varphi_{\lambda,r}||_{p,\varepsilon/\lambda} = \lambda^{-(r+1/p)} ||\varphi_r||_{p,\varepsilon}.$$
(3.12)

Из (3.11) и (3.12) в силу включения $x \in F_p^r(1)$ следует, что

$$\lambda \ge 1. \tag{3.13}$$

Докажем неравенство

$$||x||_{q,\varepsilon} \le ||\varphi_{\lambda,r}||_{q,\varepsilon/\lambda}. \tag{3.14}$$

В силу включения $x \in \tilde{F}_p^r(1)$ существует отрезок [a, b], для которого

$$||x||_{q,\varepsilon} = ||x||_{L_q[a,b]}.$$
 (3.15)

Среди таких отрезков найдется отрезок длиной ε . Поэтому можно считать, что $b-a=\varepsilon$. Обозначим через \overline{x} сужение функции x на отрезок [a,b], а через $\overline{\varphi}_{\lambda,r}$ сужение сплайна $\varphi_{\lambda,r}$ на $[m-\Theta,m+\Theta]$, где m — точка локального максимума сплайна $\varphi_{\lambda,r}$, а $2\Theta=\varepsilon/\lambda$. Покажем,

что разность $\delta(t):=r(\overline{x},t)-r(\overline{\varphi}_{\lambda,r},t)$ меняет знак на $[0,\infty)$ не более одного раза (с минуса на плюс). Сначала убедимся в том, что

$$||x||_{\infty} \le ||\varphi_{\lambda,r}||_{\infty}. \tag{3.16}$$

Предположим, что (3.16) не выполняется. Тогда существует такое $\omega \in (0, \lambda)$, для которого

$$||x||_{\infty} = ||\varphi_{\omega,r}||_{\infty}. \tag{3.17}$$

Если μ — точка максимума сплайна $\varphi_{\omega,r}$, т. е.

$$\|\varphi_{\omega,r}\|_{\infty} = \varphi_{\omega,r}(\mu),\tag{3.18}$$

то в силу (3.17) и определения класса $\tilde{F}_p^r(1)$ существует такое $\tau \in \mathbf{R}$, что

$$||x||_{\infty} = |x(\mu + \tau)|.$$
 (3.19)

Заметим, что в силу равенств (3.11) и (3.17) функция x удовлетворяет условиям теоремы сравнения Колмогорова [10]. Согласно этой теореме из соотношений (3.17) – (3.19) следует неравенство

$$|x(t+\tau)| \ge |\varphi_{\omega,r}(t)|, \quad t \in (\mu - \pi/(2\omega), \ \mu + \pi/(2\omega)).$$

Из него, принимая во внимание (3.13) и включение $\omega \in (0, \lambda)$, получаем

$$||x||_{p,\varepsilon} \ge ||x||_{p,\varepsilon/\lambda} \ge ||\varphi_{\omega,r}||_{L_p[\mu-\varepsilon/(2\lambda), \ \mu+\varepsilon/(2\lambda)]} = ||\varphi_{\omega,r}||_{p,\varepsilon/\lambda} > ||\varphi_{\lambda,r}||_{p,\varepsilon/\lambda},$$

что противоречит (3.12). Неравенство (3.16) доказано. Из него следует, что

$$\delta(0) \le ||x||_{\infty} - ||\varphi_{\lambda,r}||_{\infty} \le 0.$$

Далее повторяя (с небольшими изменениями) рассуждения из доказательства леммы 3 (после неравенства (2.9)), убеждаемся в том, что разность $\delta(t)$ меняет знак на $[0,\infty)$ не более одного раза (с минуса на плюс) и то же свойство имеет разность $\delta_p(t) := r^p(\overline{x},t) - r^p(\overline{\varphi}_{\lambda,r},t)$. Рассмотрим интеграл

$$I_p(\xi) := \int_0^{\xi} \delta_p(t) dt.$$

Ясно, что $I_p(0) = 0$, и для $\xi \ge \varepsilon$ в силу условия (3.12) имеем

$$I_p(\xi) \le ||x||_{p,\varepsilon} - ||\varphi_{\lambda,r}||_{p,\varepsilon/\lambda} = 0.$$

Кроме того, производная $I_p'(t) = \delta_p(t)$ меняет знак не более одного раза (с минуса на плюс). Таким образом, $I_p(\xi) \le 0$ для всех $\xi \ge 0$, т. е.

$$\int_{0}^{\xi} r^{p}(\overline{x}, t)dt \leq \int_{0}^{\xi} r^{p}(\overline{\varphi}_{\lambda, r}, t)dt, \quad \xi > 0.$$

Из этого неравенства в силу теоремы Харди – Литлвуда – Полиа (см., например, [11], предложение 1.3.11) следует, что

$$||x||_{L_q[a,b]} \le ||\varphi_{\lambda,r}||_{L_q[m-\Theta,m+\Theta]} = ||\varphi_{\lambda,r}||_{q,\varepsilon/\lambda}.$$

Отсюда в силу (3.15) непосредственно следует (3.14). Применяя (3.14) и (3.12), а также учитывая определение α , получаем оценку

$$\frac{\|x\|_{q,\varepsilon}}{\|x\|_{p,\varepsilon}^{\alpha}} \le \frac{\|\varphi_{\lambda,r}\|_{q,\varepsilon/\lambda}}{\|\varphi_{\lambda,r}\|_{p,\varepsilon/\lambda}^{\alpha}} = \frac{\lambda^{-(r+1/q)}\|\varphi_r\|_{q,\varepsilon}}{\left[\lambda^{-(r+1/p)}\|\varphi_r\|_{p,\varepsilon}\right]^{\alpha}} = \frac{\|\varphi_r\|_{q,\varepsilon}}{\|\varphi_r\|_{p,\varepsilon}^{\alpha}}.$$

Из этой оценки в силу (3.11) следует доказываемое неравенство (3.10) для функций $x \in \tilde{F}_p^r(1)$. Ясно, что (3.10) обращается в равенство для функции $x(t) = \varphi_r(t)$.

Осталось заметить, что выполнение неравенства (3.10) при $p \ge 1$ для функций $x \in L^r_\infty(I_{2\pi})$, в среднем равных нулю на периоде, следует из теоремы 4.

Теорема 5 доказана.

Замечание 1. Для характеристик $L(x)_p$, определенных равенством (1.4), на классе функций $x \in L^r_\infty$ имеет место следующий аналог неравенства (3.10):

$$L(x)_q \le L(\varphi_r)_q \left(\frac{L(x)_p}{L(\varphi_r)_p}\right)^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha}, \quad q > p > 0,$$

где $\alpha = (r + 1/q)/(r + 1/p)$.

Это неравенство вытекает из леммы 1 работы [6] и следствия из нее.

Теорема 6. Пусть $r \in \mathbb{N}, \ q > p > 0$. Тогда для любой функции $x \in \tilde{F}_p^r(1)$ и любого отрезка $[a,b] \in \mathbb{R}$ с длиной, кратной числу π , имеет место неулучшаемое неравенство

$$\left(\frac{1}{b-a} \int_{a}^{b} |x(t)|^{q} dt\right)^{1/q} \leq \left(\frac{1}{\pi} \int_{0}^{\pi} |\varphi_{r}(t)|^{q} dt\right)^{1/q} \left(\frac{\|x\|_{p,\pi}}{\|\varphi_{r}\|_{p,\pi}}\right)^{\alpha} \|x^{(r)}\|_{\infty}^{1-\alpha},$$
(3.20)

где $\alpha=(r+1/q)/(r+1/p)$, а величина $\|x\|_{p,\pi}$ определена равенством (1.9). В частности, для любой функции $x\in L^r_\infty(I_{2\pi})$, в среднем равной нулю на периоде, при $p\geq 1$ выполнено неравенство

$$||x||_{L_q(I_{2\pi})} \le ||\varphi_r||_{L_q(I_{2\pi})} \left(\frac{||x||_{p,\pi}}{||\varphi_r||_{p,\pi}}\right)^{\alpha} ||x^{(r)}||_{\infty}^{1-\alpha}.$$
(3.21)

Доказательство. Зафиксируем функцию $x \in \tilde{F}_p^r(1)$. Вследствие однородности неравенства (3.20) можно считать, что

$$||x^{(r)}||_{\infty} = 1. (3.22)$$

Выберем далее $\lambda > 0$ так, чтобы

$$||x||_{p,\pi} = ||\varphi_{\lambda,r}||_{p,\pi/\lambda} = \lambda^{-(r+1/p)} ||\varphi_r||_{p,\pi}.$$
(3.23)

При доказательстве теоремы 5 было установлено, что из (3.22) и (3.23) следует неравенство

$$||x||_{q,\pi} \le ||\varphi_{\lambda,\,r}||_{q,\pi/\lambda}.\tag{3.24}$$

По условию $b-a=n\pi$ с некоторым $n\in \mathbb{N}$. Поэтому вследствие (3.24) имеем

$$||x||_{L_q[a,b]}^q \le n||\varphi_{\lambda,r}||_{q,\pi/\lambda}^q. \tag{3.25}$$

Из (3.25) и (3.23), учитывая определение α и равенство $b-a=n\pi$, получаем

$$\frac{\left(\frac{1}{b-a}\int_{a}^{b}|x(t)|^{q}dt\right)^{1/q}}{\|x\|_{p,\varepsilon}^{\alpha}} \leq \frac{\left(\frac{1}{\pi}\int_{0}^{\pi/\lambda}|\varphi_{\lambda,r}(t)|^{q}dt\right)^{1/q}}{\|\varphi_{\lambda,r}\|_{p,\pi/\lambda}^{\alpha}} =$$

$$=\frac{\lambda^{-(r+1/q)}\left(\frac{1}{\pi}\int_0^\pi|\varphi_r(t)|^qdt\right)^{1/q}}{\left(\lambda^{-(r+1/p)}\|\varphi_r\|_{p,\pi}\right)^\alpha}=\frac{\left(\frac{1}{\pi}\int_0^\pi|\varphi_r(t)|^qdt\right)^{1/q}}{\|\varphi_r\|_{p,\pi}^\alpha}.$$

Из этой оценки в силу (3.22) следует неравенство (3.20). Оно обращается в равенство для функции $x(t) = \varphi_r(t)$.

Выполнение неравенства (3.21) при $p \ge 1$ для функций $x \in L^r_\infty(I_{2\pi})$, в среднем равных нулю на периоде, следует из (3.20) и теоремы 4.

Теорема 6 доказана.

Известно (см., например, [14]), что для функции x такой, что $x \in L_q[a,b]$ при любых $a,b \in \mathbf{R}$, существует предел

$$\lim_{\Delta \to \infty} \sup_{a \in \mathbf{R}} \left(\frac{1}{\Delta} \int_{a}^{a+\Delta} |x(t)|^q dt \right)^{1/q} =: ||x||_{W_q}.$$
 (3.26)

Функционал $||x||_{W_q}$ используется при определении почти периодических в смысле Вейля функций [15]. Отметим, что неравенства для производных в пространствах Вейля изучались в работах [7, 16, 17].

Полагая в неравенстве (3.20) $b-a=2\pi n, n\in {\bf N},$ и переходя к пределу при $n\to\infty,$ получаем следующее утверждение.

Теорема 7. Пусть $r \in \mathbb{N}, \ q > p > 0$. Тогда для любой функции $x \in \tilde{F}_p^r(1)$ имеет место неулучшаемое неравенство

$$||x||_{W_q} \le \left(\frac{1}{\pi} \int_{0}^{\pi} |\varphi_r(t)|^q dt\right)^{1/q} \left(\frac{||x||_{p,\pi}}{||\varphi_r||_{p,\pi}}\right)^{\alpha} ||x^{(r)}||_{\infty}^{1-\alpha}, \tag{3.27}$$

где $\alpha = (r+1/q)/(r+1/p)$, а величины $\|x\|_{W_q}$ и $\|x\|_{p,\pi}$ определены равенствами (3.26) и (1.9) соответственно.

Замечание 2. Для 2π -периодических функций класса $F_p^r(1)$ неравенство (3.27) трансформируется в неравенство (3.21).

Пусть $n, r \in \mathbf{N}$. Обозначим через T_n пространство тригонометрических полиномов порядка не выше n, а символом $S_{n,r}$ пространство 2π -периодических сплайнов порядка r дефекта 1 с узлами в точках $k\pi/n, k \in \mathbf{Z}$.

Теорема 8. Пусть $r \in \mathbb{N}, \ q > p \geq 1$. Тогда для любого тригонометрического полинома $T \in T_n$, в среднем равного нулю на периоде, имеет место неулучшаемое на классе $\bigcup_{n \in \mathbb{N}} T_n$ неравенство

$$||T||_{L_q(I_{2\pi})} \le n^{\frac{1}{p} - \frac{1}{q}} \frac{||\cos(\cdot)||_{L_q(I_{2\pi})}}{||\cos(\cdot)||_{L_p(I_{2\pi})}} \cdot 2^{1/p} ||T||_{p,\pi}, \tag{3.28}$$

а для любого сплайна $s \in S_{n,r}$, в среднем равного нулю на периоде, имеет место неулучшаемое на классе $\bigcup_{n \in \mathbf{N}} S_{n,r}$ неравенство

$$||s||_{L_q(I_{2\pi})} \le n^{\frac{1}{p} - \frac{1}{q}} \frac{||\varphi_r||_{L_q(I_{2\pi})}}{||\varphi_r||_{L_n(I_{2\pi})}} \cdot 2^{1/p} ||s||_{p,\pi}.$$
(3.29)

Доказательство. Зафиксируем полином $T \in T_n$, в среднем равный нулю на периоде, и применим к нему неравенство (3.21):

$$||T||_{L_q(I_{2\pi})} \le ||\varphi_r||_{L_q(I_{2\pi})} \left(\frac{||T||_{p,\pi}}{||\varphi_r||_{p,\pi}}\right)^{\alpha} ||T^{(r)}||_{\infty}^{1-\alpha},$$

где $\alpha = (r + 1/q)/(r + 1/p)$. Применяя далее неравенство Бернштейна

$$||T^{(r)}||_{\infty} \le n^r ||T||_{\infty},$$

а затем переходя к пределу при $r \to \infty$ и учитывая, что при этом

$$\|\varphi_r\|_{L_p(I_{2\pi})} \to \frac{4}{\pi} \|\cos(\cdot)\|_{L_p(I_{2\pi})}, \quad p > 0,$$

получаем (3.28). Ясно, что (3.28) обращается в равенство для полинома $T(t) = \cos t$.

Докажем (3.29). Зафиксируем сплайн $s \in S_{n,r}$, в среднем равный нулю на периоде, и применим к нему неравенство (3.21):

$$||s||_{L_q(I_{2\pi})} \le ||\varphi_r||_{L_q(I_{2\pi})} \left(\frac{||s||_{p,\pi}}{||\varphi_r||_{p,\pi}}\right)^{\alpha} ||s^{(r)}||_{\infty}^{1-\alpha},$$

где $\alpha = (r+1/q)/(r+1/p)$. Применяя далее неравенство (см. [1, с. 477])

$$||s^{(r)}||_{\infty} \le n^{r+1/p} \frac{||s||_{L_p(I_{2\pi})}}{||\varphi_r||_{L_p(I_{2\pi})}}$$

и учитывая, что $\|s\|_{L_p(I_{2\pi})} \le 2^{1/p} \|s\|_{p,\pi}$, получаем (3.29). Ясно, что (3.29) обращается в равенство для сплайна $s(t) = \varphi_r(t)$.

Литература

- 1. *Корнейчук Н. П., Бабенко В. Ф., Кофанов В. А., Пичугов С. А.* Неравенства для производных и их приложения. Киев: Наук. думка, 2003. 590 с.
- 2. *Бабенко В. Ф.* Исследования Днепропетровских математиков по неравенствам для производных периодических функций и их приложениям // Укр. мат. журн. 2000. **52**, № 1. С. 5 29.
- 3. *Kwong M. K., Zettl A.* Norm inequalities for derivatives and differences // Lect. Notes Math. Berlin: Springer-Verlag, 1992. **1536**. 150 p.
- 4. *Bojanov B., Naidenov N.* An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdos // J. Anal. Math. 1999. **78**. P. 263 280.
- 5. Pinkus A., Shisha O. Variations on the Chebyshev and L^q theories of best approximation // J. Approxim. Theory. 1982. 35, No. 2. P. 148–168.

6. *Кофанов В. А.* О некоторых экстремальных задачах разных метрик для дифференцируемых функций на оси // Укр. мат. журн. – 2009. – 61, № 6. – С. 765 – 776.

- 7. *Kofanov V. A.* Some extremal problems various metrics and sharp inequalities of Nagy Kolmogorov type // East J. Approxim. 2010. 16, № 4. P. 313–334.
- 8. *Кофанов В. А.* Точные верхние грани норм функций и их производных на классах функций с заданной функцией сравнения // Укр. мат. журн. -2011. -63, № 7. С. 969-984.
- 9. *Кофанов В. А.* Неравенства разных метрик для дифференцируемых периодических функций // Укр. мат. журн. 2015. **67**, № 2. C. 202 212.
- 10. Колмогоров А. Н. О неравенствах между верхними гранями последовательных производных функции на бесконечном интервале // Избр. труды. Математика, механика. М.: Наука, 1985. С. 252 263.
- 11. *Корнейчук Н. П., Бабенко В. Ф., Лигун А. А.* Экстремальные свойства полиномов и сплайнов. Киев: Наук. думка, 1992. 304 с.
- 12. Kofanov V. A. Sharp inequalities of Bernstein and Kolmogorov type // East J. Approxim. 2005. 11, № 2. P. 131 145.
- 13. *Корнейчук Н. П., Лигун А. А., Доронин В. Г.* Аппроксимация с ограничениями. Киев: Наук. думка, 1982. 250 с.
- 14. Левитан Б. М. Почти периодические функции. М.: Гостехиздат, 1953. 396 с.
- 15. Weyl H. Almost periodic invariant vector sets in a metric vector spase // Amer. J. Math. 1949. 71, № 1. P. 178–205.
- 16. *Бабенко В. Ф., Селиванова С. А.* О неравенствах типа Колмогорова для периодических и непериодических функций // Диференціальні рівняння та їх застосування. Дніпропетровськ: Дніпропетр. нац. ун-т, 1998. С. 91–95.
- 17. *Кофанов В. А.* Неравенства для непериодических сплайнов на действительной оси и их производных // Укр. мат. журн. -2014. -66, № 2. -C. 216-225.

Получено 04.12.17